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The neighborhood M-polynomial is effective in recovering neighborhood degree sum
based topological indices that predict different physical, chemical and biological characteristics
of material under investigation. In this work, the neighborhood M-polynomial of Titania nanotube
TiO, and the crystallographic structure of 7iF, are obtained. From the neighborhood
M-polynomial, some neighborhood degree sum based topological indices are recovered. Effect of
oxygen vacancies on outcomes is discussed. A comparative study among the findings and some
well-established degree-based indices is performed.
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1. Introduction

Throughout this article, we consider connected graph without
loops and parallel edges. Let V(Y) and E(Y) be node and edge
sets of a graph Y, accordingly. The degree (or valency) of a node
v € V(Y), denoted by d,, is the count of edges incident to v. Here
0, denotes the degree sum of neighbors of #in Y. By neighbors of
anode, we mean the nodes adjacent to that node. Different prop-
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erties and activities of a compound are closely related to its
molecular graph and this issue is the main topic of interest in
chemical graph theory. Quantitative structure—property/ quan-
titative structure—activity relationships (QSPR/QSAR) are
mathematical models which relates the physico-chemical prop-
erty/ biological activity of compounds to their chemical struc-
tures. It has been widely used as an important key field in drug
discovery process for predicting physicochemical properties
and biological activity of molecules. It expresses the characteris-
tics of molecule through topological index without involving a
wet lab. Topological index is a mapping from the collection of
graphs to the set of real numbers that describe the topology of
graph and are used in QSPR/QSAR analysis. It remains
unchanged for isomorphic graphs. Topological indices can be
computed by there usual definitions which is laborious while
one intends to derive many indices of a certain category. To
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overcome this approach, many algebraic polynomials (Hassani
et al., 2013; Alamian et al., 2008; Farahani, 2013) have been
introduced whose differentiation or integration or composition
of both, obtained at a fixed point give topological indices. The
M-polynomial (Deutsch and Klavzar, 2015; Kwun et al., 2017)
is the most general polynomial to produce a large number of
degree based topological indices. Rapid advances are created
on a day-to-day basis to design fresh indices. Recently, some
researchers put their attention on the neighborhood degree
sum based indices (Hosamani, 2017; Mondal et al., 2021;
Mondal et al., 2019; Mondal et al., 2021; Ghorbani and
Hosseinzadeh, 2010; Ghorbani and Hosseinzadeh, 2013; Kulli,
2019; Kulli, 2019). To make the computation of these type of
indices easier, present authors (Mondal et al., 2021; Verma
et al., 2019) introduced the neighborhood M-polynomial
(NM) whose function for neighborhood degree sum based
indices is analogous to the function of the M-polynomial for
degree based indices. Kwun et al. (2017) computed M-
Polynomials and degree based topological indices of V-
phenylenic nanotubes and nanotori. Present authors (Mondal
etal.,2019) derived topological indices for praline graph of some
graceful structures using M-polynomial. M-polynomial-based
topological descriptors of chemical crystal structures and their
applications were discussed in (Chu et al, 2020). M-
polynomials and topological indices of linear chains of benzene,
napthalene and anthracene were reported in (Li et al., 2020).
Cancan et al. (2020) computed topological indices of silicate net-
work via M-polynomial. M-polynomials and degree-based
topological indices of the molecule copper (I) oxide were derived
in (Chaudhry et al., 2021). Liu et al. (2019) obtained topological
indices of nano-tubes via M-polynomial. Closed formulas of M-
polynomial and topological descriptors of boron triangular nan-
otube were calculated in (Shin et al., 2020). M-polynomials of
some nano-structures and zigzag edge coronoid fused by star-
phene were derived in (Raza et al., 2020; Afzal et al., 2020).
Topological descriptors for the crystal structure of titanium
difluoride TiF, were obtained in (Liu et al., 2018). Neighbor-
hood degree sum based indices of molecular graphs were com-
puted in (Mondal et al., 2021; Verma et al., 2019) using NM-
polynomial. The M-polynomial and NM-polynomial of some
anti-COVID-19 chemicals were evaluated in (Mondal et al.,
2020).

One of the most rapidly and actively growing areas of mod-
ern science is the production of nanostructured materials of
various geometric shapes, including nanowires, nanotubes,
etc. The fascination with nanostructured materials stems from
their physicochemical, structural, magnetic, and conductive
properties, which differ significantly from bulk samples of sim-
ilar composition. Kozlovskiy and Zdorovets (2020) presented
the results of a study of the structural properties and phase
composition of Co/CoCo,0, nanowires obtained by electro-
chemical deposition into the pores of template matrices based
on polyethylene terephthalate. Study of the effect of thermal
annealing on the change in the structural properties and phase
composition of metal Co nanostructures, as well as their use as
a basis for lithium-ion batteries were reported in (Zdorovets
and Kozlovskiy, 2019). Green synthesis for producing
nanoparticles (NP) is a biological method which is safe, eco-
nomical, eco-friendly and reduces the use of chemicals. Synthe-
sis of Ag silver NP using an aqueous extract of Acorus
Calamus rhizome was reported in (Sudhakar et al., 2015). To
evaluate the antibacterial, antioxidant, and antitumor effects

of obtained Ag silver NP, Nakkala et al. (2014) performed
synthesis involving an aqueous extract of rhizome Acorus
Calamus. Green synthesis of barium ferrite nanoparticles using
rhizome extract of Acorus Calamus was reported in (Thakur
et al., 2020). The synthesis of ceramic nanostructured materials
with multifunctional characteristics is an important area of
research related to the production and study of new materials.
Zhumatayeva et al. (2020) reported the outcomes of a study of
structural characteristics, as well as the possibility of using
Lig15Srog5TiO3 ceramics as anode materials for lithium-ion
batteries. Critical behavior of LaggysSrg17sMn0s9;, anion-
deficient manganite in the magnetic phase transition region
was analysed in (Trukhanov et al., 2007). Synthesis and struc-
ture of nanocrystalline manganite LagsoBaysoMnO; was
described in (Trukhanov et al., 2008). Nano-structures based
on iron-nickel compounds have found their application in
biomedical applications, such as carriers for targeted drug
delivery, bases for lithium-ion batteries, etc. Structures based
on iron-cobalt compounds and their oxide forms are increas-
ingly used as magnetic sensors. Kozlovskiy et al. (2020)
reported the outcomes of the synthesis and subsequent phase
transformations of FeCo nanowires depending on the anneal-
ing temperature. High chemical stability and corrosion resis-
tance, in combination with functional magnetic properties of
BaFe;,09 M-type hexaferrites or BaM opens up a wide range
of possibilities for potential applications. Recently, the strong
correlation of the heat treatment conditions (annealing), crys-
tal structure parameters, microstructure and magnetic proper-
ties evolution in BaM nanohexaferrites is presented in
(Trukhanov et al., 2021). Titanium is the ninth most plentiful
metal in the Earth’s crust. 7i02, the most common titanium
chemical, has diverse uses from anti-corrosion, self-cleaning
lubricants and paintings to solar panels and photocatalysts
(Fujishima et al., 1999). The semi-conductive characteristics
of TiO, nanotubes lead in a powerful ionic interaction between
the support and an electrode, enhancing catalytic efficiency in
redox rections. The TiO, nanotube is also used as electrode of
dye-sensitized solar cells. Titanium difluoride is a water-
insoluble form of titanium to use for oxygen-sensitive imple-
mentations like metal processing. Fluoride materials have a
variety of applications in present technologies and research,
from petroleum refining and coating to synthetic chemistry
and pharmaceutical manufacturing. To design a nanotube
and nanoparticle with the suggested characteristics, struc-
turally delicate properties such as fracture strength and yield
stress can be controlled. The topological index is a numeric
measure of molecule that describes the topology of molecular
graph under testing in several ways. That is why, researchers
obtained different topological indices (Liu et al., 2018;
Munir et al., 2016; De, 2016; Liu et al., 2016) for the aforesaid
structures. In this work, our focus is on titanium based struc-
tures. We aim to obtain some neighborhood degree sum based
indices of titania nanotube 770, and crystallographic structure
of TiF, via neighborhood M-polynomial approach.

The rest of the manuscript is constructed as follows. Sec-
tion 2 contains some preliminaries required to obtain the main
findings. Section 3 contains the methodology required to
obtain the main results. Section 4 is divided into two subsec-
tions: first one deals with the computation of titania nanotube
TiO, and the later contains the computation for crystallo-
graphic structure of TiF,. The outcomes are compartively
studied in Section 5. The work is concluded in Section 6.
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2. Preliminaries

Topological indices based on degrees play a major role in the
field of chemical graph theory among several classes of topo-
logical indices. Gutman and Trinajstic (1972) introduced the
first degree-based molecular descriptor in 1972 which nowa-
days is known as Zagreb index. In 1975, Randi¢c (1975)
invented the branching index to characterize the molecular
branching that was later renamed as connectivity index.
Nowadays, most authors refer to it as to the Randi¢ index.
The degree based indices based on degree of end nodes of
edges for a graph Y are defined as follows:

I(Y) = Z F(duvdv)u
uveE(Y)
where F(d,,d,) is defined for different well-established descrip-
tors in Table 1
For more degree based indices, readers are referred to
(Nagesh and Girish, 2020; De, 2018; De, 2018; Numan et al.,
2021; De, 2019). The M-polynomial of a graph Y is defined as,

Zm,,)xy (1)

i

M(Y;x,y) =

Where my; is the total count of edges uv € E(Y) such that
{d,,d,} = {i,j}. The neighborhood M-polynomial of a graph
Y is defined as,

Y X _} Zy(z/ (2)
i<j
Where y;, is the total count of edges uv € E(Y) such that

{04,0,} = {i,j}. We use NM(Y) for NM(Y;x, ) in this article.
Now we set an example to describe aforesaid definitions. From
Fig. 1, we have d,=1,d,=2,d.=2,d;, =1,
0y =2,0,=23,0.=3,0,=2 Thus, we have
magy =2,man = 1,103 = 2, %33 = |- Therefore from Egs.
(1), (2), we have for n-butane, M(G) = 2x)* + x*)?,
NM(G) = 2x*y* + x*)3. Neighborhood degree sum based
topological indices defined on edge collection of a graph Y
can be represented as

=2 N fau,(s

uve E(Y
Table 1 Formulation of degree based topological indices.
I(Y) F(d,,d,) I(Y) F(d,,d,)
First Zagreb index d, + d, Second Zagreb d,d,
(M (Y))(Gutman index (M>(Y))
and Trinajstic, (Gutman and
1972) Trinajstic, 1972)
Randi¢ index ﬁ Forgotten &+ d
(R(Y))(Randic, o topological index
1975) (F(Y))(Furtula
and Gutman,
2015)
Inverse sum indeg ddf&‘ Redefined third  d,d,(d, + d,)

index (ISI(Y))
(Vukicevi¢ and
Gasperov, 2010)

Zagreb index
(ReZG(Y))
(Ranjini et al.,
2013)

C

Fig. 1 Molecular graph of n-butane.

where f(d,,9,) is the function of d,,d, used in Table 2 to for-
mulate neighborhood degree sum based indices. The above
formula can also be written as
) = /(i) (3)
i<j
Formulations of neighborhood degree sum based indices and

their relations with the NM-polynomial are shown in Table 2.
Here, NM(Y) is a function of x, y and

LOVM(Y)

ax 5 QWM(Y))

D,(NM(Y)) =

Table 2 Formulation of topological indices using NM-poly-
nomial for a graph Y.

Topological Index f(x,y)

X+y

Derivation from NM(Y).

(Dx + Dy)(NM(Y)) at
x=y=1

Third version of Zagreb
index (M} (Y)) (Ghorbani
and Hosseinzadeh, 2010)
Neighborhood second Xy
Zagreb index (M;(Y))
(Mondal et al., 2019)

Neighborhood forgotten X2 + 2 ( Di + Df,)( NM(Y)) at
topological index (Fj(Y)) x=yp=1
(Mondal et al., 2019)
Neighborhood second L (S+Sy)(NM(Y)) at
modified Zagreb index ' x=y=1
(" M>(Y)) (Mondal et al.,
2021)
Neighborhood general (xy)* (DiD%)(NM(Y)) at
Randi¢ index(NR,(Y)) x=y=1
(Mondal et al., 2021)
Third NDe index y(x+y) DiD,(Dy+ D,)(NM(Y))
(ND5(Y)) (Mondal et al., atx=y=1
2021)
[lex] Fifth NDe index 4% (DxSy + SyDy,)(NM(Y))
(NDs(Y)) (Mondal et al., i atx=y=1
2021)
Neighborhood Harmonic Y% 28 J(NM(Y)) at x =1
index (NH(Y)) (Mondal
et al., 2021)
Neighborhood inverse pot SJD Dy (NM(Y)) at

sum index (NI(Y))
(Mondal et al., 2021)
.. o
Sanskruti 1ndex S(Y)) T
(Hosamani, 2017)

x=1

S3Q ,JDID}(NM(Y)) at
x=1
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o)) = [ gz nr)

_ [ O

—dz,
z

JINM(Y)) = (NM(Y))|,—, Qu(NM(Y)) = x*NM(Y).

For o = —1 in NR,, we have the fourth NDe index (Mondal
et al., 2021) as follows:

>
uveE(Y) 5“5"

ND,(Y) =

3. Methodology

The present work deals with some neighborhood degree sum
based indices of two Titanium compounds: TiO, and TiF;.
First of all, the NM-polynomials of both the networks are
computed and then using some calculus operators, different
neighborhood degree sum based indices are recovered. We uti-
lize combinatorial computation, graph theoretical tools and
edge partition method to obtain the outcomes. The graphical
representations of the results are shown using Maple 2015. A
comparative study of the findings is performed via 3d line plot-
ting in Matlab 2017.

4. Main results

In this section, we give our key analytical results and divide the
section into two subsections.

4.1. Computational aspects of Titania nanotubes TiO;|p, q|

In this section we consider the titania nanotube 770, [p, g]. The
structure of the Titania nanotube 7iO;[p,q| is depicted in
Fig. 2. We compute the NM-polynomial of TiO,[p,ql-
nanotube in the following theorem.

Theorem 1. Let Y be the 7iO;[p, g]-nanotube. Then we have,

NM(Y) = 25597 + 22910 + 2275 + 2qx79" + 4gx)® + 2g:°p%° + 6pxy!t
+3px%y13 +2q(2p + 1)x"0p" 4+ 2¢(p — 1)x'1y"3 4+ 2¢(3p — 2)x3pt3.

Proof. The TiO,[p, gq]-nanotube has 12pg + 9p + 6 + 4 num-
ber of edges. Its edge set can be partitioned as follows:

Fig. 2

| Egsay |=[ {uv € E(Y) : 6, = 5,6, =T} |[= 2= y53),

| Egsi0y |[=] {uv € E(Y) : 6, = 5,0, = 10} [= 2 = y5,10)>

| Egoy |=[ {uv € E(Y) : 6, = 17,6, =9} |= 29 = 1179),

| Eqzizy [=] {uv € E(Y) : 6, = 7,0, = 13} |= 29 = y7.13),
| Egsoy |=[ {uv € E(Y) : 6, = 8,6, =9} |=4q = y39),

| E10y |[=| {uv € E(Y):6,=9,0,=10} |=2¢ = %9.10)>
| Ewany [=| {uv € E(Y) : 6, = 9,0, = 11} |= 6p = 701,
| Epasy =] {uv € E(Y):6,=9,6, =13} |[=3p = 700,13

| Eqio3y |[=| {uv € E(Y) : 6, =10,0, =13} |=29(2p + 1)

= X(10,13)»

| E{11.13} ‘:‘ {MV S E(Y) : 614 = 11,6‘, = 13} |: 2q(p — 1)

= X11,13)»

| E{13‘13} ‘:‘ {MV S E(Y) : 5u = 13,5‘; = 13} |: 2q(3p — 2)
= X(13,13):

From the definition, the NM-polynomial of Y is obtained as
follows.

NM(Y) = ZZ(i:f)xi}’i

i</

=m Xy 4 ms 10" 4+ mp o)Xy + m 13 x7y"B

+ms.9) X8y + mo.10) X"y + me1n Xy 4 m 132y

-H'1(10,13)~’Cmy]3 + "7(11.13)%”)/]3 + "1(13.13)«‘([3 13,

=257 + 255910 4 2gx7y° + 2gx7 1 4 4gx®y” + 22010 + 6pxy!!

+3px°y13 +2q(2p + 1)x0p1 4+ 2¢(p — 1)x'1y" + 2¢(3p — 2)x3pt3.

This completes the proof. [J

Now using this NM-polynomial, we calculate some neigh-
borhood degree sum based indices of the TiO,[p, g]-nanotube
as follows.

Theorem 2. Let Y be the 7iO;[p, g]-nanotube. Then we have,
1. M\ (Y) =296pq + 186p + 72q + 54,

2. M3(Y) = 1820pg + 945p + T4q + 170,
3. Fyy(X) = 3684pg + 1962p + 244q + 398,

1 I 1 |
p=1 p=2 p=3 p=4

The structure of TiO;[p, g]-nanotubes, for p = 6 and ¢ = 4.
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4. "™M,(Y) = 0.08pg + 0.086p + 0.109¢ + 0.097,
5. NR,(Y) = [4(130)* + 2(143)*+

6(13)™]pg + [6(99)" + 3(117)"]p+

[2(63)" +2(91)" 4 4(72)" +2(90)"+

2(130)" — 2(143) — 4(13)*]g + 2(35)" + (50,

6. NDs(Y) = 45188pq + 19602p — 44884 + 2340,

7. NDs(Y) = 24.333pq + 18.653p + 13.078¢ + 9.228,

8. NH(Y) = 0.976pq + 0.873p + 0.831¢ + 0.6,

9. NI(Y) = 73.525pq + 45.654p + 16.778¢ + 12.5,

10. S(Y) = 3593.145pg + 1598.855p — 512.809¢ + 199.542.

Proof. Let
NM(Y) = f(x,y) = 2x°y7 + 2x°p10 + 2gx7y° + 2¢x7yB3+

4qx8y9+2qx9y10+6px9y“+ 3]))69 13+2‘](2p+1)x10y13+

2q(p_ ) 11 13+2q(3p 2) 13 13

Then we have,

(Dy+ D) (f(x,)) = 24x5y7 +30x°p'0 + 32¢x7y" + 40gx"y"? + 68¢x* )7+
38qx9 10+ 120pxp" + 66pxy13 + 46g(2p + 1)x10y13
+48¢q(p — 1)x"y" + 52¢(3p — 2)x"3y"3,
70xy7 4+ 100x°y!'0 + 126gx7)° + 182qx7“1f13+
288gx%y? + 180gx°y'® + 594px°y!! + 351px°y3+
260q(2p + 1)x'10p13 4 286¢(p — 1)x!1y13
+338¢(3p — 2)x"3y13,
148x°y7 + 250‘€5LIO +260gx7y° 4 436qx7y"+
580gx%1° + 362gx7p"0 + 1212px°y! + 750px0 13+
538¢(2p + 1)x'%913 + 580¢(p — 1)x"1y"3 + 676¢(3p
S NENES
2067 L0 4 200700 + 2007 yB + gty
+ qx9}10 +2 p‘cg}n +5 p,co}lz +L q(2p+
l)x °y” fq(p = Dty + .694(3p 2)xPyt,
DDy (f(x,p)) = 2(35)*x%y7 +2(50)* X7y + 2¢(63)"x7y°+
2q(91)" X7y +44(72)"x%)° + 2(90)"x°y'0+
6p(99)" 3y + 3p(117)*x°p"3 + 2¢(2p
+1)(130)“ 0y13 +2¢(p — 1)(143)“x”yl3+
29(3p - 2><13>“ Byl
840x°y7 + 1500x°p'0 + 2016¢x7y° + 364qu7y13+
4896¢x%)° + 3420gx°y'° + 11880px°y
+7722px° "3 4 5980g(2p + 1)x'0p'3 + 68644 (p—
1) ll ”+8788q(3p 2) 13 I%
&Xw}ﬂ 4 SxSpl0 4 260 7y _,'_436(],67»13_‘_
Wty + 8 Wyt

D.D, (flx, ) =

(DY + D) (flx, ) =

S8y (flx, ) =

DD, (Dy + D) (f(x,y)) =

(DsSy + 8cDy)(f(x, ) =
g y!0 +

20913 4 260 (2 4 1)x10p13 4 30 4
“1)x 11}13 +4q(3p — 2)x"y1,

x4 24} qx O+ hax? + l7qr T+ 3qx"
+1o0x% + 350X + 54(2p + DX + 45q(p

—1)x* + 1'—3q(3p —2)x%,

35412 42015 | @ gyI6 | 9L 20 | 28T

+ 180 419 | 297,20 4 ”lpx +204(2p

+1)x3 + 8 q(p — 1)x* + 13¢(3p — 2)x%,

85.75x10 + 113.792x'% + 182.25¢x" +

258.426gx'8 + 221.184x"S + 296.764qx"7+

998.25px'® + 600.605px°+

474.463(2p + 1)x* + 549.25¢(p — 1)x*+

698.323¢(3p — 2)x2

SeJ(f(x,y)) =

SJID.D,(f(x,y)) =

530 ,JD;D;(f(x,y)) =

Rest of the proof can be done easily using Table 2. [

The topological indices for TiO, [p,q] are depicted in Fig. 3,
Fig. 4 and Fig. 5.

Now putting o = — % in Theorem 2, we obtain the following
corollary.

Corollary 1. The fourth NDe index of TiO; [p,q] is given by

ND,(TiOs[p, q]) = 0.9796pq + 0.8804p + 0.84439g + 0.621.

The vacancy defects, which are formed because of the
absence of the atoms/ions from the lattice structure, are very
common in all types of crystalline materials. Different proper-
ties of the titanium oxide-based nanomaterials are found to be
explicitly dependent on the presence of various crystalline
defects. Oxygen vacancies are the most frequent and foremost
among them. Topological indices have two major subclasses:
topostructural and topochemical. The former encode informa-
tion strictly on molecular connectivity. The latter includes
chemical features (atom and bond type) in addition to topolog-
ical information. The present article deals with the topostruc-
tural indices. The argument of topostructural indices is always
a molecular graph. By molecular graph of a chemical com-
pound, we mean a simple connected graph whose vertices cor-
respond to the atoms of the compound and edges correspond
to chemical bonds (irrespective of bond type) between them.
Thus, it is apparent that oxygen vacancies on 7iO, crystal
reduces the number of nodes and edges of the molecular graph.
As a result, the indices derived from Theorem 2 and Corollary
1, will alter. For instance, M| moves down for imposing oxy-
gen vacancy on TiO, crystal. Each of the indices considered in
this work can model different physico-chemical properties with
powerful accuracy (Hosamani, 2017; Mondal et al., 2019;
Mondal et al.,, 2021; Ghorbani and Hosseinzadeh, 2013;
Mondal et al., 2020). It is therefore clear that oxygen vacancies
play vital role in governing and even drastically changing var-
ious physico-chemical properties of titanium dioxide
nanostructures.

4.2. Computational aspects of the crystallographic structure of
TiF; [m, n, t].

Here we consider the crystal structure of Titanium difluoride
(TiFy[m,n, 1]). Its structure is shown in Fig. 6. The structure
consists of m X n units in the plane and then stores them in ¢
layers. We compute the NM-polynomial of the crystallo-
graphic structure of TiF, [m, n, t] as follows.

Theorem 3. Let Y be the crystallographic structure 7iF, [m, n
t]. Then we have,

NM(Y) = 8x*y"3 +8(m+n+t—3)x%p!® + 16x13p'% + 8[2mn + 2mt + 2nt — 2m

+2n 4 2t + 1x"p"® 4 8[dmnt — 2(mn + mt + nt) + 1]x'°9** + 8(m + n+
1 - 2)x'8y2.

Proof. The TiF, [m, n, t] structure has 32mnt number of edges.
Its edge set has partitions as follows:

| E{4)|3} |:| {HV S E(T) : (Su = 47 5v = 13} |: 8 = X(4113),

| E{g‘lg) |:| {MV c E(Y) : 5u = 8,5‘7 = 18} |: 8(”1 +n+1t— 3)

= X,18)
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Fig. 5 (a) NH, (b) NI, and (c) S index of TiO; [p.,q].
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Fig. 6 (a) Unit cell of TiF, [m,n,t] (b) Crystallographic structure of TiF, [4,1,2].

| Eqsiey |=] {uv € E(Y) 18, = 13,8, = 16} |= 16 = 11315, | Eoasy [= | {uv € E(Y) 1 6, = 16,8, = 24} |= 8[4mnt — 2mn — 2mt — 2t + 1]

= 1(16,24)+

| {uv € E(Y): 0, = 16,0, = 18} |= 8[2mn + 2mt + 2nt) — 2m | Eqsazy |=| {uv € E(Y) : 6, = 18,0, = 32} |
20+ 2t + 1] = y1618)5 =8(m+n+1-2)= 1153

| Epgasy |=
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(a) (b)

Fig. 7 The NM-polynomal of (a) the 7i0,[2,2]-nanotube and (b) the crystallographic structure TiF»[2,2,2].

From the definition, the NM-polynomial of G can be obtained Dy + D) (f(x,p) = 136x*y! +208(m +n + 1 = 3)x* '+ > 464xy!0+
like previous. Hence the proof. [J 272[2mn + 2mt + 2nt = 2m — 2n = 2 + x4
320[4mnt — 2mn — 2mt — 2nt + 1)x'%y** + 400(m+

The surface representation of NM-polynomials for both the Nt —2)xy2,

networks is shown in Fig. 7. The range of x and y axes is taken DDy (f(x,)) = 416x* 1 + 1152(m + n + 1 — 3)x5p'8 4+ 3328x13p164

arbitrarily from —2 to 2, as except for the vertical axis values, 2304[2mn + 2mt + 2nt — 2m — 2n = 2t + 1]x'6pS 4

no changes would appear in the figures for the higher or lower 3072[4mnt — 2mn — 2mt — 2nt + 1]x'0p* + 4608 (m-+

range. It shows the changes of the NM-polynomial for varying nt = 2)x1y,

(DX + DY) (flx,y)) = 1480x*p" +3104(m +n + ¢ — 3)x"p'S 4 6800x13 10+
4640(2mn + 2mt + 2nt — 2m — 2n — 21 + 1]x'0p!8 4
6656[4mnt — 2mn — 2mt — 2nt + 1]x'y* + 10784 (m+
n + t—2)x'8y?

SeSy(f(x,) = FxYP 4 k(m4n+1—=3)x8p1 4 Lliyloy
3 [2mn + 2mt +2nt—2m—2n-2t+ l]x oyl 4
% [mnt — 2mn — 2mt — 2nt + 1)x"°y* + & (m + n+

its arguments. Now using this NM-polynomial, we calculate
neighborhood degree sum based indices of the TiF, [m, n, t]
structure in the following theorem.

Theorem 4. Let Y be TiF> [m, n, t]. Then we have,

1. M\ (Y) = 1280mnt — 96mn— 96mt — 96nt 4+ 64m + 64n+ [ — 21y,
64t — 232, DEDA(flx,y)) = 8(52)"x'y!3 +8(144)" (m + n + 1 — 3)x*y'* + 16(208)"
2. M5(Y) = 12288mnt — 1536mn — 1536mt — 1536nt+ X316 1 8(288) 2 + 2mit + 2nt — 2m — 20 — 2t + 1]
1152m+ 1152n + 1152¢ — 3552, X'6y!8 1 8(384)" [dmnt — 2mn — 2mt — 2nt + 1]x"0p* +
3. Fy(Y) = 26624mnt — 4032mn — 4032mt — 4032nt+ 8(576) (m + 1+ 1 — 2)x1%y2,
4608m + 4608n + 46087 — 11304, D.Dy(Dy + D)) (f(x,p)) = 7072x*p'3 4+29952(m + n + t — 3)x®y'S + 96512x131¢
4. "M (Y) = 0.083mnt + 0.014mn + 0.014m¢ + 0.014nt+ +78336[2mn + 2mt 4 2nt — 2m — 20— 21 + 1'%y
0.014m + 0.014n + 0.014¢ + 0.085 122880(4mnt — 2mn — 2mt — 2nt + 1]x'y*+

230440(m +n+ t — 2)x"8y2,
(DiSy + SeDy)(flx,p)) = 3Rx*YB 4 B (m 4 n 41— 3)x8y!8 4 4B xBpleg
’45 [2mn + 2mt +2nt —2m — 2n — 21 + 1]x'6p"84

5. NR,(Y) = 8(52)* + 8(144)*(m +n +t — 3)+ 16(208)"+
8(288)*[2mn + 2mt+ 2nt —2m —2n — 2t + 1]+ 8(384)"

[4mnt — 2mn— 2mt — 2nt + 1] =+ 8(576)“ (m +n—+t— 2), 53_2[4,””[_ 2mn — 2mt — 2t + 1]x16)% 33 %27 L (1 + n
6. ND;(Y) = 491520mnt — 89088mn— 89088mt — 89088nt+
103720m + 1037201 + 1037207 — 245936, e 2)x18y32

7. NDs(Y) = 69.333mnt — 2.444mn — 2.444mt — 2.444nt+
8.056m + 8.056n + 8.056t — 7.513,
8. NH(Y) = l.6mnt + 0.141mn + 0.141mz + 0.141nt—

S I(f(x, ) = ExXT+E(m+n+1-3)x% +18xP + L 2(mn+
mt + nt) = 2(m +n + 1) + 1x* + L [4mnt — 2mn — 2mt
=201+ 1)x* + & (m+n+1-2)x",

0.006m— 0.006n — 0.006¢ + 0.429, SIDD,(flx, 1) = HSxT 45T (g £ — 3)x 3By
9. NI(Y) = 307.2mnt — 18.07mn — 18.07mt — 18.07nt+ nsz [2mn+2m,+2n, o am 24 s
0.938m+ 0.938n + 0.938¢ — 33.449, % [4mnt — 2mn — 2mt — 2nt + 1]x* +B¥ (m +n
10. S(Y) = 33021.2mnt — 4846.6mn — 4846.6mt — 4846.6nt+ +1—2)x%,
3888m + 3888n + 3888¢ — 11096.333. S30 LJDID}(f(x,y)) = 333293x' 4+ 1728(m +n + t — 3)x* + 7315.074x7+

5832[2mn + 2mit + 2nt — 2m — 2n — 2 4 1]x*
+8255.3[dmnt — 2mn — 2mt — 2nt + 1]x* 4
Proof. Let NM(Y) =f(x,y) =8x*y3+ 8(m+n+1-3) 13824(m +n+1—2)x*
X3y > 16x3p16 + 8[2mn + 2mit + 2nt — 2m — 2n — 2+
x84 8[dmnt — 2mn — 2mt — 2nt + 1] x'°y** + 8(m + n+
t—2)x'8y%2, The topological indices for TiF, [m, n, 1] are depicted in
Fig. 8, Fig. 9 and Fig. 10.

From Table 2, we can easily derive the required result. [J

Then we have,



Corollary 2. The fourth NDe index of TiF, [m, n, t] is given by

ND,(TiF[m,n,1]) = 0.9796pq + 0.8804p + 0.84439g + 0.621.

5. Comparative study

Firstly, we consider comparative study among different neigh-
borhood degree sum based indices for the considered struc-
tures, later some well-known degree based indices reported in
Table 1 are compared with present findings.

Different neighborhood degree sum based indices for TiO,
[p,q] and TiF, [m, n, 1] are compared graphically in Fig. 11 and
Fig. 12, respectively. From the Figs. 3,4,5,8,9,10,11,12,13,14,
15,16, following remarks can be drawn. In each compound
under consideration, all indices respond diversely. In case of
each index, the structures have the following order: T(7iO,

8 S. Mondal et al.
1. x 106 6.
: 2.x10
7.x10 5x10°
5.%10 1.x10
-
3x10 5.x10 ,j‘j
1.x10 | =
| i i ]
109376543212345678910 109376543212345678910 109876543212345678910
n m n m n m
(a) (b) ()
Fig. 8 (a) M|, (b) M5, and (c) F) index of TiF; [m, n, 1].
4. x 10
3.x10"
3
2.x10" SO
2
s SR
T M-
10987653375 15345678910 10987653337 2345678910 1098765373 13345678910
n m n m n m
(a) (©)
Fig. 9 (a) ™M,, (b) NDs, and (c) NDs index of TiF, [m, n, 1].
25x109 200
2,10
l.S)(lO6
1.x 10"
5.x10°
i 10 T
109876543212345678910 09876543212345678910 876543212345678910
n m n m n m
(a) () (c)
Fig. 10 (a) NH, (b) NI, and (c) S index of TiF, [m, n, 1].
Now putting o = —% in Theorem 2, we obtain the following [p,a])<T(TiF, [m, n, t]), T denotes the topological index. From
corollary. the vertical axes of the figures, we can conclude that for both

the structures, the neighborhood degree sum based indices
have the following order: ND; = Fy = M, > M,
> NDs > NI > NDy, > NH = "M,. The ND; has the most
dominating nature compared to other neighborhood degree
sum based indices, whereas "NM, grew slowly. The indices
computed in this paper increase as well as graph parameters
increase.

Many of the neighborhood degree sum based indices have
similar formulations to degree based indices. Here we compare
the behavior of the neighborhood degree sum based indices
with their corresponding degree based indices for both the
Titanium compounds through graphical representations. To
plot degree based indices, explicit expressions of
My, M, R, F,ISI, and ReZG; for TiO, [p,q] and TiF, [m,n,t]
are collected from (Munir et al., 2016; Liu et al., 2018; De,
2016; Liu et al., 2016). From Figs. 13-16, one can say that
neighborhood degree sum based descriptors show dominating
nature over degree based descriptors except R and ND,. From
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Fig. 11  Comparison of different topological indices for TiO, [p, q].
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Fig. 14 Comparison of ND;, NI and ND, indices with corresponding degree based indices for TiO; [p, q].
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Topological indices

Fig. 15

Topological indices

0o

_NDS —ReZGs

Fig. 16 Comparison of ND;, NI and ND, indices with corresponding degree based indices for 7iF, [m, n, 1].

Figs. 14, 16, it is clear to state that R = ND,. There is there-
fore a sizable variation of the descriptors for the structures
investigated.

6. Remarks and conclusions

In this article, we have studied the topological properties of the
TiO;nanotube and thecrystallographicstructure of TiF,. Firstly,
the general form of neighborhood M-polynomial for the struc-
tures are obtained and then using that polynomials, some neigh-
borhood degree sum based indices are recovered. To visualize the
results, their graphical representations also have been made.
Each of the indices considered in this work can model different
physico-chemical properties with powerful accuracy. The corre-
lation coefficients (r) of My, M5, F, "™ M,, ND3, NH,and NIwith
entropy and acentric factor for octane isomers are > 0.93. Sur-
prisingly, correlation coefficient of N/ with acentric factor is
0.99. The correlation of NDs with different physico-chemical
properties for alkanes is also notable (r = 0.9). Besides the
structure—property/structure—activity modelling, a good
descriptor should discriminate isomers. The isomer discrimina-
tion ability of neighborhood degree sum based indices is remark-
able in comparison with degree based indices. Thus the
considered indices are useful to describe the structural features
of molecular graph. The computation of such indices of aforesaid
useful structures is therefore worth-while and the findings can be
helpful to understand the topology of the structures.
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