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Oxytetracycline (OXY) is an antibiotic widely used in the livestock industry and its existence in water can
cause antibiotic resistance genes. A treatment process in a continuous mode is required to treat a high
volume of OXY wastewater. Hence, an effort was made in this study to adsorb OXY from an aqueous solu-
tion (batch and continuous modes) using landscape biomass waste-based activated carbon (LBWAC). This
adsorbent was produced via potassium hydroxide (KOH) chemical treatment combined with microwave
heating under carbon dioxide, CO2 gas. The resulting LBWAC exhibited 973.21 m2/g of BET surface area,
842.18 m2/g of mesopores surface area, 0.3911 cm3/g of total pore volume, and 2.44 nm of average pore
diameter. In a batch study, OXY adsorption uptakes increased whilst OXY percentage removal decreased
when OXY starting concentration increased from 25 to 300 mg/L. The highest uptakes of OXY occurred at
a solution temperature of 60 �C (228.44 mg/g) and a solution pH of 12 (63.22 mg/g). The adsorption sys-
tem studied obeyed the Langmuir model and pseudo-second-order in isotherm and kinetic studies,
respectively. The obtained Langmuir monolayer capacity, Qm was 344.83 mg/g. Mechanism study
revealed that O, H, and N elements in OXY molecules react with O, H, and N elements in functional groups
on LBWAC’s surface via hydrogen bonds and vice versa. Parameters acquired in the thermodynamic study
described the adsorption process as spontaneous, endothermic, and physisorption-controlled. The con-
tinuous bed column study revealed that the breakthrough point (Tb), exhaustion time (Tex), and maxi-
mum adsorption uptake (qmax) for the OXY-LBWAC adsorption system can be increased by decreasing
the starting inlet concentration, decreasing the inlet flow rate and increasing the bed height. The contin-
uous adsorption data fitted Thomas model the best. The LBWAC had a good potential to be applied in a
large-scale operation for OXY wastewater treatment.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Antibiotics are a class of medications used to treat bacterial
infections. They work by killing or inhibiting the growth of bacte-
ria, thus helping the body’s immune system to eliminate the infec-
tion (Kovalakova et al., 2020). Antibiotics pose a significant
environmental concern among the various pollutants, primarily
due to their persistence and presence in drinking water, surface
water, and wastewater, where their detection is frequent. The
introduction of antibiotics has resulted in a growing pollution
problem in aquatic environments, largely attributed to the impro-
per use and overuse of pharmaceuticals in aquaculture, livestock
farming, and hospital settings. Certain antibiotics exhibit limited
oral bioavailability, resulting in their prolonged presence in the
gastrointestinal tract beyond the desired duration. As a conse-
quence, these antibiotics are excreted into the environment in
residual and unabsorbed forms, potentially retaining their biologi-
cal activity (Nkoh et al., 2023). One of the regular antibiotics that
can be detected as a pollutant in water and soil is oxytetracycline
(OXY) (Conde-Cid et al., 2019, Wang et al., 2023). OXY belongs to
the category of tetracyclines, a class of broad-spectrum antibiotics
extensively employed in the livestock industry. These antibiotics
exhibit activity against various types of microorganisms, including
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numerous Gram-positive and Gram-negative bacteria (Zhang et al.,
2023). In the future, the generation of wastewater containing
antibiotics is expected to increase due to the increment of antibi-
otic usage worldwide due to (i) an increasing human population,
(ii) easy access to antibiotics and (iii) increase demand for animal
protein leads to an increase in antibiotics usage to sustain the food
production (Van Boeckel et al., 2015, Zhao et al., 2019). Exposure to
antibiotic residues causes a notable threat in terms of the rise of
antibiotic-resistance genes and antibiotic-resistant bacteria (Zhan
et al., 2020). Therefore, there is a need to develop an effective yet
economical-friendly method to treat the ever-increasing wastewa-
ter containing antibiotics.

There are many methods to treat antibiotics wastewater. For
instance, Cuerda-Correa et al. (2020) adopted advanced oxidation
processes whilst Li et al., (2020) and Du et al., (2021) utilized pho-
todegradation using metal–organic frameworks to treat antibiotics
in wastewater. These methods are efficient but high in cost for
chemical reagents or catalysts besides producing secondary pollu-
tants in the form of metal sludge (Leng et al., 2020). Xiong et al.,
(2021), Ferrando and Matamoros (2020), and Gojkovic et al.,
(2019) studied algae-based techniques to treat antibiotics wastew-
ater. Despite its effectiveness, this method requires relatively
longer time to achieve its objective. In a study conducted by Bai
and Acharya (2016), 7 days were needed to remove antibiotics
from wastewater. Of all methods available, the adsorption process
offers many advantages such as being effective, simple to operate,
relatively fast process, and cheap (Mohamad Yusop et al., 2023a,
2023b, 2023c). Furthermore, this method has demonstrated versa-
tility due to its ability to remove various type of contaminants from
wastewater ranging from dyes (Lopes et al., 2021, Zhou et al., 2022,
Zayed et al., 2023), heavy metals (Yusop et al., 2022a, 2022b,
Bumajdad and Hasila 2023, Saka et al., 2023), water vapor (Liu
et al., 2023), phenol (Arshad et al., 2019, Alam et al., 2023), nitric
oxide (Lin et al., 2021), antibiotics (Zhou et al., 2022, Tiwari
et al., 2023), hydrogen sulfide, H2S gas (Moradi et al., 2020, Nor
et al., 2021), and so on. One of the most effective adsorbents to
be used in the adsorption process is activated carbon (AC).
Researchers are actively producing AC from biomass wastes since
they are free materials and renewable sources. For instance, eda-
mame shell (He et al., 2023), coconut shell (Oyekanmi et al.,
2019, Amran et al., 2021, Yusop et al., 2022a, 2022b), pineapple
peel (Rosli et al., 2023), date seed (Said et al., 2023), wood wastes
(Firdaus et al., 2022, Mohamad Yusop et al., 2023a, 2023b, 2023c),
oak seeds (Borghei et al., 2021), mangosteen peel (Jawad et al.,
2022), jackfruit peel (Mohamad Yusop et al., 2023a, 2023b,
2023c), orange peel (Ajay et al., 2021) and others. In this study, bio-
mass waste from landscape tree (Tabebuia rosea tree) was selected
as the precursor to be converted into activated carbon (AC). This
tree is commonly known as ‘‘Malaysian Sakura” and is highly cho-
sen as a landscaping plant. The local authorities in Malaysia have
extensively planted this tree along roadsides, gardens, parks, resi-
dential areas, and university campuses (Nur et al., 2014). Despite
its beauty, this tree has no other purposes and is often dumped
in a dumping site. Therefore, utilizing their waste in AC would be
beneficial in promoting the ‘‘waste to wealth” concept.

In the literature, few studies targeting OXY to be treated from
wastewater were noticed. Nguyen et al., (2021) studied OXY
adsorption by cobalt-based zeolite, Juengchareonpoon et al.,
(2019) utilized hydrogen film to adsorb OXY, and Khan et al.,
(2021) performed an adsorption test on OXY using groundwater
treatment sludge as magnetic adsorbent. These studies share sim-
ilarities in where the adsorption test was conducted through batch
mode. The batch mode in the adsorption process is not suitable for
large-scale applications due to (i) at the end of the adsorption pro-
cess, the adsorbent is required to be filtered out from the solution,
therefore adding more work and labour cost, (ii) variations in
2

terms pH and temperature occur in different batch, resulting
inconsistencies in adsorption process and (iii) wasting adsorbent
since adsorbent is used in excess quantity to achieve adequate
adsorption. On the contrary, the continuous mode of adsorption
process is more beneficial since it provides higher treatment capac-
ity, improved efficiency, consistent performance, cost-
effectiveness, control, and flexibility, making it a preferred choice
for many large-scale or continuous treatment applications. There-
fore, this research aimed to study the OXY adsorption onto LWBAC
through batch and continuous bed column. The equilibrium, iso-
therm, kinetic, and thermodynamic studies were performed in
batch adsorption whilst several adsorption models were utilized
in continuous bed column to determine breakthrough time, Tb,
and exhaustion time, Tex. Moreover, the interaction between OXY
molecules and LWBAC’s surface was also verified to understand
the adsorption mechanism involved. To the best of our knowledge,
the investigation of antibiotic adsorption in a continuous bed col-
umn system and the possible OXY-LBWAC mechanism interaction
is novel.
2. Materials and methods

2.1. Materials

The landscape biomass waste (Tabebuia rosea tree) was supplied
by Seberang Perai City Council, Penang, Malaysia. Upon received,
the size of this precursor was between 15- and 20-mm. Riedel-el
Haen, Germany had supplied potassium hydroxide (KOH) to be uti-
lized during chemical activation whereas Merck, Germany had pro-
vided hydrochloric acid, HCl to be used during the washing step.
Both nitrogen, N2 gas (consumed as an inert gas during char pro-
duction in a vertical furnace) and carbon dioxide, CO2 gas (utilized
during microwave heating to provide gasification treatment on
samples) were acquired from MOX Gases Berhad, Malaysia.

2.2. LBWAC preparation

The precursor was dried under direct sunlight in an open area
for 72 h. 200 g of dried precursor was carbonized in a vertical fur-
nace for 1 h at a carbonization temperature of 550 �C. The N2 gas
was purged through the vertical furnace at 150 cm3/min during
the whole carbonization process. After 1 h, the furnace was turned
off to lower the temperature of the sample to room temperature.
The N2 gas was allowed to purge through the furnace throughout
the cooling process. Once the furnace reached room temperature,
the sample was unloaded from the furnace. This sample is now
known as char. The resulting char was impregnated with KOH at
impregnation ratio (IR) of 1.00 g/g. IR is computed using Eq. (1):

IR ¼ WKOH

Wchar
ð1Þ

where WKOH denotes the mass of KOH (g) while Wchar refers to the
mass of LBWAC. The chemical activation process took 24 h to com-
plete. The impregnated char was then heated in a modified micro-
wave oven (EMM2001W, Sweden) at 700 Watt for 20 min. The
CO2 gas purged through the quartz glass inside the microwave to
provide a gasification effect on the sample. The resulting sample
was washed with 0.1 M HCl solution until the pH of the washing
solution became 7–8. The wet LBWAC was dried in an oven for
24 h. Dried LBWAC was kept in an air-tight container.

2.3. Methods of characterization

This study provides several characteristics for the samples pro-
duced. The first characterization of surface area (BET and meso-
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pores), volume of total pores, and average diameter of the pores
were acquired from Micromeritics volumetric adsorption analyser
(ASAP 2010) (Baruah et al., 2022, Karakehya 2023). The character-
ization in terms of elemental composition and proximate composi-
tion was done by operating the elemental analyzer (Model: Perkin
Elmer Series II 2400, USA) and simultaneous thermal analyzer
(STA) (Model: Perkin Elmer STA 6000, USA), respectively
(Askaruly et al., 2023). For quality control, the elemental analyzer
is calibrated regularly using certified reference materials to ensure
a precise measurement by linking the instrument’s response to the
element concentrations in the samples. The morphology image of
samples was taken by scanning electron microscopy (SEM) was
taken by (Model: LEO SUPRA 55VP, Germany) (Zayed et al.,
2023). The zeta potential value was measured using the zeta
potential analyser (Zetasizer Nano Series DKSH) (Senol-Arslan
et al., 2022). The functional groups on samples were verified using
Fourier transforms infrared spectroscopy (FTIR) (Model: Shidmazu
Prestige 21, Japan), through the transmission method (Mawhinney
and Yates 2001, Ahmad et al., 2020a, 2020b).

2.4. Preparation of OXY stock solution

To prepare the OXY solution, 1.00 g of accurately weighted OXY
powder was mixed with 1 L of deionized water in a conical flask.
The solution was stirred to dissolve the OXY powder completely.
The resulting solution was known as a stock solution with a con-
centration of 1000 mg/L. To prepare the OXY solution at different
initial concentrations, the stock solution was diluted using the fol-
lowing formula:

M1V1 ¼ M2V2 ð2Þ
where M1 and V1 refer to the concentration and volume of stock
solution used, respectively, whilst M2 and V2 refer to the concentra-
tion and volume of desired diluted solution, respectively.

2.5. Study of equilibrium

The influences of several factors on the equilibrium state of the
adsorption process were verified. The first factor was starting con-
centration of the OXY solution. OXY solution with six different
starting concentrations (25, 50, 100, 200, 250, and 300 mg/L) was
prepared in an Erlenmeyer flask. The volume for each one of these
solutions was 200 mL. These flasks were then inserted inside the
water bath shaker, and 0.20 g of LBWAC was added to every flask.
The rotating speed and temperature controller on the water bath
shaker were set to 80 rpm and 30 �C, respectively. The second fac-
tor studied was the solution temperature effect. OXY starting con-
centration, OXY solution volume, LBWAC dosage and rotating
speed were chosen to be 300 mg/L, 200 mL, 0.20 g, and 80 rpm,
respectively, whilst the solution temperature was changed
between 30, 45, and 60 �C. The third factor verified was the solu-
tion pH effect. The starting concentration for OXY was selected to
be 100 mg/L and the pH of the OXY solution was altered using
NaOH / HCl to be 2, 4, 6, 10, and 12. The measurement of pH was
made using a pH meter (Model Delta 320, Mettler Toledo, China).
Other experimental conditions followed the same conditions in
the study for the solution temperature effect. At the equilibrium
point (after 24 h), the concentration of OXY in the solution, Ce

(Eq. (3)), and its percentage removal (Eq. (4)) are calculated using
the following equations:

qe ¼
Co � Ceð ÞV

W
ð3Þ

%Removal ¼ Co � Ce

Co
� 100% ð4Þ
3

where OXY starting concentration (mg/L), LBWAC weight used (g)
and OXY solution volume (mL) were respectively denoted by Co,
W and V.

2.6. Study of isotherm

The data obtained in the equilibrium study were fitted on iso-
therm models namely Langmuir (Eq. (5)) (Langmuir 1918), Fre-
undlich (Eq. (6)) (Freundlich 1906), and Temkin (Eq. (7))
(Tempkin and Pyzhev 1940). Their equations are as follows:

qe ¼
QmKLCe

1þ KLCe
ð5Þ

qe ¼ KFC
1
nF
e ð6Þ

qe ¼
RT
B

lnðACeÞ ð7Þ

where maximum monolayer capacity (mg/g) and Langmuir con-
stant related to adsorption capacity (L/mg) were represented by
Qm and KL, respectively. The Freundlich constant related to adsorp-
tion strength ((mg/g)(L/mg)1/n) and heterogeneity factor (dimen-
sionless) were denoted by KF and nF, respectively, whilst A (L/mg)
was Temkin constant and B (L/mg) was another Temkin constant
that linked to the heat of sorption (Mohamad Yusop et al., 2023a,
2023b, 2023c). Microsoft Excel Solver version 2016 was utilized to
solve the non-linear equation of isotherm models to obtain the
constants.

2.7. Study of kinetic

In contrast with equilibrium and isotherm studies, the study of
kinetic was performed by measuring the concentration of OXY at a
specific time interval between 0.15 h and 24 h. Other procedures in
the kinetic study were similar to equilibrium and isotherm studies.
The data obtained were tested on pseudo-first order, PFO (Eq. (8))
(Lagergren, 1898), and pseudo-second order, PSO (Eq. (9)) (Ho and
McKay 1998). The rate-limiting step was determined from the
Boyd plot (Eq. (10)) (Boyd et al., 1947). Their equations are as
follows:

ln qe � qtð Þ ¼ ln qe � k1t ð8Þ

t
qt

¼ 1
k2q2

e
þ t
qe

ð9Þ

Bt ¼ �0:4977� ln 1� qt

qe

� �
ð10Þ

where PFO’s rate constant and PSO’s rate constant are respectively
denoted by k1 and k2 whilst Bt refers to Boyd number. The most
suitable model for the isotherm and kinetic data was selected based
on the R2 value.

2.8. Study of thermodynamic

Two important parameters in thermodynamic study namely
enthalpy change, DH� (kJ/mol), and entropy change DS� (kJ/mol.
K) can be calculated from Van’t Hoff equation (Eq. (12)) (Achmad
et al., 2012) as follows:

lnKc ¼ DS
�

R
� DH

�

RT
ð11Þ

where R (8.314 J/mol.K) and T (K) are the gas constant and absolute
temperature, respectively. The Kc (dimensionless) refers to the equi-
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librium constant and can be determined as follows (Lima et al.,
2019):

Kc ¼
1000mg

g � KL �molecular weight of adsorbate � adsorbate½ ��

c
ð12Þ
Table 1
Physical properties of the samples.

Sample BET surface area (m2/g) Mesopores surface area (m2/

precursor 0.98 –
char 406.52 337.85
LBWAC 973.21 842.18

Table 2
Chemical composition of samples.

Samples Proximate analysis (%)

Moisture Volatile matter Fixed carbon

Precursor 13.05 58.22 22.85
Char 5.89 35.78 54.22
LBWAC 2.89 17.21 78.14

)a(

Fig. 1. SEM images of (a) precursor (b)

Fig. 2. Zeta potential

4

where [adsorbate]� can be simplified as 1 mol/L at standard state, !
(dimensionless) represents the coefficient for the adsorbate activity
whereas KL (L/mg) refers to Langmuir constant. Another two ther-
modynamic parameters namely Gibbs free energy, DG� (kJ/mol)
and activation energy, Ea (kJ/mol) can be found by using Eqs. (14)
and (15), respectively:
g) Total pore volume (cm3/g) Average pore diameter (nm)

0.0001 1.48
0.1586 1.75
0.3911 2.44
Elemental analysis (%)

Ash C H S (N + O)

5.88 41.45 10.11 0.12 48.32
4.11 64.21 8.21 0.09 27.49
1.76 81.24 7.14 0.07 11.55

)b(

LWBAC (1000x magnificent level).

value for LBWAC.



Mohamad Nasran Nasehir Khan, Mohamad Firdaus Mohamad Yusop, Muhamad Faizal Pakir Mohamed Latiff et al. Arabian Journal of Chemistry 16 (2023) 105256
DG
� ¼ DH

� � TDS
� ð13Þ

lnk2 ¼ lnA� Ea

RT
ð14Þ

where k2 is PSO’s rate constant and A refers to Arrhenius factor.

2.9. Study of continuous bed column

The effects of (i) starting influent concentration (50, 100, and
200 g/L), (ii) influent flow rate (10, 20, and 30 mL/min) and (iii)
Fig. 3. Possible attraction mechanism between OXY mo
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LBWAC bed height (40, 60, and 80 mm) on the continuous adsorp-
tion performance were investigated. A Perspex filter column with
an internal diameter of 2.50 cm was used for this experiment.
The OXY solution was pumped to the influent point using a peri-
staltic pump. A breakthrough curve was constructed by plotting
the ratio of OXY concentration at time t to the OXY starting con-
centration (Ct/Co) against contact time. Based on the breakthrough
curve, the breakthrough time, Tb, and the exhaustion time, Tex can
be found at 0.10Ct/Co and 0.90Ct/Co, respectively.
lecules and functional groups on LBWAC’s surface.
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3. Results and discussions

3.1. Characteristics of samples

Table 1 provides the physical properties of the samples studied.
The carbonization process succeeded in initializing the pores
development process in the precursors. Therefore, the resulting
char exhibited 406.52 m2/g of BET surface area, 337.85 m2/g of
mesopores surface area, 0.1586 cm3/g of pore volume, and an aver-
age pore diameter of 1.75 nm. These properties were noticed to
increase further owing to an effective activation process that com-
bined KOH chemical treatment, microwave heating, and CO2 gasi-
fication treatment. During these activation processes, the following
chemical reaction took place (Norouzi et al., 2018, Xu et al., 2019,
Mohamad Yusop et al., 2023a, 2023b, 2023c):

2KOH (aq) ! K2O (s) + H2O (l) ð15Þ

H2O (l) + C (s) ! CO (g) + H2 (g) ð16Þ

CO (g) + H2O (l) ! CO2 (g) + H2 (g) ð17Þ

CO2 (g) + K2O (s) ! K2CO3 (s) ð18Þ

K2CO3 (s) ! K2O (s) + CO2 (g) ð19Þ

CO2 (g) + C (s) ! 2CO (g) ð20Þ

K2O (s) + 2C (s) ! K (s) + 2CO (g) ð21Þ

K2CO3 (s) + C (s) ! 2 K (s) + 3CO (g) ð22Þ
The K2CO3 ions penetrate the internal side of the sample whilst

the microwave heating promoted more volatile matter to erupt
and leave the sample. This led to the increment of BET surface area,
mesopores surface area, and total pore volume in LBWAC to be
973.21 m2/g, 842.18 m2/g, and 0.3911 cm3/g, respectively. The
gasification effect of CO2 aided the pores enlargement process, thus
converting the micropores in char to mesopores (2.44 nm) in
LBWAC.

Table 2 presents the chemical composition of the samples.
Based on the proximate analysis, the precursor used in this study
posed 22.85% of fixed carbon content which is higher in compar-
ison to pomegranate fruit peel of 15.34% (Ahmad et al., 2020a,
6

2020b), and durian peel at 20.69% (Yusop et al., 2021). A high fixed
carbon percentage is good since it made up the matrix structure of
adsorbent A higher percentage of fixed carbon is usually linked to a
finely developed porous arrangement. The empty spaces and gaps
present in AC create a generous expanse of surface, enabling the
adsorption process. Elevated fixed carbon levels frequently signify
an increased volume of accessible pore areas, resulting in an
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Table 3
Isotherm parameters for OXY-LBWAC adsorption system at 30 �C.

Isotherms Parameters

Langmuir Qm (mg/g) 344.83
KL (L/mg) 0.0188
R2 0.9939

Freundlich nF 1.40
KF (mg/g)(L/mg)1/n 9.72
R2 0.9906

Temkin BT (kJ) 61.24
AT (L/mg) 0.31
R2 0.9664
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7

expanded surface region. This expansion, in turn, facilitates the
creation of additional sites for adsorption to take place (Firdaus
et al., 2022). Carbonization and activation processes caused a fur-
ther increment of fixed carbon percentage in LBWAC to 78.14%.
Other components such as moisture and volatile matter shrink in
percentage from 13.05% and 58.22% in precursor to 2.89% and
17.21% in LWBAC, respectively. These components evaporate and
leave the sample. A relatively low ash percentage of 1.76% was
good since ash contains ruptured pores, therefore is useless for
the adsorption process. In terms of elemental composition, LWBAC
was found to be dominated by C element (80.12%), followed by
N + O elements (12.48%), H element (7.14%), and S element
(0.07%). The existence of N, O, and S elements in LBWAC gave an
insight that this adsorbent is filled with various functional groups
on its surface.

Fig. 1(a) and (b) respectively show the SEM image for precursor
and LBWAC. The precursor surface was seen to be dense with no
pores since the precursor is packed with lignin, cellulose, hemicel-
lulose, and tar components. These components vaporized during
the carbonization and activation process. Hence, a porous structure
can be observed on LBWAC’s surface. These porous structures were
contributed by the penetration of K2CO3 during chemical.

The zeta potential of LBWAC was found to be �14.5 mV, as
shown in Fig. 2. A negative value of zeta potential signified that
the LBWAC’s surface was negatively charged due to the existence
of functional groups such as hydroxyl and carboxyl. The FTIR anal-
ysis shows that the surface of the precursor was filled with func-
tional groups of vinyl CAH out-of-plane bend, primary amine
CAN stretch, aryl -O stretch, methylene CAH asymmetric and
alkyne CAH stretch at peaks of 890, 1030 & 1627, 1251, 2915
and 3320 cm�1, respectively. Only the primary amine CAN stretch
survived the activation processes and appeared in LBWAC’s at
1076 cm�1, whilst other functional groups were missing in
LBWAC’s surface. Several new peaks representing new functional
groups were formed on LBWAC’s surface. These new functional
groups include alkyl carbonate, secondary amine, >NAH bend,
C„C terminal alkyne (monosubstituted), C„C medial alkyne (dis-
ubstituted) and hydroxy, OH group at bandwidth peaks of 1760,
1650, 2140, 2190 and 3200 cm�1, respectively. These new func-
tional groups have resulted from the aggressive interaction
between CO2, KOH, and other volatile components during activa-
tion processes.

Fig. 3 shows the possible mechanism attraction between OXY
molecules and the functional groups in LBWAC. The OXYmolecules
(b) 
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Table 4
Kinetic parameters for OXY-LBWAC adsorption system at 30 �C.

Starting OXY concentration (mg/L) qe, exp
(mg/g)

Pseudo-first order (PFO) Pseudo-second order (PSO)

qe, cal (mg/g) k1 (min�1) R2 Error (%) qe, cal (mg/g) k2

(g mg�1 min�1)
R2 Error (%)

50 42.13 31.79 0.6826 0.9905 24.53 43.29 0.5929 0.9999 2.76
100 82.71 68.27 0.6738 0.9886 17.47 86.21 0.2243 0.9998 4.22
200 157.74 142.45 0.7281 0.992 9.69 166.67 0.0900 0.9994 5.66
250 186.09 174.78 0.7462 0.9875 6.08 200.00 0.0625 0.9993 7.47
300 212.79 214.22 0.7819 0.989 0.67 227.27 0.0645 0.9996 6.81
Average 0.9863 15.78 0.9992 4.74
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Fig. 11. Intraparticle plot for OXY-LBWAC adsorption systems at 30 �C (weight of
LWBAC was 0.2 g, volume solution of 200 mL and original pH were used).
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contain 9O and 2 N. These atoms are more electronegative and
have the potential to form hydrogen bond with H atoms in termi-
nal alkyne, primary amine, hydroxy and alkyl carbonate. Also, N
atoms in primary amine, O atoms in hydroxy and alkyl carbonate
have potential to form hydrogen bonds with H atoms in OXY mole-
cules. These interactions had aided the adsorption of OXY onto
LBWAC. Pham et al., (2019) also found hydrogen bond plays a
major role in the adsorption of OXY onto alumina particles.
Table 5
Intraparticle diffusion parameters for OXY-LBWAC adsorption system at 30 �C.

Adsorption system Adsorbates initial concentration (mg/L) Kp1

(mg/g h1/2)
Kp2

(m

OXY-LBWAC 25 16.25 6
50 27.53 16
100 45.09 35
200 77.71 76
250 87.08 97
300 93.54 120

Fig. 12. Boyd plot for OXY-LBWAC adsorption systems at 30 �C (weight of LW

8

3.2. Adsorption equilibrium

3.2.1. Influence of contact time and OXY starting concentration
Fig. 4(a) and (b) provide the plot of OXY uptakes versus time at

different starting concentrations and the plot of OXY percentage
removal versus time at different starting concentrations, respec-
tively. Based on Fig. 4(a), when OXY starting concentration
increased from 25 to 300 mg/L, adsorption uptakes increased too
from 21.65 to 212.79 mg/g. At higher starting concentrations, more
OXY molecules are available in the solution to be adsorbed by
LBWAC. It was also noticed that lower starting concentrations
between 25 and 100 mg/L attained an equilibrium state faster at
6 h whereas higher starting concentrations between 200 and
300 mg/L achieved the same state at a longer time of 22 h. Based
on Fig. 4(b), as the starting concentrations increased from 25 to
300 mg/L, OXY percentage removal decreased from 86.58 to
70.93%. At all starting concentrations studied, the number of active
sites on LBWAC was constant. However, the quantity of OXY mole-
cules was smaller at lower starting concentration, therefore, the
adsorption process can complete faster, and the percentage
removal was higher, and vice versa (Ahmad et al., 2021).
g/g h1/2)
Kp3

(mg/g h1/2)
C1 C2 C3 R1

2 R2
2 R3

2

.54 0.54 0.11 8.27 19.05 0.9968 0.9302 0.9948

.51 0.83 0.17 10.15 38.13 0.9974 0.9290 0.9948

.36 1.22 0.99 13.81 76.85 0.9672 0.9522 0.9948

.43 4.84 2.49 12.89 134.53 0.9331 0.9662 0.9948

.28 6.97 2.83 4.40 152.65 0.9314 0.9492 0.9948

.86 7.34 1.14 9.59 177.57 0.9898 0.9394 0.9948

BAC was 0.2 g, volume solution of 200 mL and original pH were used).



Table 6
Thermodynamic parameters for OXY-LBWAC adsorption system.

DH� (kJ/mol) DS� (kJ/mol.K) DG� (kJ/mol) Ea (kJ/mol)

303 K 318 K 333 K

5.59 0.04 �5.73 �6.29 �6.85 20.01
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Fig. 13. Breakthrough curve for OXY-LBWAC at different influent starting concen-
tration (flow rate = 10 mL/min and bed height = 2 cm).
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Fig. 14. Breakthrough curve for OXY- LBWAC at different flow rate (influent
starting concentration = 100 mg/L and column bed height = 2 cm).
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3.2.2. Influence of solution temperature
Fig. 5 presents the plot that showcased the relationship

between adsorption uptakes of OXY at different solution tempera-
tures. It was observed that as the solution temperature increased
from 30 to 60 �C, the adsorption uptakes of OXY also increased
from 212.79 to 228.44 mg/g. This finding suggests that higher solu-
tion temperatures favoured the adsorption process of OXY, indicat-
ing an endothermic behaviour. Higher OXY uptakes were caused
by the increasing of kinetic energy of OXY molecules at higher
solution temperatures (Li et al., 2019, Bas�kan et al., 2022). OXY
uptakes also favoured at higher solution temperatures when
adsorbed by zeolite/Fe3O4 particles (Bas�kan et al., 2022) and metal
hydroxides (Eniola et al., 2020).
3.2.3. Influence of solution pH
Fig. 6 shows the influence of solution pH on OXY uptakes. The

lowest uptakes occurred at pH 2 of 46.05 mg/g. At pH 2, H+ ions
occur in excess amounts and became attracted to the electronega-
tive O and N atoms in OXY molecules. This phenomenon reduced
the number of hydrogen bonds between OXY molecules and
LBWAC’s surface (refers to Fig. 3). At pH 4 and 6, the number of
H+ ions reduced, therefore OXY uptakes increased to 49.53 and
53.95 mg/g, respectively. At pH 8, OH– ions existed in the solution
and induced the surface of LBWAC to be negatively charged. These
negatively charged surface attracted the electropositive H atoms in
OXY molecule. This effect combined with the formation of hydro-
gen bonds between the OXY molecule and functional groups
caused the OXY uptakes to increase to 59.76 mg/g. At pH 10,
OXY uptakes increased to 61.45 mg/g due to increasing of OH– ions
in solution. At pH 12, only a small increment occurred for OXY
uptakes to be 63.22 mg/g. At this pH, the induced effect of OH–
Table 7
Continuous bed column parameters for OXY-LBWAC system studied at different influent s

Inlet concentration, Co
(mg/L)

Mass of adsorbent
(g)

Breakthrough point,
Tb(h)

Exha
(h)

50 2.13 11 2940
100 3.47 7 2460
150 3.58 5 1740
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had reached its limit. Adding more OH– in the solution brings no
more effect to the OXY uptakes.
3.3. Adsorption isotherm

Figs. 7, 8, and 9 present the isotherm plots of Langmuir, Fre-
undlich, and Temkin models, whilst the isotherm parameters are
summarized in Table 3. Adsorption of OXY onto LBWAC obeyed
the Langmuir model due to the highest R2 obtained of 0.9939. This
indicated that OXY molecules developed a monolayer covering the
surface of the LBWAC (García et al., 2018). The Langmuir maximum
monolayer adsorption capacity, Qm for OXY by LBWAC was found
to be 344.83 mg/g. This value was higher as compared to the
OXY-metal hydroxide adsorption system of 250.07 mg/g (Eniola
et al., 2020), the OXY- zeolite/Fe3O4 adsorption system of
83.33 mg/g (Bas�kan et al., 2022). The heterogeneity factor, nF,
was determined to be 1.40. As this value falls within the range of
1 to 10, it indicates that the adsorption system studied is favour-
able (Firdaus et al., 2022).
3.4. Adsorption kinetic

The kinetic plots of PFO and PSO are shown in Fig. 10(a) and (b),
respectively, while Table 4 shows the summary of kinetic parame-
ters. The analysis revealed that the adsorption system exhibited
the strongest adherence to the PSO kinetic model, as evidenced
by the highest R2 value of 0.9992 and a low error percentage of
4.74%. Adsorption of OXY onto hydroxyapatite (Harja and
Ciobanu 2018) and alumina particles (Pham et al., 2019) were also
best described by PSO kinetic model. Reaction rate, k2 dropped
from 0.0991 to 0.0645 g mg�1 min�1 as the OXY starting concen-
tration increased from 25 to 300 mg/L. At higher starting OXY con-
centration, higher mass transfer driving force was developed, thus
enhancing the adsorption process to be faster, and vice versa.

Fig. 11 provides the intraparticle diffusion plot while Table 5
shows the summary for intraparticle diffusion parameters. The
lines depicted in Fig. 11 did not pass through the origin of the
graph. Hence, it can be inferred that the rate-limiting step was
tarting concentration (flow rate = 10 mL/min and bed height = 2 cm).

ustion time, Tex Total adsorption uptake, qT
(mg)

Maximum adsorption
uptake, qmax

(mg/g)

906.60 425.63
1470.00 423.63
1498.80 418.65



Table 8
Continuous column parameters for OXY-LBWAC system studied at different influent flow rates (Co = 100 mg/L and bed height = 2 cm).

Flow
rate
(mL/
min)

Mass of adsorbent (g) Breakthrough time,
Tb

Exhaustion time, Tex
(h)

Total adsorption uptake, qT
(mg)

Maximum adsorption uptake,
qmax

(mg/g)

5 1.67 15 35 887.10 531.19
10 3.37 5 26 1446.00 429.08
15 2.7 2 17 790.20 292.67
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Fig. 15. Breakthrough curve for OXY- LBWAC at different column bed height
(influent starting concentration = 100 mg/L and influent flow rate = 10 mL/min).
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not solely governed by intraparticle diffusion (Björklund and Li
2017). Instead, the presence of multi-linear plots in Fig. 11 was
observed, indicating the existence of three distinct mechanism
pathways. The first region (t0.5 = 0 to t0.5 = 1) was predominantly
influenced by film layer diffusion, characterized by electrical inter-
actions between the outer surface of LBWAC and the OXY mole-
cules (Sun et al., 2015). The second region (t0.5 = 1 to t0.5 = 2.5)
corresponds to the slow adsorption stage, during which intraparti-
cle diffusion emerged as the primary factor influencing the rate
limiting step (Wang et al., 2015). The last stage (t0.5 = 2.5 to
t0.5 = 5) signifies the attainment of the equilibrium stage, where
the number of adsorbate molecules in the solution becomes mini-
mal. During this phase, the intraparticle diffusion process gradually
decelerates (Wang et al., 2010).

Fig. 12 presents the Boyd plots for the OXY-LBWAC adsorption
system at 30 �C. It was observed that the rate-limiting step for
all the OXY starting concentrations was governed by film diffusion.
This conclusion was drawn based on the fact that these plots did
not pass through the origin (Garba and Rahim 2016).
3.5. Adsorption thermodynamic

Table 6 summarizes the thermodynamic parameters for the
OXY-LBWAC adsorption system. The DH� for the OXY-LBWAC
adsorption system was found to be 5.59 kJ/mol. The positive sign
of DH� value signified the endothermic nature of the adsorption
Table 9
Continuous column parameters for OXY-LBWAC system studied at different column bed h

Bed height
(cm)

Mass of adsorbent
(g)

Breakthrough time,
Tb(h)

Exhaustion t
(h)

2 3.37 5 26
4 3.78 11 37
6 4.92 15 57

10
systems studied where higher adsorbate uptakes occurred at
higher solution temperatures. This discovery was consistent with
the finding in Section 3.2.2. The DS� was found to be 0.04 kJ/mol.
K, and the positive value of this parameter implied the randomness
level at solid–liquid interface had increased. The DG� values were
between �5.73 and �6.85 kJ/mol. The negative sign of this param-
eter indicates that the adsorption process was spontaneous in nat-
ure. The Ea value was 20.01 kJ/mol and since it was below
42 kJ/mol, the adsorption process was dominated by physisorption
(Hao et al., 2020).

3.6. Continuous adsorption in bed column

3.6.1. Influence of influent starting concentration
The breakthrough curve for the OXY-LBWAC adsorption system

under the influence of different influent starting concentrations is
given in Fig. 13. The parameters extracted from Fig. 13 were tabu-
lated in Table 7. From Table 7, when the influent starting concen-
tration increased from 50 to 150 mg/L, the breakthrough time, Tb,
and the exhaustion time, Tex had reduced from 11 to 5 h and 49
to 29 h, respectively. At lower influent starting concentrations,
the number of OXYmolecules to be adsorbed by LBWACwas lower.
Therefore, a longer time was taken for OXY molecules to break-
through the bed column and appeared in the effluent. Similarly, a
longer time was needed by lower influent starting concentration
to achieve Tex.

3.6.2. Influence of influent flow rate
The breakthrough curve for the OXY-LBWAC adsorption system

under the influence of different influent flow rates is given in
Fig. 14. The parameters gathered from Fig. 14 were presented in
Table 8. As the influent flow rate increased from 5 to 15 mL/min,
the Tb and Tex declined from 15 h to 2 h and 35 h to 17 h, respec-
tively. Hence, it concludes that a low influent flow rate prolonged
Tb and Tex. At a high influent flow rate, the contact time between
OXY molecules and the surface of LBWAC was limited, causing
the OXY molecules to exit the bed column even before the adsorp-
tion process is complete. In addition, higher flow rates were found
to cause increased turbulence, resulting in weak mass transfer and
limited contact between OXY and LBWAC. Consequently, this led to
poor adsorbate removal efficiency (Dwivedi et al., 2008).

3.6.3. Influence of bed column height
The breakthrough curve for the OXY-LBWAC adsorption system

under the influence of different bed column heights is given in
eight (Co = 100 mg/L and flow rate = 10 mL/min).

ime, Tex Total adsorption uptake, qT
(mg)

Maximum adsorption uptake,
qmax

(mg/g)

1343.40 398.63
1991.40 526.82
3299.40 670.60



Table 10
Parameters obtained from the different models.

Adams-Bohart model

kA (L/mg min) No (mg/L) R2

0.00160 7370.08 0.7790
Thomas model
kTH (mL/min mg) qTH (mg/g) R2

0.0106 5181.73 0.9538
Yoon-Nelson model
t0.5 (min) s (min) kY (1/min) R2

1011 1188 0.0050 0.9380
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Fig. 15. The parameters obtained from Fig. 15 were showed in
Table 9. As the bed height in the column increased, Tb and Tex
increased from 5 h to 15 h and 26 h to 57 h, respectively. As the
bed height increased, more surface area became accessible for
the adsorption process to occur. Consequently, it took more time
for the LBWAC to be exhausted (Kazemi et al., 2016). Moreover,
higher bed height resulted in a longer contact time between OXY
and LBWAC, thus improving the adsorption process. This justifica-
tion supported the finding that higher maximum adsorption
uptake, qmax was achieved at the highest column bed height.
3.7. Breakthrough modelling

The data from the continuous bed column study were fitted to
three models namely Adams-Bohart, Thomas, and Yoon-Nelson
with constant. The parameters for these models were tabulated
in Table 10. According to Table 10, the Adams-Bohart model exhi-
bits the lowest R2 values for OXY adsorption, specifically measur-
ing 0.7790. This suggests a weak correlation between the Adams-
Bohart model and the experimental data, indicating that the model
poorly represents the adsorption process. Consequently, it can be
inferred that intraparticle diffusion is not the limiting factor in
the rate of adsorption. This conclusion aligns with the findings
from the investigation of the batch adsorption mechanism, which
indicates that film diffusion serves as the rate-limiting phase (Sec-
tion 3.4). From Table 10, Thomas model shows very good correla-
tions for breakthrough data with R2 values of 0.9538 for OXY-
LBWAC adsorption system. The Thomas model assumes that the
adsorption process follows a PSO kinetic model. This was aligned
with the finding obtained in batch kinetic study (Section 3.4). From
Table 10, the R2 of Yoon-Nelson model was found to be relatively
high too of 0.9380. This model predicts the 50% breakthrough time
(t0.5) to be 1011 m. This value is relatively accurate with the actual
t0.5 of 900 m (error 10.98%).
4. Conclusion

LBWAC was successfully produced using KOH and CO2 activa-
tion, combined with microwave irradiation. LBWAC effectively
removed OXY, with a maximum adsorption capacity, Qm of
344.83 mg/g. LBWAC exhibited a high BET surface area
(973.21 m2/g), mesopores surface area (842.18 m2/g), and total
pore volume (0.3911 cm3/g). In the equilibrium study, as the initial
concentration of OXY increased from 25 to 300 mg/L, the adsorp-
tion uptake increased while the percentage removal decreased.
The highest OXY removal was observed at pH 12 (63.22 mg/g),
and a solution temperature of 60 �C (228.44 mg/g). The adsorption
data of AMOX-LBWAC exhibited the best fit with the Langmuir iso-
therm model and PSO kinetic model. The Boyd plot analysis indi-
cated that film diffusion was the rate-determining step in the
adsorption process. The enhancement of the adsorption process
was attributed to the formation of hydrogen bonds between OXY
11
molecules and specific functional groups present in LBWAC,
including primary amine, hydroxy, alkyl carbonate, and terminal
alkyne groups. The thermodynamic analysis indicated that the
adsorption process is characterized as endothermic, spontaneous,
and governed by physical interactions. In bed column studies, the
highest values for Tb, Tex, and qmax were obtained at 50 mg/L,
5 mL/min, and 6 cm of OXY influent starting concentration, influ-
ent flow rate and LBWAC bed height, respectively. The continuous
adsorption data showed the best fit with the Thomas model. The
LBWAC produced demonstrated favourable characteristics as an
adsorbent, making it suitable for utilization in large-scale antibi-
otic treatment systems operating in a continuous mode.
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