
Arabian Journal of Chemistry (2015) 8, 512–517
King Saud University

Arabian Journal of Chemistry

www.ksu.edu.sa
www.sciencedirect.com
ORIGINAL ARTICLE
Selective oxidation of benzylic alcohols using

copper-manganese mixed oxide nanoparticles

as catalyst
* Corresponding author. Tel.: (+966) 14676082.

E-mail address: rafiqs@ksu.edu.sa (M. Rafiq H. Siddiqui).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

1878-5352 ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.

http://dx.doi.org/10.1016/j.arabjc.2013.05.012
Roushown Ali
a
, Kholoud Nour

b
, Abdulrahman Al-warthan

a
,

M. Rafiq H. Siddiqui a,*
a Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
b Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
Received 15 January 2013; accepted 14 May 2013

Available online 22 May 2013
KEYWORDS

Copper-manganese oxide;

Catalyst;

Oxidation;

Benzylic alcohols
Abstract The catalytic activity of copper-manganese (CuMn2) mixed oxide nanoparticles (Cu/

Mn = 1:2) has been studied for the selective oxidation of benzylic alcohols to the corresponding

aldehydes using molecular oxygen as an oxidizing agent. The CuMn2 mixed oxide showed excellent

catalytic activity for the oxidation of benzylic alcohols to the corresponding aldehydes with high

selectivity (>99%). The complete conversion (100%) of all the benzylic alcohols to the correspond-

ing aldehydes is achieved within a short reaction period at 102 �C. The catalytic performance is

obtained to be dependent on the electronic and steric effects of the substituents present on the phe-

nyl ring. Electron withdrawing and bulky groups attached to the phenyl ring required longer reac-

tion time for a complete conversion of the benzylic alcohols.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

Research on the catalytic oxidation of benzylic alcohols to the
corresponding aldehydes has been a subject of great interest as
the products are important precursors to pharmaceuticals and

fine organics (Köchritz et al., 2006; Enache et al., 2006; Beller
and Bolm, 2004). The selective catalytic oxidation of alcohols
to the corresponding aldehydes is of significant importance in
view point of laboratory synthesis and industrial manufactur-

ing (Lenoir, 2006; Tojo and Fernandez, 2006; Matsumoto
et al., 2008; Fan et al., 2009). Metal-catalyst reactions for the
selective oxidation of alcohols to the corresponding aldehydes

with inexpensive oxidants, such as molecular oxygen have been
recognized as environmentally benign methods in synthetic
chemistry and have attracted great attention from both eco-

nomic and environmental point of view (Pillai and Demessie,
2004; Zhan and Thompson, 2004; Mallat and Baiker, 2004).
Although many studies have been reported using transition

metal containing catalysts, disadvantages of the catalysts are,
use of expensive noble metals as supports/influence or diffi-
cultly in preparation. Therefore, use of various abundant
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and cheap transition metals, like Cu- and Mn-containing com-
pound as catalysts for the oxidation of benzylic alcohols to the
corresponding aldehydes is still in demand.

Numerous studies have also been devoted to non-noble
metals or metal-based catalysts, such as Cu (Perez et al.,
2012), Ni (Ali et al., 2011a), Fe (Naik et al., 2011), V (Behera

and Parida, 2012), Co (Seyedi et al., 2010), Ag (Deng et al.,
2010), Cr (Ozturk et al., 2008), Mo (Rao et al., 2011), Zn
(Ali et al., 2009) and Re (Paraskevopoulou et al., 2005) for oxi-

dation of benzyl alcohol with molecular oxygen. Among the
various abundant and cheap transition metals, Cu and Mn-
containing compound as catalysts is continuing to inspire re-
search for developing a newer and green method for the selec-

tive oxidation of benzylic alcohols with molecular oxygen.
There are some reports on Mn-containing catalysts for oxida-
tion of benzylic alcohols using molecular oxygen, but those in-

volved supports or ligands such as octahedral molecular sieves
(Suib, 2008; Schurz et al., 2009; Son et al., 2001), various kinds
of alumina as support (Tang et al., 2009a, b, c, 2010; Yang

et al., 2008), supported on cerium (IV) (Sato and Komanoya
2009), combination with TEMPO (2,2,6,6-tetramethyl-piperi-
dyl-1-oxyl) (Yang et al., 2008 and Guo et al., 2007). Mn(II)

complexes (Mahdavi et al., 2008) immobilized in the pore
channels of mesoporous hexagonal molecular sieves and hexa-
dentate Q3MnIII complexes (Ye et al., 2009) have been re-
ported for oxidation of alcohols using TBHP and H2O2 as

oxidant, respectively. An octahedral molecular sieve, a syn-
thetic manganese oxide with a tunnel structure, was reported
as a superior catalyst for the aerobic oxidation of alcohols in

liquid-phase in the presence of molecular oxygen (Suib
2008). We have reported (Ali et al., 2011b) CuMn4 (Cu/
Mn = 1:4) mixed oxide for the oxidation of benzyl alcohol

to benzaldehyde with molecular oxygen without use of any
support.

In our previous study (Ali et al., 2013a) we have shown that

copper-manganese CuMn2 mixed oxide (Cu/Mn = 1:2) cata-
lyst was very effective for oxidation of benzyl alcohol. Herein,
we report an evaluation of the same catalyst (CuMn2 mixed
oxide nanoparticles with Cu/Mn = 1:2) for the selective oxida-

tion of benzylic alcohols to the corresponding aldehydes with
molecular oxygen. The effect of the catalytic activity on the
para-benzylic alcohols substituted with –CH3, –OCH3,

–NO2, –Cl, –C(CH3)3, –CF3 groups and meta-benzylic alcohol
substituted with –NO2 group has been compared. The catalytic
activity of the CuMn2 oxide was also tested for citronellol.
2. Experimental

2.1. Catalyst preparation

The CuMn2 mixed oxide (Cu/Mn = 1:2) nanoparticles were

prepared by co-precipitation method using the required
amount of precursors Cu(NO3)2Æ3H2O, Mn(NO3)2Æ4H2O and
Na2CO3 as described in our earlier paper (Ali et al., 2013a).
All reagents used were of analytical grade and purchased from

MERCK and BDH Chemical Ltd., and used without further
purification. The powdered catalyst was calcined at 300 �C in
air for 12 h before using it for oxidation reaction. The catalyst

was prepared with the nominal composition of CuMn2O4

while the final composition was obtained to be CuMn1.87O4.07

according to the chemical analyses. Benzyl alcohol and its
derivatives (para-benzylic alcohols substituted with –CH3, –
OCH3, –NO2, –Cl, –C(CH3)3, –CF3 groups and meta-benzylic
alcohol substituted with –NO2 group) were obtained from

Aldrich Chemical Ltd. and citronellol was obtained from
Merck Chemical Ltd. All these chemicals were utilized as re-
ceived without further purification. The detailed characteriza-

tion of the catalyst was described in our previous work (Ali
et al., 2013a).

2.2. Oxidation reaction and product analysis

The CuMn2 mixed oxide nanoparticles were tested for the cat-
alytic activity of benzyl alcohol and its derivatives (para-ben-

zylic alcohols substituted with –CH3, –OCH3, –NO2, –Cl, –
C(CH3)3, –CF3 groups and meta-benzylic alcohol substituted
with –NO2 group) and citronellol in liquid phase oxidation
using molecular oxygen. The reactions were carried out in a

three-necked flask connected with oxygen gas cylinder and
condenser under atmospheric pressure. In a typical catalytic
experiment, 200 mg catalyst and 2 mmol substrates were

charged in 10 mL toluene (free from sulfur, min. assay 98%,
WINLAB LIMITED, UK) as solvent. The mixture was then
heated on an oil bath at 100 �C. Oxygen was bubbled at a flow

rate of 20 mL min�1 into the mixture with continuous stirring
using a magnetic bar. The reaction temperature was main-
tained at 100–102 �C. A small amount of reaction mixture
was collected after a certain time. The collected reaction mix-

tures were separated by centrifugation and the liquids were
analyzed by gas chromatography (GC) on GC-7890A Agilent
Technologies Inc. equipped with a flame ionization detector

(FID) and a 19019S-001 HP-PONA column. The conversions
of the alcohols and the selectivity to the corresponding alde-
hydes were calculated by the peak areas.

3. Results and discussion

In our previous study (Ali et al., 2013a), the amount and pre-

calcination temperature of CuMn2 mixed oxide nanoparticles
catalyst were optimized to be 200 mg and 300 �C, respectively
for the selective oxidation of alcohol using molecular oxygen.

To evaluate the scope of the CuMn2 mixed oxide as catalyst,
oxidation reactions with various electron withdrawing and
electron donating substituents on benzyl alcohol were carried
out under the same conditions used for the benzyl alcohol

(Ali et al., 2013a). A complete conversion (100%) of the ben-
zylic alcohols to the corresponding aldehydes was obtained
within short reaction time at 102 �C. The selectivity of the oxi-

dation of benzylic alcohols to the corresponding aldehydes was
obtained to be >99% for all the reactions. The oxidation reac-
tion for citronellol was also carried out over the CuMn2 mixed

oxide under the same conditions and obtained only 6.22%
conversion with specific activity of 0.16 mmol g�1h�1 after
4 h while the selectivity was >99%. It should be noted that,

under the same reaction conditions no detectable conversion
of benzylic alcohols was obtained in the absence of catalyst,
also only solvent toluene (without alcohols) showed no forma-
tion of aldehyde in the presence of the catalyst.

Table 1 shows conversion, specific activity and selectivity of
the benzyl alcohol and its derivatives as a function of time. It
can be seen that the complete conversion of the benzylic alco-

hols to the corresponding aldehydes is achieved at different



Table 1 Selective oxidation of benzyl alcohols into corresponding aldehydes over CuMn2 mixed oxide nanoparticles catalyst using

molecular oxygen as oxidant.

Entry Substrate Time (min) Product Conversion (%) Selectivity (%) Specific activity (mmol g�1 h�1)

1 OH 20 HO 100 >99 30

2 OH

CH3

20
HO

CH3

100 >99 30

3 OH

OCH3

20 HO

OCH3

100 >99 30

4 OH

NO2

25
HO

NO2

100 >99 24

5 OH

Cl

50 HO

Cl

100 >99 12

6 OH 30 HO 100 >99 20

7 OH

F
F
F

60 HO

F
F
F

100 >99 10
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reaction times, but the selectivity to the corresponding alde-
hydes remained unchanged (>99%) for all the reactions.

The catalytic activity of CuMn2 mixed oxide nanoparticles is
very low for the oxidation of citronellol into citronellal. Only
a 6.22% conversion to citronellal is obtained catalyzed by

CuMn2 mixed oxide after 4 h. This low conversion is probably
due to the absence of conjugated system (like benzene ring) in
the b-position of the OH goup.

The complete conversion of substituted benzyl alcohols
with electron donating –CH3 and –OCH3 groups attached to
the para-position of the phenyl ring is obtained after 20 min.

with specific activity 30 mmol g�1h�1, which is equal to that



Table 1 (Continued).

Entry Substrate Time (min) Product Conversion (%) Selectivity (%) Specific activity (mmol g�1 h�1)

8 OH

NO2

50 HO

NO2

100 >99 12

9 CH3

CH3H3C

OH

240 CH3

CH3H3C
O

6.22 >99 0.16

Reaction conditions: 200 mg catalyst, 2 mmol benzyl alcohol in 10 mL toluene, reaction temperature 102 �C.

Figure 1 Powder X-ray diffraction pattern of CuMn2 mixed

oxide pre-calcined at 300 �C. Symbols ¤, } and indicate

hexagonal MnO2, monoclinic CuO and cubic CuMn2O4 phases,

respectively.
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of benzyl alcohol (Table 1). May be the electron donating
groups –CH3 and –OCH3 have very little effect which could

not be detected within the present time interval (5 min). We
obtained little effect of these groups in the oxidation reactions
over CuMn (Cu/Mn = 1:1) mixed oxide in our earlier work

(Ali et al., 2013b). Attachment of electron withdrawing groups
(–NO2, –Cl) to the para-position of the phenyl ring decreased
the efficiency of the oxidation reaction and required a longer

time for a complete conversion compared with that of the ben-
zyl alcohol. The results indicated that electron density on the
phenyl ring played an important role in the reactivity of the
oxidation reaction. The complete conversion of alcohols with

electron withdrawing groups –NO2 and –Cl on the para-posi-
tion of the phenyl ring was observed after 25 and 50 min,
respectively. –NO2 is stronger electron withdrawing group

compared to –Cl, but it is not clear why –Cl decreased reactiv-
ity more than that of –NO2 group. The stronger electron with-
drawing nature of –NO2 group is mainly due to resonance

effect rather than inductive effect (I). –Cl has a higher negative
inductive effect (–I) than that of –NO2, which may be the rea-
son that attachment of the –Cl to the benzene ring deactivating
the oxidation reaction more than that of the –NO2 group. p-

Nitro benzyl alcohol oxidized in 25 min. whereas it took
100 min. for the oxidation of m-nitro benzyl alcohol. Thus,
substituent (–NO2) attached to the meta-position of the phenyl

ring affects more than that of para-position. Steric hindrance is
another important factor that affects the reactivity as bulky
electron donating –C(CH3)3 and electron withdrawing –CF3

groups attached to the phenyl ring decreased the efficiency of
the reaction. Therefore, it can be concluded that oxidation
reaction of benzylic alcohols catalyzed by CuMn2 mixed oxide

is influenced by both electronic and steric effects.
The morphology of the catalysts was studied with a combi-

nation of various characterization techniques, which is de-
scribed in detail in our earlier work (Ali et al., 2013a). The

CuMn2 mixed oxide catalyst pre-calcined at 300 �C was found
to be a mixture of three phases, cubic CuMn2O4 (ICSD
#93434), hexagonal MnO2 (ICSD #76430) and monoclinic

CuO (ICSD #92368) as was indicated in X-ray diffraction pat-
tern (Fig. 1). Peaks of the corresponding phases are indicated
by different symbols in Fig. 1. The average crystallite size of

the catalyst was determined to be 29.26 nm from XRD line-
broadening (determined by the Scherrer equation) using peaks
appeared at 35.62, 37.40, 38.88, 42.47 and 48.69 in 2h (Fig. 1).

TEM image of the catalyst (Fig. 2) shows that the existing

phases are distributed over all the area and are not well
crystalline. It appears as irregular-shaped agglomerates of ma-
jor CuO and MnO2 phases as observed in the X-ray diffraction

pattern. The agglomerated particle morphology of the particle
size was calculated using ImageJ 1.44 (Rasband, 2011) from
the TEM image (Fig. 2). The mean particle size is obtained

to be 28.34 ± 0.07 nm (inset graph of Fig. 2), which is in good
agreement with the crystallite size determined by the Scherrer
equation using XRD line-broadening (29.26 nm).

The higher catalytic activity of the CuMn2 mixed oxide cat-
alyst for oxidation of benzylic alcohols to the corresponding
aldehydes may be attributed to the formation of amorphous



Figure 2 Transmission electron microscopy (TEM) image of CuMn2 mixed oxide pre-calcined at 300 �C. Particle size distribution

determined from the TEM image is shown in graph (inset figure).

516 R. Ali et al.
MnO2 and/or small crystallite size of the mixed oxide. This re-

sult is in agreement with the catalytic activity for oxidation of
benzyl alcohol. The manganese oxide, MnO2 was reported as a
highly active phase (Yang et al., 2007) and when it co-existed
in CuMn2 oxide showed a higher catalytic activity than that

of pure MnO2 (Ali et al., 2013a) for oxidation of benzyl
alcohol.

4. Conclusions

The catalytic activity of CuMn2 mixed oxide nanoparticles cat-
alyst for the oxidation of benzyl alcohol derivatives substituted

with various electron donating (–CH3, –OCH3, –C(CH3)3) and
electron withdrawing (–Cl, –NO2, –CF3) groups on the phenyl
ring has been examined. The oxidation reactions of the ben-

zylic alcohols were observed to proceed on the CuMn2 mixed
oxide catalyst with high efficiency. The selectivity toward the
corresponding aldehyde is obtained to be very high (>99%)

for all the alcohols tested in this work. The oxidation reaction
of citronellol provided only 6.22% conversion after 4 h while
the selectivity >99% under the same condition. The selectivity
remained unchanged for all the reactions although the conver-

sions were found to be affected by the substituent groups.
Alcohols having electron withdrawing and/or bulky groups re-
quired a longer reaction time compared with those having elec-

tron donating groups on the phenyl rings.
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