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Abstract Nowadays, sustainable supplement of water has recently been identified as a vital neces-

sity due to the existence of limited drinkable water sources. To do this, various techniques are being

developed to remove various types of pollutants from water/wastewater sources. Adsorption of

common water pollutants using nanocomposite materials has been of great popularity in recent

years due to its high efficiency. This paper aims to develop various models based on machine learn-

ing approach to study their efficiency on predicting the experimentally measured results of Hg/Ni

ions removal from water sources. To do this, this study attempts regression on a small data set using

two parameters as inputs and two parameters as outputs. In this dataset, the inputs are Ion and C0,

and the outputs are Ce and Qe. AdaBoost (Adaptive Boosting), a well-known ensemble method,

was applied on top of three different models, including Decision Tree Regression (DT), Gaussian

Process Regression (GPR), and Linear Regression (LR). After fine-tuning their hyper-
bia (M.
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parameters, the optimized model was evaluated through various metrics. For example, the R2 for

ADA + GPR model has a score of 0.998 for Ce and 0.999 for Qe as the best model among these

three models. This model in RMSE is the best and illustrates 0.1512 and 1.490 for Ce and Qe as

error. Eventually, ADA + GPR has been selected as the optimized model with optimized dataset:

(Ion = Ni, C0 = 250, Ce = 206.0). But for Qe, different amounts are illustrated: (Ion = Hg,

C0 = 106.7, Ce = 577.35)

� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The growth of population has exacerbated the water scarcity in devel-

oping countries (Pendergast and Hoek, 2011; Azmil, et al., 2022). Sus-

tainable supplement of water has become a serious global challenge in

the next forty years. Upon the anticipation of the World Water Coun-

cil, by 2030, more than 3.9 billion of the world will face with a serious

water stress situation and water-scarce countries (Urgency, 2007).

Molecular-based separation of ions is of great importance in disparate

industrial-based activities for the pretreatment of raw materials and

purification of products (Lyu, 2018; Sharif, 2021). Relying on water

resources, disparate pollutants such as organic substances, pharmaceu-

tical agents, dyes and heavy metals may be available in water and

wastewater streams, which their efficient removal can be an important

activity (Mengting, 2019; Qin, 2020).

In various industrial topics such as gas sweetening, water/wastew-

ater treatment, adsorption and pharmaceutics, the separation process

possesses great importance to be the subject of interest (Nagase,

2020; Memon, 2022; Chen, 2021). Adsorption is known as one of

the most well-mature and promising techniques for molecular-base

removal of pollutants/impurities from water-/wastewater sources (Li,

2022; Nayak et al., 2022). The adsorbent structure is an important

parameter for the separation of contaminants, which must be designed

to obtain to hit a satisfactory specific point (Yang, 2021).

To enhance the adsorption performance of substances, the usage of

nanocomposite materials would be an appropriate option (Yin and

Deng, 2015). Considering high dependency of the adsorption capacity

on the absorbent’s surface area/chemistry, these parameters have suit-

able potential of reinforcement by fabricating a nanocomposite struc-

ture like metal organic framework (MOF)/Layered double hydroxide

(MOF/LDH). In recent years, the synthesis and use of MOF/LDH

composite materials have been prevalent to increase the removal effi-

ciency of ions/organic molecules from water (Mohd Sidek, 2017;

Abasi, 2022).

Over the past years, artificial intelligence (AI) has opened new hori-

zons towards predicting the experimental measured results in various

industries like membrane-based separation, adsorption, pharmaceu-

tics, and chemical reactions (Gaudio, 2021; Elbadawi, 2021;

Mahmoodi et al., 2018). In various scientific disciplines, machine learn-

ing (ML) methodologies are progressively taking the role of classical

computing methods. Neural Network, Ensemble, and Tree-based

models are examples of these techniques to solve problems. Many

problems with a few input attributes and multiple output values may

now be studied using machine learning models. These models derive

some correlations between inputs and outputs (Bishop and

Nasrabadi, 2006; Rodriguez-Galiano, 2015).

Ensemble methods are roughly the models that use several base

models to make more general and robust predictors (Dietterich,

2000). This paper aims to develop various novel models based on

machine learning approach to study their efficiency on predicting the

experimentally measured results of Hg/Ni ions removal from water

sources. In this research, we used a well-known ensemble method,

AdaBoost (Adaptive Boosting), on the top of three different models,

including Linear Regression (LR), Decision Tree Regression (DT),

and Gaussian Process Regression (GPR).
As one of the most popular non-parametric models, Decision trees

(DT) are straightforward, hierarchical models that employ recursive

splits on observed examples to accumulate close examples in minor

portions of the input space (recursive-partitioning regression)

(Alpaydin, 2020; Quinlan, 1996; Hassan, 2017). Furthermore, Random

Forest, Extra Trees, and Gradient Boosting Trees are applicable

ensemble models based on DT used in this research.

GPR is more popular because it can be connected to Bayesian non-

parametric statistics, infinite neural networks, kernel approaches in

machine learning, and spatial statistics (Rasmussen, 2003; Shi and

Choi, 2011). Also, linear regression (LR) is a straightforward approach

to supervised learning. Linear regression, in particular, is a useful

method to predict a quantitative response.
2. Data set

Ce and Qe outputs have to be analyzed using a small dataset

provided by (Syah, 2022). Ion is a categorical input, and C0
is a real-valued. The dataset including 18 items which is shown
in Table 1 (Hu, 2022).
3. Methodology

3.1. Base models

The decision tree (DT) is a well-known model inspired by nat-
ure that can be used to solve various problems. A decision tree

is composed of three parts: a root (start) node; multiple deci-
sion nodes to check some queries on data (internal); and mul-
tiple leaf nodes that are final predictions (terminal). The

output of the model is reflected by leaf (terminal) nodes, whilst
incoming data enters the network via the root node. Decision
nodes are located between the root and the terminal nodes. In

general, incoming data begins to flow through branches from
the root and passes to sub-trees based on the query of each
node to reach terminal nodes. When the algorithm receives
the input data, it begins to create the tree by splitting, pruning,

and stopping (Quinlan, 1996; Mathuria, 2013; Xu, 2005; Yang,
2017; Song and Ying, 2015). These behaviors begin at the root
node and progress until a specific condition is met. A simple

decision tree is depicted schematically in Fig. 1 (Hu, 2022).
Nonlinear regression approach which utilizes a probabilis-

tic regression framework to improve the errors but does not

utilize parametric models, such as the Gaussian Process
Regression (GPR) (Grbić et al., 2013; Alqarni, 2022). Here,
the presumption is that y as output calculations is taken below
method:

y ¼ fðxðkÞÞ þ e

http://creativecommons.org/licenses/by/4.0/


Table 1 The whole data set (Syah, 2022; Hu, 2022).

No. X1 = Ion X2 = C0 Y2 = Qe Y1 = Ce

1 Ni 0.5 5 0

2 Ni 2 20 0

3 Ni 5 50 0

4 Ni 10 95 0.5

5 Ni 25 230 2

6 Ni 50 380 12

7 Ni 100 426 57

8 Ni 160 433 116

9 Ni 250 439 206

10 Hg 0.5 5 0

11 Hg 2 20 0

12 Hg 5 50 0

13 Hg 10 99 0.1

14 Hg 25 247 0.3

15 Hg 50 445 5

16 Hg 100 500 50

17 Hg 160 518 108

18 Hg 250 527 197

Fig. 1 General structure of Decision Tree.
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In the above equation, x reflects a quantification of input

value, f demonstrates the indistinct functional interdepen-

dence, then e notes Gaussian noise r2
n denotes the variance

of Gaussian noise. Instead of parameterizing function f, the
previous probability is expressed using the Gaussian process

(Rasmussen, 2003).
The Gaussian process’s covariance function cov(x,x0) and

mean m(x) carry ideas about the data’s underlying mecha-
nism. After defining the covariance function and mean, the
result is determined with regard to the Gaussian distribution

p (y*|X, y, x* ) with:



Table 2 Final outputs for Ce.

Models RMSE R2

ADA-DT 0.2089 0.946

ADA-GPR 0.1512 0.998

ADA-LR 0.2854 0.941
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ŷ� ¼ mðx�Þ þ kT
� Kþ r2

nI
� ��1

y�mðx�Þð Þ;
r2
y�
¼ k� þ r2

n � kT
� Kþ r2

nI
� ��1

k�;

The prediction is constructed on the training vector X, y, as
illustrated below. Instead, then relying exclusively on the

parameters to make the forecast, this approach departs from
typical regression methods (Jin, 2022).

Variable K refers to a covariance matrix by the elements Ki,

j = cov(xi, xj) and k* which illustrate in the following formu-
lation (Jin, 2022):

½k��i ¼ covðxi; x�Þandk� ¼ covðx�; x�Þ

The covariance function and mean parameters must be
obtained using the dataset in order to generate reliable predic-

tions. Because they describe parts of the predictive probability
distribution, these variables are called hyper-parameters.
Values of hyper-parameters are primarily arranged through

optimizing the log-likelihood estimate of the train dataset
(Rasmussen and Nickisch, 2010):

logp yjXð Þ ¼ � 1

2
yT Kþ r2

nI
� ��1

y� 1

2
log jKþ r2

nIj
� �� n

2
logð2pÞ

n illustrates the quantity of training subset.

3.2. Adaboost

An ensemble learning-based model can exceed a single predic-
tor in terms of performance by merging numerous base learn-
ers. As the AdaBoost method, it serves as an ensemble learning

method for improving the robustness of base estimators by
altering the weights of samples (Freund and Schapire, 1997).
This approach has increased in prominence as a result of its

capabilities (Schapire, 2003; Ying, 2013).
To deal with more complex challenges, these adaptively

improved base models might be used. In addition, this is since

basic models have high generalization properties, which makes
them appealing. Even though they can be used in practical sit-
uations, they are unable to handle complex tasks due to their
design bias. AdaBoost is one of the solutions to improve sim-

ple models.
This method starts with a base predictor (the weak learner),

and then the base predictor and the other predictors are con-

tinuously and consistently combined to build a trustworthy
system that can deal with complex scenarios (Lemaı̂tre et al.,
2017; Drucker, 1997). These steps summarize the general Ada-

Boost algorithm (Hastie et al., 2001; Bishop, 2006):
Initialize the weights and number of base learners (M):

wi ¼ 1

N
; i ¼ 1; � � � ;N

For k 2 {1, . . ., M}:

i. Build an estimator Gk(x) using the weights wi.

ii. errk ¼
PN

i¼1wiIðyi–Gk ðxiÞÞPn

i¼1wi
.

iii. ak ¼ logð1�errkerrk
Þ.

iv. wi  wi: exp ak :I yi–Gk xið Þð Þð Þ; i ¼ 1; � � � ;N :
Final Output:

GðxÞ ¼ sign
XM

k¼1akGk xð Þ
� �

In this pseudocode, the quantity of the data points and the
learners are shown with N and M. The predictor employing b

over the data points is Gb(x) (Hastie, 2009; Berk, 2006;
Ouyang et al., 2021).

4. Results and discussion

The three new models were each evaluated according to the
criteria that are typically used, and then their hyper-

parameters were tweaked using the test data. These require-
ments are outlined in the following paragraphs.

R2 score or coefficient of determination is, without a doubt,
the most used criteria for assessing the efficiency of prediction

results. It reveals how well the patterns of the projected find-
ings mirror the trends of observations (Gouda, 2019).

R2 ¼ 1�
P

yi � xið Þ2P
xi � x

�
i

� �2
The RMSE is calculated using the sample standard devia-

tion of the distinction among the estimated and predicted tar-
gets. It provides an accuracy measure for the predicted values
(Zang, 2020).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
ðyi � xiÞ2

s

yi and xi reflect predicted and actual (observed) outputs,

respectively. n stands for the size of dataset and xi is the mean
of observed data. Tables 2 and 3 compare the obtained results
of different models. As can be seen, despite the satisfactory

performance of ADA-DT and ADA-LR models to predict
the experimental measured results, the use of ADA-GPR has
illustrated better agreement between the model outcomes and
measured values with great R2. The calculated R2 for the pre-

diction of both Ce and Qe are higher than 0.999, which corrob-
orates that the ADA-GPR model is significantly valid to
predict the values in the simulation process of adsorption iso-

therms and equilibrium data. Considering Tables 2 and 3, we
can conclude that the Boosted GPR procedure is the most gen-
eral of the available models. In the end, the GPR model, which

is depicted in Figs. 2 and 3 of the model surfaces, is chosen
according to the facts in the preceding tables.



Table 3 Final model results for Qe.

Models RMSE R2

ADA-DT 2.893 0.957

ADA-GPR 1.490 0.999

ADA-LR 3.162 0.948

Fig. 2 Simulated surface for Ni.

Fig. 3 Simulated surface for Hg.

Fig. 4 2D Plot of Ce applying Ada-GPR through Hg Ion.

Fig. 5 6-2D Plot of Qe applying Ada-GPR through Hg Ion.
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After ensuring the validation of developed models, the

validated ML model was applied to achieve the adsorption
isotherm for Ni and Hg ions. Figs. 4 and 5 present three-
dimensional simulated surface plot about the adsorption of
both Ni and Hg ions. As demonstrated, presentation of the
adsorption isotherms of Hg and Ni ions are based on adsorp-

tion capacity versus equilibrium concentration. According to
the results, it can be perceived the amount of Hg adsorption
on the surface of MOF/LDH structure is more than Ni
because of the interaction of Hg with the surface of nanocom-

posite. It is worth pointing out that the increment of the
solutes’ initial concentration in the solution resulted in a sub-
stantial improvement in the estimated adsorption capacity

(Qe). Increase in the solutes’ initial concentration in the solu-
tion can be justified due to enhancing the driving force for
mass transfer among the bulk of solution and the adsorbent

surface. The obtained results can be of great importance to
present the two-dimensional demonstrations of the adsorption
capacity versus some momentous parameters such as initial

concentration. Figs. 5–8 demonstrate the two-dimensional
plots of Ce and Qe using Ada-GPR models for Hg and Ni
ions. According to the simulation outcomes, it is perceived
with the aim of improving the adsorption removal, the



Fig. 6 2D Plot of Ce applying Ada-GPR applying Ni Ion.

Fig. 7 2D Plot of Qe applying Ada-GPR through Ni Ion.

Table 4 Optimized values.

Output Ion C0 Output Value

Ce Ni 250 205.93

Qe Hg 106.7 577.35
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adsorption dosage must be maintained at its maximum values.
Despite increasing the separation costs, achieving the opti-

mized value of adsorbent is of great importance (Yang, 2021).
Table 4 shows the optimal values for both outputs sepa-

rately, with the optimal values for each output shown in

parentheses.
5. Conclusion

Finally, a plenary modeling and simulation through machine learning

approach have been developed to investigate the adsorption process of

Hg and Ni ions from solutions using MOF/LDH nanocomposite

material. In order to develop the ideal model, ions and the primary

amount of the concentration of solute have been selected as input,

then, the training process of network has been implemented applying

the experimentally calculated value achieved form literature. Using

only two inputs and two outputs, this study attempts regression. Ce

and Qe are the outputs of this dataset, which takes as inputs Ion

and C0. On top of three models, including DT, GPR, and LR, the

well-known ensemble method, AdaBoost, was applied. Through mod-

ifying their hyper-parameters, the models were performed and evalu-

ated applying a variety of metrics. According to the metric,

ADA + GPR has the top R-squared score of the three models, with

a score of 0.998 for Ce and 0.999 for Qe. For Ce and Qe, this model

in RMSE has an error rate of 0.1512 and 1.490. Finally, the

ADA + GPR model’s optimal values (Ion = Ni, C0 = 250,

Ce = 206.0) are identical to the dataset’s optimal values. Although

it is equal to (Ion = Hg, C0 = 106.7, and Ce = 577.35) for Qe.

Data Availability:

All data are available within the manuscript.
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