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Abstract Entropy production occurs in all thermohydraulic systems, which results in performance

degradation. Entropy production promotes irreversibility in complicated systems, which are com-

monly found in industrial mechanisms. As a response, this technology is successfully applied in sev-

eral technological applications involving porous media, propulsion ducts, electronic cooling,

turbomachinery, and combustion. In the current computational study, energy transfer and entropy

development resulting from pressure-driven flow of a non-Newtonian fluid inside a wedge-shaped

expanding channel is evaluated. The direct characterization of the inefficiency mechanisms that can-

not be accomplished by the conventional energy analysis. Entropy generation analysis, which pre-

cisely quantifies the irreversibility resulting from heat transfer, mass transfer, and viscous heat loss

of the Jaffrey-Hamel flow of power-law fluid. The conservation equations are used to develop the

governing flow equations for the non-Newtonian Carreau fluid model. For the sake of the current

investigation, the equation for entropy generation is modelled using the second law of thermody-

namics. The appropriate transformations are implemented in order to convert the governing PDEs

into a collection of coupled ODEs. To solve the generated extremely non-linear ODEs, the shooting

approach and the fourth, fifth order Runge-Kutta method have been used. The acquired numerical

statistics indicate that, while the thermal radiation parameter tends to increase the rate of heat

transfer, the Eckert number decreases as it rises. For higher estimation of Weissenberg numbers
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Nomenclature

ðr; h; zÞ Cylindrical coordinates

V Fluid velocity (ms�1)
a Channel apex angle
Vmax Fluid maximum velocity (ms�1)
mf Kinematic viscosity (m2s�1)

qf Fluid’s density (kgm�3)
qp Nanoparticles density (kgm�3)
qcp
� �

f
Fluid heat capacity

cp Specific heat (jkg�1K�1)
T;Twð Þ Fluid and wall temperature (K)
C;Cwð Þ Fluid and wall concentration (kgm�3)

T0 Reference temperature (K)
C0 Reference concentration (kgm�3)
g Y

_
� �

Generalized viscosity ðkgm�1s�1Þ
Y
_

Shear rate

g0; g1ð Þ Zero and infinite shear-rate viscosity
k Material parameter of Carreau fluid
n Power-law index of Carreau fluid

sij Cauchy stress tensor
p Fluid pressure (Pa)
rp Pressure gradient

srr; srh; shh Stress tensor components

Dt Thermophoresis diffusion coefficient
Db Brownian diffusion coefficient
kf Thermal conductivity Wm�1K�1

� �
k� Mean absorption coefficient m2kg�1

� �
r� Stephan-Boltzmann constant WK�4m�2

� �
g Dimensionless angle
f gð Þ Dimensionless velocity

H gð Þ Dimensionless temperature
v gð Þ Dimensionless concentration
Nt Thermophoresis parameter

Pr Prandtl number
Re Reynold number
We Weissenberg number
R Radiation parameter

Nb Brownian diffusion parameter
Cf Skin-friction coefficient
Nu Nusselt number

Sh Sherwood number
N000 Entropy generation rate W=m3K

� �
Be Dimensionless Bejan number
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and power law, the entropy number drops in a divergent channel, but a contrary tendency is

revealed for Bejan profile. A growth in the power-law index leads to a significant reduction in sev-

eral irreversibility. Moreover, entropy generation is lower within divergent channel in comparison

to the convergent section. Heat and mass transport are substantially reduced as the power-law index

rises.

� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Jeffery-Hamel flows have a variety of uses in contemporary physical

phenomena, including river and canal exploration, fluid mechanics,

aerodynamics, civil, biomechanical, mechanical, and chemical engi-

neering. The flow through rivers, canals, and other biological flows,

such as the flow within arteries and venous blood vessels, are the best

examples of practical applications for these types of flows. Over the

past four decades, non-Newtonian fluid dynamic interactions within

surfaces (such as planes, channels, tubes, and wedges) and various

kinds of fluid have been studied. (Jeffery, 1915) and (Hamel, 1917) ini-

tiated the study of such flows above a century ago by reducing the Nai-

ver–Stokes equations. They inspected heat transference of viscous

Newtonian flow in a channel within non-parallel walls, which has sub-

sequently known as Jeffery–Hamel flow. (W, 1931), and (R, 1934)

focused on this flow problem following the preliminary analysis of Jef-

fery and Hamel. A comprehensive set of mathematical solution for this

problem was subsequently provided by (Rosenhead and Taylor, 1940).

(Fraenkel and Squire, 1962) elaborated on this and established a solu-

tion for the 2D Navier-Stokes equations for flow in a channel, their

findings revealed that the creation of a boundary layer and a zone of

flow reversal. After that, (Mansutti and Ramgopal, 1991) performed

numerical analysis to investigate the convergent and divergent flow

of a power-law fluid and discovered a solution that allowed boundary

layers to exist even in the non-inertial flow between divergent planes.

(Nagler, 2017) extend the J-H flow to non-Newtonian fluid considering

non-linear viscosity and friction at the channel wall. The analysis of
(Mansutti and Ramgopal, 1991) was expanded by (Harley et al.,

2018) to include a power-law fluid whose rest viscosity is neither zero

nor infinite for any finite value of the power-law exponent. They noted

boundary layers for the non-Newtonian fluid even in divergent flow

and at approximately zero Reynolds number (Re). For greater wedge

angles, they also discovered zones where the flow reversed. The litera-

ture covering J-H flow problems of non-Newtonian fluid considering

several physical phenomena (Garimella et al., 2022), (Asghar et al.,

2022), and (Kamran and Azhar, 2022). The Naiver-Stokes equations

with entropy production in the Jaffrey-Hamel flow exhibit similarity

solutions provided by (Weigand and Birkefeld, 2009). (Makinde and

Bég, 2010) considered the inherently irreversible nature of viscous fluid

within a non-uniform (convergent/divergent) channel. The essential

irreversibility in an intersecting (convergent/divergent) channel was

scrutinized by. (Shukla et al., 2020) inspected the hybrid nanofluid in

a Jaffrey-Hamel flow with slip mechanism.

Substantial technological developments in electronics and micro

devices industries introduce promising elucidations for thermal sink

challenges. In the designing process of thermal devices, energy effec-

tiveness is a key concern. This concern can be suitably tackled by

the reduction of the entropy generation phenomenon. Energy changes

is a natural phenomenon besides an external source is applied. No

authentic variation for entropy has ascended if such mechanism is

related to the investigation of second law under an irreversible process.

This heatline phenomenon is very familiar amongst the recent scientist

and researchers due to its potential consequences in heat transport pro-

cesses. As a result, entropy generation minimization is now extensively

http://creativecommons.org/licenses/by/4.0/


Thermohydraulic and irreversibility assessment 3
monitored throughout in engineering and the manufacturing sectors,

for instance, in nuclear power plants, thermal reactors, and petroleum

and geothermal reservoirs. The irreversibility of an remote system that

experiences fluid friction, thermal and solute transport, molecular

vibration, thermal radiation, the Joule Thompson effect, and other

non-ideal processes can be estimated via entropy optimization. It is

common knowledge that reducing entropy rate is important to increase

efficiency of an isolated closed system, especially in power plants, heat

exchangers, fuel cells, geothermal energy systems, engineering phenom-

ena, thermal storage, and advanced nanotechnology. (Bejan, 1979),

(Bejan and Kestin, 1983) came up with innovative work exploring

entropy generation concept. The second law was implemented to the

problem of thermal transmission in metallic porous channels was

addressed by (Turkyilmazoglu, 2020). (Nayak et al., 2021) reported

on the entropy production in electromagnetic nanofluid flow under

cubic auto-catalysis reaction. Some important studies about this topic

are highlighted in Refs. (Hayat et al., 2017), (Das et al., 2018b), (Das

et al., 2018a), (Chu et al., 2020), (Das et al., 2020), (Sarkar et al., 2020),

(Shehzad et al., 2021), (Madhu et al., 2021), (Mahanthesh et al., 2021),

(Madhu et al., 2022), (Ali et al., 2022), (Xu et al., 2022),.

It is an established fact that the complicated interaction between

shear and strain rates prevents Navier Stokes equations from accu-

rately describing the properties of non-Newtonian liquids. Experimen-

tal measurements show that non-Newtonian fluids respond differently

to the application of shear stress in terms of strain rate. Non-

Newtonian liquids are divided into shear thinning and thickening liq-

uids based on this relationship. The importance of non-Newtonian flu-

ids in several engineering, technological, and everyday life activities has

increased because of these classifications. A variety of fluid models are

offered to better illustrate the physical interpretation of these fluids.

These models include the flow characteristics of shear thinning and

thickening liquids including Carreau fluid. Carreau model has a wide

range of application in the production of polymers, capillary elec-

trophoresis, crystal development, mud drilling, the manufacture of gels

and shampoos, powder technology, and biological applications. To

understand the rheological behavior of shear thinning fluids, numerous

mathematical models have been used in literature. (Ostwald, 1929)

model was the first to show the straightforward relationship between

shear stress and shear rate. Even so, this version eventually turned to

serve as the basis for a variety of viscometers and rheometers that col-

lect rheological data on a variety of fluids that are shear thinning.

Technically speaking, the so-called ‘‘power law” model is not able to

forecast how shear-thinning fluids will behave at extremes of shear

rate. Later on, (Cross, 1965) proposed another mathematical formula

to assess the rheological behavior of fluids that were shear thinning.

When it comes to estimating rheological properties at low and high

shear rate values, this model and power-law model are better enough.

(Carreau, 1972) offered a concept on the fundamental molecular

makeup of a fluid that was shear-thinning. The five factors in this

model are used to forecast viscosity behavior. The generalized model

is identified as: g�g1
g0�g1

¼ 1þ k Y
_
����
����

� �a� �n�1
2

, where g0, g1, k, n, a, and

_Y elucidate zero shear, infinite shear rate viscosity, material time scale

constant, power indexed, curvature parameter, the shear rate. In more

practical scenario the g0 � g1, and k _Y
�� �� < 1. The Carreau fluid model

as referred to shear thickening and shear thinning for n > 1, and

0 < n < 1, respectively. Here n the index of Carreau fluid and it con-

tains the values in between [0,1]. Few significant numerical studies con-

sidering Carreau model in a recent time are conducted by numerous

researchers (Bilal and Shah, 2022), (Ibrahim, 2022), (Rehman et al.,

2022), (Hassan et al., 2022).

This investigation work reports the consequences of irreversibility

mechanism with second law utilization in Carreau non-Newtonian

fluid flow generated within an inclined channel. The innovation of this

research is studying the heat transfer, mass transfer, and viscous heat-

ing irreversibility of the wedge configuration. The fluid flows in chan-

nel have abundant effects in distinctive features like refrigeration,
automotive, heat exchangers and aerospace industries. Energy trans-

port mechanism is elucidated by the implications of radiative heat flux

and viscous heating phenomenon. System irreversibility are precisely

quantified in this work using an entropy generation analysis based

on a new multi-scale coupled model. The coupled model includes a

two-dimensional (2-D) power-law model, a two-dimensional (2-D)

thermal model, and a local entropy generation rate model that account

for a comprehensive solution of the flow, mass concentration, heat

transfer, and entropy generation rate equations. Entropy creation

mechanisms linked to heat transfer, mass transfer, and frictional

entropy generation. The study’s originality and worth may be deter-

mined by the fact that it provides novel and previously unreported

treatments of the Carreau nanofluids in intersecting plate with plane

walls assuming purely radial flow. The fourth-order R-K technique

is used with the shooting strategy to provide the numerical simulation

of transformed leading equations. Graphical illustrations are provided

of the effects of encoded parameters on the velocity, temperature,

nanoparticle concentration, and system irreversibility profiles for the

flow models. The outcomes of physically fascinating quantities are

explained using the various physical constraint values. According to

physical background and characteristics, these outcomes are explored

in detail. The study will be helpful and novel for industries and aca-

demic institutions researching entropy minimization in channel flows.

2. Modelling framework

2.1. Problem statement and underlying assumptions

This section addresses a mathematical treatment of the physi-
cal problem. The laminar, incompressible flow of non-

Newtonian fluid from a source or sink located at the channel
apex as displayed in Fig. 1.

1. The flow is assumed in cylindrical coordinates ðr;u; zÞ,
where r is measured from the wedge’s axis, u from appro-
priate meridian plane, and z is along the wedge’s axis.

2. Assume that only radial motion affects the flow parameter.

3. Assuming that the two rigid, non-parallel plane walls are
taken at an angle of 2a.

4. The flow of a non-Newtonian fluid inside a converging

divergent wedge originates from a source and driven by a
constant pressure gradient.

5. It is assumed that T w and Cw respectively the wall temper-

ature and concentration and T and C are the fluid temper-
ature and concentration.

6. The walls of the channel are isothermal i.e., no heat
exchange occur between fluid and the channel walls.

7. The conservation of energy equation is constructed using
traditional Fourier-law coupled with Buongiorno model
and viscous heat mechanism.

8. The entropy generations equation is derived in term of
velocity, heat energy and dissipations.

In radial coordinates the 2-D the field of velocity, tempera-
ture, concentration, and Cauchy stress tensor between inter-
secting rough plates for Carreau fluid are settled as.

s ¼ s r;uð Þ;V ¼ V r;uð Þ;T ¼ T r;uð Þ;C ¼ C r;uð Þ: ð1Þ
2.2. Mathematical analysis

The conservation of mass, momentum equation for non-
Newtonian fluid is written as:



Fig. 1 Power-law wedge shape flow model and coordinate system.
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r � V ¼ 0: ð2Þ

qf

DV

Dt

� �
¼ r � s�rp: ð3Þ

Where D
Dt

�ð Þ ¼ @
@t

�ð Þ þ V � rð Þ �ð Þ, is the material time

derivative. On the right-hand side of the equation, the first
term is the standard Eulerian derivative (i.e., the derivative

on a fixed reference frame), and the second term denotes the
modifications brought on by the flowing fluid. Advection is
the term for this effect. �rp is the pressure gradient, qf is

the fluid density. For Carreau fluid, we take a ¼ 2 and
g1 ¼ 0 (practical situation) and the model become:

g ¼ g0 1þ k Y
_
����
����

� �2
" #n�1

2

: ð4Þ

The shear stress tensor s is defined as

sij ¼ gY
_

ij; ð5Þ
where g is the generalized viscosity of the Carreau fluid and

_Yij is the shear strain rate. After invoking Eq. (1), the shear

strain rate can be described as follows

_Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

@V

@r

� �2

þ 1

r2
@V

@h

� �2

þ 2V2

r2

s
: ð6Þ

The stresses components in view of Eq. (2), (5) and (7), we

have

srr srh 0

shr shh 0

0 0 0

0
B@

1
CA ¼

g0 1þ k Y
_
����
����

� �2
" #n�1

2

2 @V
@r

� �
g0 1þ k Y

_
����
����

� �2
" #n�1

2

1
r
@V
@h

� �
0

g0 1þ k Y
_
����
����

� �2
" #n�1

2

1
r
@V
@h

� �
g0 1þ k Y

_
����
����

� �2
" #n�1

2

2V
r

� �
0

0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
:

ð7Þ

The continuity and Navier-Stokes equations in component
form are summarized as follows for the two-dimensional flow
(Ahmad et al., 2021), (Garimella et al., 2022), (Ramesh et al.,
2022)
@

@r
rVð Þ ¼ 0; ð8Þ

qf V
@V

@r

� �
¼ � @p

@r
þ 1

r

@

@r
srrð Þ þ 1

r

@

@h
srhð Þ þ srr � shh

r
; ð9Þ

0 ¼ � 1

qfr

@p

@h
þ 1

qfr
2

@

@r
srhð Þ þ 2

qfr
srh þ 1

qfr

@

@h
shhð Þ: ð10Þ

Applying Eq. (5), into Eqs. (7), and (8), we have

V
@V

@r
¼� 1

qf

@p

@r
þ vf

@2V

@r2
þ 1

r

@V

@r
þ 1

r2
@2V

@h2
� V

r2

� �

� 1þ k2 2
@V

@r

� �2

þ 1

r2
@V

@h

� �2

þ 2V2

r2

( )" #n�1
2

þvfk
2 n� 1ð Þ 1þ k2 2

@V

@r

� �2

þ 1

r2
@V

@h

� �2

þ 2V2

r2

( )" #n�3
2

� 4
@V

@r

� �2
@2V

@r2
þ 6

r2
@V

@r

� �
@V

@h

� �
@2V

@r@h

� �"

� 2

r2
@V

@r

� �
@V

@h

� �2

þ 4V

r2
@V

@r

� �2

� 4V2

r3
@V

@r

þ 2

r4
@V

@h

� �2
@2V

@h2
þ 4V

r4
@V

@h

� �2
#
; ð11Þ

0 ¼ � 1

qfr

@p

@h
þ 2vf

r2
1þ k2 2

@V

@r

� �2

þ 1

r2
@V

@h

� �2

þ 2V2

r2

( )" #n�1
2

� @V

@h
þ vfk

2 n� 1ð Þ
2r

1þ k2 2
@V

@r

� �2

þ 1

r2
@V

@h

� �2

þ 2V2

r2

( )" #n�3
2

� 4
@V

@r

� �
@V

@h

� �
@2V

@r2

� �
þ 2

r2
@V

@h

� �2
@2V

@r@h

� �
� 2

r3
@V

@h

� �3
"

þ 4V

r2
@V

@h

� �
@V

@r

� �
� 4V

r3
@V

@h

� �
þ 8V

@V

@r

� �
@2V

@r@h

� �

þ 4V

r2
@V

@h

� �
@2V

@h2

� �
þ 8V2

r2
@V

@h

�
ð12Þ
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2.3. Thermal analysis

The heat transfer equation for the current problem while tak-
ing the combined contributions of the viscous dissipation, ther-
mal radiation effect, and Buongiorno’s model (Owhaib and Al-

Kouz, 2022), (Chu et al., 2021)

ðqcpÞf V � rTð Þ ¼ r � kfrT
� ��r � qr þ ðqcpÞs DbðrC � rTÞ½

þDt

T0

ðrTÞ2
�
þ sij : rV: ð13Þ

In above Eq. (13),sij : rV is the viscous dissipation expres-

sion, the Rosseland approximation for non-linear radiation,

the radiative heat flux qr is simplified as (Shashikumar et al.,
2020), (Bhaskar et al., 2022), (Veera Krishna, 2020)

qr ¼
qr;rad ¼ � 4r�T4

3k�
@T
@r

qh;rad ¼ � 4r�T4

3k�
@T
@h

( )
: ð14Þ

By invoking Eq. (14) in Eq. (13), the energy conservation
equation reduces to (Krishna et al., 2019), (Krishna et al.,
2020), (Krishna et al., 2018)

V
@T

@r
¼ 1þ 16r�T3

0

3k� qcp
� �

f

" #
1

r

@T

@r
þ @2T

@r2
þ 1

r2
@2T

@h2

� �

þ qcp
� �

s

qcp
� �

f

Db

@T

@r

@C

@r
þ 1

r2
@T

@h
@C

@h

� �
þ Dt

Tw

@T

@r

� �2

þ 1

r2
@T

@h

� �2
" # !

þ g0
qcp
� �

f

1þ k2 2
@V

@r

� �2

þ 1

r2
@V

@h

� �2

þ 2V2

r2

( )" #n�1
2

1þ k2 2
@V

@r

� �2

þ 1

r2
@V

@h

� �2

þ 2V2

r2

( )" #
:

ð15Þ
2.4. Mass concentration equation

The nanoparticles concentration via Buongiorno model is writ-
ten as:

V
@C

@r
¼ Db

1

r

@C

@r
þ @2C

@r2
þ 1

r2
@2C

@h2

� �

þDt

T0

1

r

@T

@r
þ @2T

@r2
þ 1

r2
@2T

@h2

� �
: ð16Þ
2.5. Boundary conditions

The governing boundary conditions for the flow model are

(Khan et al., 2015), (Saif and Jasim, 2019):
At the center of channel:

V ¼ Vmax;
@V

@h
¼ 0;

@T

@h
¼ 0;

@C

@h
¼ 0: ð17Þ

At the channel walls:

V ¼ 0; T ¼ Tw; C ¼ Cw: ð18Þ
2.6. Normalization mechanism

Introducing similarity variables to normalize the governing

equations (Khan et al., 2015), (Al-Saif and Jasim, 2019),
(Bhaskar et al., 2022)
g ¼ h
a
;V r; hð Þ ¼ G hð Þ

r
f gð Þ ¼ G hð Þ

fmax

; fmax ¼ rVmax; H

¼ T

Tw

; v ¼ C

Cw

: ð19Þ

The converted system of governing ODEs become:

d3f

dg3
þ 4a2

df

dg

� �
1þWe2

df

dg

� �2

þ 4a2f2
 !" # n�1ð Þ

2

þ 2aRef
df

dg
þ n� 1ð ÞWe2 1þWe2

df

dg

� �2

þ 4a2f2
 !" # n�3ð Þ

2

� 3
df

dg
d2f

dg2

� �2

þ 32a2f
df

dg
d2f

dg2
þ df

dg

� �2
d3f

dg3
þ 64a4

df

dg
f2

 !

þ n� 1ð Þ n� 3ð Þ We2
� �2

1þWe2
df

dg

� �2

þ 4a2f2
 !" # n�5ð Þ

2

� df

dg

� �3
d2f

dg2

� �2

þ 16a2f
d2f

dg2

� �3
d2f

dg2
þ 32a4f3

df

dg
d2f

dg2

 

þ16a4f2
df

dg

� �3

þ 64a6f4
df

dg
� 4a2

df

dg

� �5
!

¼ 0; ð20Þ

1þ Rð Þ d2H
dg2

� �
þ Pr Nb

dH
dg

dv
dg

þNt

dH
dg

� �2
 !

þ PrEc 1þWe2
df

dg

� �2

þ 4a2f2
 !" #

1þWe2
df

dg

� �2

þ 4a2f2
 !" # n�1ð Þ

2

¼ 0;

ð21Þ

d2v
dg2

� �
þ Nt

Nb

d2H
dg2

� �
¼ 0; ð22Þ

with reduced conditions:

f ¼ 1; df
dg ¼ 0; dH

dg ¼ 0; dv
dg ¼ 0; as g ! 0

f ¼ 0; H ¼ 1; v ¼ 1; as g ! �1

)
: ð23Þ

The reduced parameters are:

Re ¼ arV
vf

;We2 ¼ k2V2

r2a2
; M2 ¼ rB0

2

qfvf
; Pr ¼ lfCp

kf
;

Ec ¼ V2

Twcp
; NB ¼ qcp

� �
s

qcp
� �

f

DbCw

vf
and Nt ¼ qcp

� �
s

qcp
� �

f

DtTw

vfT0

: ð24Þ
2.7. Entropy mechanism and Bejan analysis

Within the context of the to the second law of thermodynamics
the current investigation, for entropy generation which mea-
sure the heat sink performance is focused in this communica-

tion. Entropy generation in this context is divided into three
categories: heat, mass, and frictional entropy generation. The
transmitted heat often causes thermal entropy generation

(TEG). On the other side, the irreversibility caused by viscous
effects during the flow is referred to as frictional entropy for-
mation (FEG). According to these definitions, it is anticipated

that TEG and FEG rates will differ greatly depending on the
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type of fluid used as well as how the morphologies of the
nanoparticles in the nanofluid are taken into account. Because
these parameters have a significant impact on the flow struc-

ture and heat transfer characteristics, which also has an impact
on the generated entropy. The totoal rate of entropy genera-
tion is obtained by adding the thermal and frictional compo-

nents of entropy generation. However, energy destruction or
created entropy are the main causes of low-efficiency systems.

The total entropy generation rate N000 W=m3Kð Þ is constituted
of the thermal, mass diffusivity, and frictional entropy genera-
tion rates. The total entropy generation rate resulting from the

time-averaged steady state, incompressible flow of Carreau
fluid within converging diverging wedge is written as (see
(Bejan, 1996), (Chen et al., 2018), (Makinde and Bég, 2010),
(Shukla et al., 2020), (Weigand and Birkefeld, 2009)),

(Abbasi et al., 2022), (Abbasi et al., 2022):

N000 ¼ kf

T0
2
ðrTÞ2|fflfflfflfflfflffl{zfflfflfflfflfflffl}

N000 ðThermal irreversibilityÞ

þ g0
T0

U|ffl{zffl}
N000

Viscous dissipition

irreversibility

þRDb

C0

ðrCÞ2 þ RDb

T0

ðrC � rTÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N000 ðMass transfer irreversibilityÞ

:

ð25Þ

Where T0 ¼ TwþT
2

and C0 ¼ CwþC
2

are referred to the average

temperature and concentration of the central line and channel
wall. Three primary factors contribute to the rate of entropy
generation: the temperature difference-driven heat transfer

entropy generation rate, the concentration difference-driven
Be ¼ NTherm

NTotal

¼
1þ Rð Þ dH

dg

� �2
1þ Rð Þ dH

dg

� �2
þ PrEc 1þWe2 df

dg

� �2
þ 4a2f2

� �� �
1þWe2 df

dg

� �2
þ 4a2f2

� �� � n�1ð Þ
2

þDf
dv
dg

� �2
þ dH

dg

� �
dv
dg

� �� � ð33Þ
mass transfer entropy generation rate, and the frictional heat
loss entropy generation rate. Each term can be determined

by integrating over the entire wedge computational domain
�1; 1½ � and are given as:

NTherm ¼
Z 1

�1

N000
Thermal irreversibilityð ÞdV ð26Þ

NDiffusivity ¼
Z 1

�1

N000
Mass transfer irreversibilityð ÞdV ð27Þ

NFritionalheating ¼
Z 1

�1

N000
Viscousdissipition

irreversibility

� �dV ð28Þ

In coordinates system the above equation can be settled as

N000 ¼ kf

T0
2

1þ 16r�T3
0

3k�ðqcpÞf

" #
@T

@r

� �2

þ 1

r2
@T

@h

� �2
" #

þ go
Tw

1þ k2 2
@V

@r

� �2

þ 1

r2
@V

@h

� �2

þ 2V2

r2

( )" #
1þ k2 2

@V

@r

� �2

þ 1

r2
@V

@h

� �2

þ 2V2

r2

( )" #n�1
2

þ RDB

C0

@C

@r

� �2

þ 1

r2
@T

@h

� �2
" #

þ RDB

T0

@T

@r

@C

@r
þ 1

r2
@T

@h
@C

@h

� �
;

ð29Þ
The normalized entropy generation equation in the context
of similarity variables reduces to

Ngen ¼ r2a2N000

jf

¼ 1þ Rð Þ dH
dg

� �2

þ PrEc 1þWe2
df

dg

� �2

þ 4a2f2
 !" #

1þWe2
df

dg

� �2

þ 4a2f2
 !" # n�1ð Þ

2

þDf

dv
dg

� �2

þ dH
dg

� �
dv
dg

� � !

ð30Þ

Ngen ¼ NTherm;radiation þNFrictionallosses þNDiffusion; ð31Þ
Here Df denote the diffusion parameter.

Df ¼ rDBCw

kf
; ð32Þ

Bejan number Be, which is the ratio of thermal entropy gen-
eration rate caused by thermal gradients to the overall entropy

generation rate, is used to assess the contribution of thermal
generation rates to total entropy generation rates. The con-
fined Bejan number Be measures the ratio of total irreversibil-

ity to irreversibility in heat transport. To determine the
comparative importance of irreversibility due to heat transmis-
sion throughout the entire enclosure, the average Bejan num-

ber is utilized.
The range of the Bejan number is restricted to 0 to 1. If
Be < 0:5 indicates that the total entropy generation rate dom-

inates the entropy generation rate and Be > 0:5 indicates that
the thermal entropy generation rate dominates the total
entropy generation rate.

2.8. Curiosity in engineering parameters

Skin drag force.

The skin drag-force i.e., the skin friction for Carreau fluid is

Cf ¼ srh
qfVmax

2
: ð34Þ

Where srh denote shear stress and is defined as

srh ¼ g0
r

1þ k2 2
@V

@r

� �2

þ 1

r2
@V

@h

� �2

þ 2V2

r2

( )" #n�1
2
@V

@h

������
h¼�a

:

ð35Þ

Thus, the dimensionless expression become
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Cf ¼ 1

Re
1þWe2

df

dg

� �2

þ 4a2f2
 !" #n�1

2
df

dg

2
4

3
5 ð36Þ

Heat transfer rate
The local Nusselt Number is demarcated as:

Nu ¼ rqw
kfTw

: ð37Þ

Where qw signify surface heat flux and expressed as:

qw ¼ �kf
@T

@h

� �����
h¼�a

þ qr ð38Þ

Employing the dimensionless variables, we get

Nu ¼ � 1

a
ð1þ RÞ dH

dg

� �
ð39Þ

Mass transfer rate
The local Sherwood Number is interpreted as:

Sh ¼ rjw
DbCw

ð40Þ

Where jw characterizes surface mass flux and written as:

jw ¼ �Db

dC

dh

� �
ð41Þ

Thus

Sh ¼ � 1

a
dv
dg

ð42Þ
3. Numerical scheme for solution

The shooting method, a well-known numerical methodology,
is implemented to numerically solve the governing problem.

In order to find the values of df �1ð Þ
dg , dH �1ð Þ

dg ; and dv �1ð Þ
dg at the chan-

nel wall, a fifth order Rung-Kutta quadrature procedure in

conjunction with a Newton iteration approach is used to solve
the governing equations (21), (22), and (23) subject to bound-
ary conditions (24). With the help of newly defined variables,

the differential equation Eqs. (21), (22), and (23), and (24) is
transformed into first-order ordinary differential equations.
Now the appropriate guesses of the missing conditions are

assumed. The flow domain is taken at g ¼ �1 to g ¼ 1. The
stepped used to estimate Eqs. (21), (22), and (23), and (24),
employing fifth–fourth-order Runge–Kutta–Fehlberg are

listed below (Bég et al., 2020), (Khan et al., 2018):

k0 ¼ f x0; y0ð Þk1 ¼ f x0 þ 1
4
h; y0 þ 1

4
k0h

� �
k2 ¼ f x0 þ 3

8
h; y0 þ 3

32
k0 þ 9

32
k1

� �� �
k3 ¼ f x0 þ 12

13
h; y0 þ 1932

2197
k0 � 7200

2197
k1 þ 7296

2197
k2

� �
h

� �
k4 ¼ f x0 þ h; y0 þ 439

216
k0 � 8k1 þ 3860

513
k2 � 845

4104
k3

� �
h

� �
k5 ¼ f x0 þ 1

2
h; y0 þ � 8

27
k0 þ 2k1 � 3544

2565
k2 � 1859

4104
k3 � 11

40
k4

� �
h

� �

9>>>>=
>>>>;
;

ð43Þ

¼ yi þ
25

216
k0 þ 1408

2565
k2 þ 2197

4104
k3 � 1

5
k4

� �
h ð44Þ
ziþ1 ¼ zi

þ 16

135
k0 þ 6656

12825
k2 þ 28561

56430
k3 � 9

40
k4 þ 2

55
k5

� �
h

ð45Þ
The fourth order Runge–Kutta component is denoted by

y�, and the fifth order Runge–Kutta stage is denoted by z�.
By subtracting the two values obtained, an estimate of the
error can be obtained. The findings can be redone with a

reduced step size if the deviation reaches a certain threshold.
The following is an example of how to determine the new step
size:

hnew ¼ hold
2 hold

2 ziþ1 � yiþ1

�� ��
" #1

4

ð46Þ

The step size is Dg ¼ 0.01, tolerance is taken 10�5 and accu-

racy of order 4 is supposed.

3.1. Results validation

We compare the current numerical values for velocity field f gð Þ
when g is taken in the range �1; 1½ � and other parameters are
omitted to resemble with earlier work by (Sari et al., 2016)
in order to assess the accuracy of our computational system.

Table 1 shows a respectable degree of agreement between the
current numerical results and the results of earlier studies.

4. Declaration of result and discussion

This segment focused on examining how various values of the
relevant parameter behaved in comparison to the distributions

of velocity, temperature, concentration, irreversibility mecha-
nism. All drawings show the effects of various values in two
distinct scenarios: the first is a fluid entering a channel that

is converging, and the second involves a fluid exiting a channel
that is diverging.

4.1. Flow dynamics within wedge configuration

The fluctuation of velocity profile f gð Þ for different Reynolds
intensities Re is seen in Fig. 2. In a convergent channel, the
fluid velocity matching the Reynolds number, producing solid

gradients at the medium’s center walls and a reduction in the
boundary layer thickness momentum. The findings reveal that
backflow is completely prevented in convergent channel. A low

Reynolds number indicates that the viscous force is dominant,
and since the boundary layer region does not extend very deep
into the flow region, which consequently accelerate the flow as

a result the velocity dominates. Indicative of turbulent flow
patterns, such as those seen in turbulent flows, are due to high
Reynolds numbers. The results were reversed in the case of a

convergent channel and increasing the Reynolds number
increased the velocity profiles without causing any apparent
reverse flow. Furthermore, the velocity profile along the center
line stayed virtually constant at high Reynolds numbers while

abruptly dropping to zero at the wall. In a divergent channel,
the velocity profile decreases as the Reynolds number



Table 1 The comparative outputs for fðgÞ, when We ¼ 0, n ¼ 0;M ¼ 0.

g Re ¼ 50, a ¼ 30 Re ¼ 50, a ¼ �30

(Sari et al., 2016) Present results (Sari et al., 2016) Present results

�1 0 0 0 0

�0.75 0.346178919 0.34175932 0.956861924 0.95862988

�0.5 0.669320174 0.66929111 0.811457376 0.81146278

-0.25 0.909765342 0.90978112 0.515827995 0.51582911

0.0 1 1 1 1

0.25 0.909765342 0.90980111 0.515827995 0.51579910

0.5 0.669320174 0.66931012 0.811457376 0.81145017

0.75 0.346178916 0.34617239 0.956861924 0.95890181

1.0 0 0 0 0

Fig. 2 Performance of velocity f gð Þ and flux shape in a convergent channel against augmented values of Re.
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increases. Additionally, as the Reynolds number rises, the flow

changes and a backflow region may be seen close to the wall.
The velocity profile differs between the two channels. The
velocity boundary layer thickness falls as the Reynolds num-

ber rise. On the other hand, in diverging channels, a rise in
the Reynolds number can cause the flow to reverse (see
Fig. 3). It’s interesting how strong inertial forces influence

the flow domain within diverse geometries. That is, in conver-
gent channels, fluid elements near the wall accelerate as the
Reynolds number rises, presumably due to an expansion of
the beneficial pressure gradient. In diverging-channel flows of

Carreau fluids, the inflection point shows that the velocity pro-
files at high Re may be easily prone to hydrodynamic instabil-
ity. Since the velocity profile contains detailed information on

the flow field, it is particularly significant to us. According to
Fig. 4, the velocity in a diverging section is a constantly
decreasing function of We, while in a converging section the

consequences are conflicting. The dimensionless parameter
We distinguish the fluid’s viscoelastic characteristics by relat-
ing the elastic forces to the viscous forces. In fact, the narrower

channel and a higher viscoelasticity, the velocity of the Car-
reau fluid is suppressed. The most plausible explanation for
this is that the shear-thinning property of the fluid is enriched
at higher values of the Weissenberg number, which causes a
decrease in the apparent viscosity of the fluid. Additionally,

fluid radial velocity gradually decreases because of the viscos-
ity drop. The influence of Weissenberg numbers on the nor-
malized radial velocity will undoubtedly be due to main

hemodynamic variables, such as shear stress at the wall
(WSS), resistive impedance, and volumetric flow rate which
exhibit oscillatory behavior. Fig. 4 depict the Weissenberg

variation as a function of nanofluid velocity f gð Þ. It can be per-
ceived that We appears as a mixed derivatives in the momen-
tum conservation equations. In the absence of Weissenberg
(We ¼ 0), the model is reflected to be a Newtonian fluid, while

the model extends to elastic solids model as (We ! 1). How-
ever, this rheological fluid model displays the viscoelastic
assets of the polymer to adequate values. The velocity of the

nanofluid declines with increasing We, while in a convergent
channel the influence is conflicting. In diverging case, the elas-
tic force behaves as a dominant effect compared to the viscous

force; therefore, the flow resistance is established in the bound-
ary layer. Velocity f gð Þ decline is therefore considered because
of the growing We. Physically, this reduction originates from

the direct relationship between Weissenberg and relaxation
rate, which led to decreases in fluid movement at higher relax-
ation rates. Fig. 5 is plotted to scrutinize the change in velocity
f gð Þ for various values of power index n (Shear thickening



Fig. 3 Performance of velocity f gð Þ and flux shape in a divergent channel against augmented values of Re.

Fig. 4 Performance of velocity f gð Þ for a ¼ �10o and a ¼ 10o against augmented values of We.
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case). It is perceived that dimensionless radial velocity dwindle
with increase of nð¼ 1:2; 1:5; 1:8Þ and after attaining its maxi-
mum value radial velocity declines to zero in a converging
zone. In addition, it is depicted that dimensionless radial veloc-

ity profile increases its occurrence in diverging channel. The
momentum boundary layer thickness rises with the power-
law index and the channel width. Therefore, the velocity of

the fluid is improved as a consequence of power indexed. While
slight reduction is attained in convergent channel within the
narrower zone of the convergent channel. Maximum velocity

is seen within the central region of both channel while slight
reduction near to the wall of the channel is seen.

4.2. Thermal distribution phenomena

The flow and temperature phenomena are combined with each
other in the case of viscous heating. Consequently, the flow
pattern inside the wedge, debated in the subsection, will signif-

icantly influence the corresponding temperature phenomena.
In this subsection, we have deliberated the heat transfer fea-
tures in detail in terms of the non-dimensional temperature dis-
tribution. The effect of the Weissenberg number
(We ¼ 1:2; 1:5; 1:8) on temperature distribution H gð Þ is
depicted in Fig. 6. The relationship between the fluid’s kine-

matic viscosity/process time and its relaxation time is acknowl-
edged as the Weissenberg number. Therefore, increasing the
Weissenberg number makes it easier for fluid particles to relax

over time, which advances friction and fluid thickness and, si-
multaneously, raises the fluid temperature. The flow and heat
transfer features of non-Newtonian fluids are comparable to

those of Newtonian fluids at low Weissenberg number values.
For instance, at (We ¼ 0), like the Newtonian fluid, the Car-
reau fluid similarly generates a large vortex zone that is virtu-

ally in the channel’s center, along with two smaller vortex
regions that are formed in the channel’s up right g ¼ 1 and
down g ¼ �1 corners. We arrived at the conclusion that the
measurement of the fluid’s Weissenberg number (We > 1)

would be severely hampered by polymer breakdown and the
relative change in fluid relaxation time. Finally, fluid tempera-
ture has a significant impact on all the rheological parameters



Fig. 5 Performance of velocity f gð Þ for a ¼ �10o and a ¼ 10o against augmented values of n.

Fig. 6 Behavior of temperature H gð Þ for a ¼ �10o and a ¼ 10o against diverse values of We.
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taken into consideration. The fluid’s temperature was sampled

at the beginning and end of the channel to determine the mag-
nitude of the temperature shift brought on by the mechanical
churning (inlet and outlet of the channel). The modification
in temperature distribution as power-index (n) becomes higher

is demonstrated in Fig. 7. In a convergent channel, a decrease
in thermal boundary layer thickness and temperature distribu-
tion is perceived versus n. This tendency is demonstrated by

the argument that when fluid viscosity increases, the kinetic
energy of the fluid molecules reduces, resulting in a narrowing
of the temperature distribution. While in diverging geometry

scenario, a little degradation is achieved. In fact, large value
of n > 1, (shear thickening fluid) the thickness of boundary
layer augmented and corresponding the fluid layer thickened,

consequently reduced the temperature. The dissipation of heat
in the domain is significantly influenced by thermal radiation
(R). The system is heated by extra heat from a different source.
The effective thermophysical characteristics of flow fluids

make a strong effort to eliminate these temperatures. Fig. 8
shows that the thermal distribution increases with increasing
radiation temperature. Similar trend for radiation parameter

is seen in both channels. The higher the radiation parameter
R, the more heat is provided to the liquid, raising both temper-

ature and thermal boundary-layer density. This is due to the
increased interaction in the thermal boundary layer caused
by an increase in the thermal radiation parameter. In fact, sig-
nificant amount of heat caused by higher radiation parameter

values, the nanofluid temperature profile and thermal bound-
ary layer width is also increased.

4.3. Concentration profile

The concentration profile inside the wedge shape channel at
various Weissenberg values is exposed in Fig. 9. There is no

mixing of the fluids with low Weissenberg numbers. The mid-
dle of the diverging channel where the fluid mingles the most,
as the Weissenberg number rises to 1 < We < 2. This is

because the elastic instability is present at this Weissenberg
number, increasing chaotic advection and, thus, enhances the
mixing phenomenon. The chaotic advection inside the conver-
gent channel becomes weaker as the Weissenberg number rises

due to the relaxation period decreasing further, which lessens
the mixing phenomenon between the two plates. As the Weis-



Fig. 7 Behavior of temperature H gð Þ for a ¼ �10o and a ¼ 10o against diverse values of n.

Fig. 8 Behavior of temperature H gð Þ for a ¼ �10o and a ¼ 10o against diverse values of R.

Fig. 9 Behavior of concentration v gð Þ for a ¼ �10o and a ¼ 10o against diverse values of We.
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senberg number (We) rises, the polymer chain extension and
elastic stress increase, which substantially influence the concen-
tration dynamics. It can be observed that as We increases, the

concentration profile tends to rise closer to the wedge surface
while, in the boundary layer region, it tends to decline far away
from the wall. The nanoparticle concentration against power

index n > 1 is depicted in Fig. 10. Near the solid wedge wall,
the concentration profile decreases with higher n values, while
the opposite tendency is seen farther out from the wedge wall.

The graphic for both converging diverging channel conveys
that the nanoparticles concentration diminishes as the power
indexed is augmented. Physically, the shear thickening fluid
has a low concentration as compared to the shear thinning

fluid.

4.4. Irreversibility analysis of Power-Law fluid

In this section, entropy-generation rate Ngen and Bejan analysis
Be is carried out to study the irreversibility of the channel with
wedge shape structure. The elastic force in converging system
Fig. 10 Behavior of concentration v gð Þ for a ¼

Fig. 11 Distribution of entropy generation rate Ngen and Bejan profile
is increased when Weissenberg number (We) grows. A domi-
nant nature is also expressed by the elastic force in comparison
to the viscous force. We increase entropy Ngen and decrease Be

because of this behavior. Physically, viscosity difference grows

for greater (We), which raises resistance and finally causes the
system to become more disordered (entropy generation)
(Fig. 11). While the effects are conflicting for entropy in diver-
gent channel as clear from the Fig. 12. In the region g ¼ �1 to

0, the entropy generation curves are constant, while they
change in other parts of the channel (see Figs. 11 and 12).
The increased friction towards the walls may be the reason

of this. In expanding channel, the entropy generation diminish
due to large channel opening against rising trend in We values
led to a decline both profiles. Figs. 13 and 14 are plotted for

entropy production Ngen and Bejan profile Be against power

index n in convergent divergent channel respectively. On

higher estimates of the power law material constant n, the
entropy generation Ngen exhibits an uprising tendency and

reverse influence for the Bejan profile. The effects of mass
and heat transport grow with greater n, but viscous effects sig-
�10o and a ¼ 10o against diverse values of n.

Be in a converging channel a ¼ �10o against diverse values ofWe.



Fig. 12 Distribution of entropy generation rate Ngen and Bejan profile Be in a diverging channel a ¼ 10o against diverse values of We.

Fig. 13 Distribution of entropy generation rate Ngen and Bejan profile Be in a converging channel a ¼ �10o against diverse values of n.

Fig. 14 Distribution of entropy generation rate Ngen and Bejan profile Be in a converging channel a ¼ 10o against diverse values of n.
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nificantly rise and entropy decreases (see Figs. 13 and 14).
Physically, large estimation of power index n > 1, the shear

thickening effects dominates the system discordances in both
geometries, consequently entropy distribution is higher, while
reduction in Bejan profile is diminished. Entropy generation

Ngen and Bejan number Be are examined and found to be
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improved for augmented radiation parameter Rð Þ. Higher
intensities of radiation parameter enhance the system’s internal
energy : This is why systemic disorganization increases (see

Fig. 15 and Fig. 16). Higher radiation causes the irreversibility
of heat transfer to become more pronounced than the irre-
versibility of viscous dissipation, raising the value of (Be).

The non-linear thermal radiation causes an increase in both
local and overall entropy generation, which reaches its maxi-
mum levels in the areas with the strongest thermal gradients

and consequently the greatest energy loss. The analysis of
the Bejan number demonstrates that in all sections where con-
duction is the principal heat transport mechanism, are also
with the highest values of entropy generation, the influence

of heat transfer irreversibility to total entropy generation is
close to 1, whereas it is nearly zero outside these regions.
Fig. 15 Distribution of entropy generation rate Ngen and Bejan profil

Fig. 16 Distribution of entropy generation rate Ngen and Bejan profi
4.5. Quantities of physical interest

Tables 2 and 3 illustrates the effects of physical flow parameter
on the rate of mass and heat transmission in the converging
and diverging channel. Additionally, a comparison of the out-

comes for both geometries are included. From these table, one
can infer that as the Eckert number Ec increases, the rate of
heat transfer Nu decreases, whereas the rate of heat transfer
improves as Ec increases. Consequently, for increasing values

of (R) and (n), the heat transfer rate increases at the convergent
channel, but the opposite tendency is observed for (We). Phys-
ically, it is seen that Nu and Sh increase as We increases, how-

ever the relaxation time’s declining trend reflects an increasing
trend with larger values of We. Tensile stresses in the pseudo-
plastic nanofluid are accelerated by the lengthening relaxation
e Be in a converging channel a ¼ �10o against diverse values of R.

le Be in a converging channel a ¼ 10o against diverse values of R.



Table 2 Numerical result for heat and mass transfer rate for converging case when a ¼ �100,

Pr Nb Nt Ec We n R � 1
a ð1þ RÞ dH

dg

� �
� 1

a
dv
dg

7 0.4 0.2 0.1 1.0 1.1 0.1 �0.3980 0.2388

0.6 �0.3980 0.1592

0.8 �0.3980 0.1194

7 0.4 0.2 0.1 1.0 1.1 0.1 �0.3980 0.2388

0.6 �0.3924 0.4708

0.8 �0.3869 0.6965

7 0.4 0.2 0.1 1.0 1.1 0.1 �0.7847 0.9160

0.2 �1.1608 0.4708

0.3 �1.5266 0.6965

7 0.4 0.2 0.1 1.0 1.1 0.1 �0.7965 0.4779

1.2 �0.8195 0.4917

1.3 �0.8417 0.5050

7 0.4 0.2 0.1 1.0 1.1 0.1 �0.7847 0.4708

1.2 �0.8816 0.5290

1.3 �0.9930 0.5958

7 0.4 0.2 0.1 1.0 1.1 0.1 �0.3980 0.9160

0.2 �0.3974 0.9164

0.3 �0.3969 0.9160

Table 3 Numerical result for heat and mass transfer rate for diverging case when, a ¼ 100.

Pr Nb Nt Ec We n R � 1
a ð1þ RÞ dH

dg

� �
� 1

a
dv
dg

7 0.4 0.2 0.1 1.0 1.1 0.1 �1.7695 0.8847

0.6 �1.7695 0.5898

0.8 �1.7695 0.4424

7 0.4 0.2 0.1 1.0 1.1 0.1 �1.7695 0.9069

0.6 �1.8137 1.8137

0.8 �1.8139 2.7209

7 0.4 0.2 0.1 1.0 1.1 0.1 �0.9069 0.4534

0.2 �1.8137 0.9069

0.3 �1.8139 1.3603

7 0.4 0.2 0.1 1.0 1.1 0.1 �0.9069 0.4479

1.2 �1.8137 0.4694

1.3 �2.7206 0.5050

7 0.4 0.2 0.1 1.0 1.1 0.1 �0.8958 0.4730

1.2 �0.9177 0.5290

1.3 �0.9388 0.5931

7 0.4 0.2 0.1 1.0 1.1 0.1 �1.7695 0.9069

0.2 �1.8690 0.9083

0.3 �1.9645 0.9097
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time. Additionally, heat and mass transfer effects against var-
ious parameter are dominate in convergent channel. While sig-
nificant decrease is seen for Nusselt and Sherwood against

various parameter.

5. Conclusion

In this theoretical communication, an entropy generation analysis of

the Carreau fluid in a Wedge shape convergent divergent channel

geometry with different parameter is securitized for the first time to

estimate the effects of thermodynamic irreversibility. The Carreau fluid

is significant in chemical engineering and polymeric suspensions

because it combines the power-law and Newtonian fluid models. The

Carreau fluid model can be used to describe the properties of paints,

polymer fluids, polyvinyl chloride, and polyethylene. The second law

of thermodynamics is used to estimate the local entropy generation

rate, which is used to identify irreversibility processes and quantify
thermodynamic irreversibility that occur in wedge-shaped channels.

In the entropy generation model, the contributions of the power-

index n, Weissenberg number (We), and non-linear thermal radiation

effects are specifically considered. The RK-45 Fehlberg numerical

approach was used to address the problem high nonlinear ODEs.

Entropy generation and Bejan number patterns for We and n are quite

opposite in a divergent channel. The achieved numerical approxima-

tion solutions are certified by comparing the results of a limiting case

(J-H flow problem) with the solutions determined in the available

works. The consequences of the deviation of the embedded parameters

on the velocity, temperature, concentration profiles and Entropy gen-

eration and Bejan number are presented. From the outcomes we con-

clude that: The flow is controlled by large estimation of inertial forces

Re in a divergent channel, while conflicting trend is seen in a conver-

gent channel. The velocity curve depreciates as the Weissenberg num-

ber (We) esclates. Whereas the conflicting effect is inspected in the

power index number n. The temperature profile is improved by larger

estimates of the radiation parameter and neighborhood Wiesenberger



16 S. Rehman et al.
number. Concentration of nanoparticles is reduced on increasing either

by Wiesenberger number or power index in a convergent portion. We

believe the consequences of the current work will contribute to the

improved design and optimization of impinging jet, supersonic nozzle

design cooling systems. In contrast to how this physical quantity

changes when the radiation parameter increases, the rate of heat trans-

fer decreases as the Eckert number rises. Flow through a divergent

channel produces reduced entropy compared to the flow through a

convergent channel.

6. Future recommendation

The model can be extended to design approach prioritizing
heat transmission effectiveness for two-dimensional conver-
gent–divergent rocket nozzle will be more appropriate to

reduce exergy destruction for more practical problem. Apply-
ing magnetic effects offers extra opportunities for design and
heat transfer mechanism optimization. Indeed, magnetic fields

and lubricated walls outcome in a very efficient method to con-
dense entropy generation although they degrade heat transfer
efficiency. Therefore, combined effect of magnetic field and

radiation effects they could offer brilliant equilibrium between
heat transfer productivity and exergy destruction.
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