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Abstract In pharmaceutical industry, finding promising ways to enhance the solubility of disparate

types of drugs is an important challenge for the orally administered drug delivery system. Disparate

techniques based on drug characteristics, nature of dosage form and properties of excipients have

recently been under extensive evaluation all over the world to improve the solubility of poorly

water-soluble drugs. Among them, supercritical fluid carbon dioxide (SC-CO2) has received para-

mount attentions due to having considerable advantages like cost-effectiveness and low flammabil-

ity. Lenalidomide belongs is an orally administered anti-cancer agent, which has recently received

indication for the treatment of adult patients with different bone marrow-related malignancies such

as multiple myeloma, mantle cell lymphoma and follicular lymphoma. Predicting the optimized

value of Lenalidomide inside the SC-CO2 in a wide range of pressure and temperature via develop-

ing mathematical models based on artificial intelligence (AI) is the main objective of this paper. In

this study, three different machine learning based models are selected to predict and optimized the

drug solubility. The available data includes 28 rows of data with two inputs including temperature

and pressure and two outputs including density and solubility. Selected models are Kernel Ridge

Regression (KRR), least angle regression (LAR), and Multilayer Perceptron (MLP). After optimiz-

ing models and comparing the results, the MLP was selected as the primary model of this research.
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Table 1 Molecular structure and
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The models illustrated R-squared scores of 0.999 and 0.994 for density and solubility. The maxi-

mum errors are also 2.92 and 6.44 � 10-2 for these outputs, which shows the accuracy and

significant generality of the model.

� 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A determinative parameter in pharmaceutical industry, which signifi-

cantly affects the performance and efficiency of a developed medicine

is drug solubility (Kneller, 2010; Drews and Ryser, 1997; Padervand,

2017). This parameter possesses an incontrovertible role in specifying

the desired concentration of a drug to obtain the necessary pharmaco-

logical response (Nguyen, 2022; Batchelor, 2022; Padervand et al.,

2020).

With the aim of increasing drug solubility, various techniques

including particle size reduction, application of surfactants, supercrit-

ical fluids (SCFs) and solid dispersion have been employed (Sareen

et al., 2012; Girotra et al., 2013; Chaudhari and Dugar, 2017;

Padervand et al., 2021). Among the approaches, the application of car-

bon dioxide SCF (SC-CO2) has been more attractive after 1980 s due

to its encouraging properties such as low cost, simplicity of use and low

toxicity/flammability (Hannay and Hogarth, 1880; Dohrn, 2007;

Padervand and Elahifard, 2017).

Lenalidomide (Revlimid�) is a well-known antineoplastic/angio-

genesis inhibitor, which has received various indications by the U.S

food and drug administration (FDA) and the European medicines

agency (EMA) for the treatment of adult patients suffering from cer-

tain types of bone marrow-related malignancies such as multiple mye-

loma and myelodysplastic syndromes (MDS) (Padervand, 2021).

Table 1 comprehensively renders the molecular structure and proper-

ties of Lenalidomide (Palumbo, 2012; Zeldis, 2011).

Machine learning (ML) is an artificial intelligence (AI) discipline

that consists of a set of techniques that aid in the comprehension of

patterns in data without making any assumptions about the data’s

structure. Building nonlinear correlations in data, as well as the inter-

action between predictors, is one of these methodologies’ strengths

(Senders, 2018; Cherkassky and Ma, 2003; Carbonell et al., 1983;

Goodfellow et al., 2016). In this research, three approaches are selected

as a novel approach to make models on the solubility dataset using

Python (3.9) software. Selected models are Kernel Ridge Regression

(KRR), Least angle regression (LAR), and Multilayer perceptron

(MLP). Those models have been used as a novel method for the first

time to optimize the solubility of Lenalidomide.

Least Angle Regression provides linear regression model coefficient

routes with understandable geometrical interpretation. LAR’s solution

routes are piecewise linear and hence highly efficient to compute. This

gives the algorithm with tremendous computational benefits over other

variable selection approaches. LAR selects the predictor variable
physicochemical properties o

tors., 2022).
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which is most associated with the response variable, and a regression

coefficient update proceeds in this manner, starting with all coefficients

equal to 0 (Lee and Jun 2018; Madigan and Ridgeway, 2004).

The Kernel Ridge Regression employs both ridge regressions and

the kernel technique (KRR). Through regularization and kernel

approaches, KRR provides the benefit of capturing nonlinear connec-

tions while avoiding regression over-fitting concerns (McDonald, 2009;

Zhang et al., 2013). Also, a nonlinear mapping between input and out-

put vectors is examined by the multilayer perceptron. It is made up of

basic linked components known as neurons or nodes. Each neuron has

a straightforward task to complete (Mielniczuk and Tyrcha, 1993;

Noriega, 2005).

3.Materials and Method.

In this section, we will discuss the data used as well as the models

that have been used in this research as the main structure of the anal-

ysis performed in more detail.

1.1. Data set

The data set analyzed in this study, which is taken from (Sajadian,

2022), has 28 rows of data whose inputs are temperature and pressure

and whose outputs are solubility and density, as shown in Table 2. For

more visibility, the pairwise relationship of the parameters is visualized

in Fig. 1. Also, the Pearson Correlation (PC) Plot and Kendall Corre-

lation Plot are shown in Fig. 2.

1.2. Models

Least angle regression (LAR) (Efron, 2004) is an effective variable

selection approach. Expressly, it aims to pick the predictors (in our

example, the basis polynomials) which have the largest influence on

the estimator response Y � M Xð Þ from a potentially vast range of

alternatives. LAR ultimately produces a sparse PC approximation,

i.e., one with fewer terms than a traditional complete representation.

More specifically, LAR gives a collection of PC representations,

where the first meta-model comprises a single estimator, the second

contains two estimators, and so on. Following that, a criterion for

picking the ‘‘best” meta-model is presented. A cross validation routine

is used to estimate the correctness of each meta-model generated by

LAR. Eventually, the meta-model with the highest estimate is pre-

served. Its sparsity is substantially smaller than the cardinality of the

entire candidate basis. Finally, adaptive procedures that rely on repe-
f Lenalidomide (File:Lenalidomide ball-and-stick.png., 2020;
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Table 2 Solubility and Density data of at different temperatures (T) and pressures (P).

No. T (K) P (bar) Density (kg m
�3
) Solubility (�10

4
) (mole fraction)

1 308 120 768.42 0.17

2 308 150 816.06 0.22

3 308 180 848.87 0.31

4 308 210 874.40 0.36

5 308 240 895.54 0.45

6 308 270 913.69 0.56

7 308 300 929.68 0.70

8 318 120 659.73 0.09

9 318 150 743.17 0.17

10 318 180 790.18 0.30

11 318 210 823.71 0.39

12 318 240 850.10 0.51

13 318 270 872.04 0.67

14 318 300 890.92 0.83

15 328 120 506.85 0.04

16 328 150 654.94 0.14

17 328 180 724.13 0.31

18 328 210 768.74 0.44

19 328 240 801.92 0.58

20 328 270 828.51 0.80

21 328 300 850.83 0.94

22 338 120 384.17 0.02

23 338 150 555.23 0.10

24 338 180 651.18 0.32

25 338 210 709.69 0.52

26 338 240 751.17 0.72

27 338 270 783.29 0.93

28 338 300 809.58 1.08

Fig. 1 Pairwise Distribution.
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Fig. 2 Correlation Plots.

Table 3 Hyper-Parameters.

Model Hyper-Parameters

LAR � AlphaFit intercept

KRR � AlphaFit interceptSolverTolerance

MLP � Hidden layer sizesActivationSolverTolerance
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titions of the LAR procedure are described in full (Blatman and

Sudret, 2011). The below algorithm summarizes the LAR regression

steps:

1. Set the coefficients to aa0 ; � � � ; aaP�1
¼ 0.

2. Initialize residual to the Y vector of training data.

3. Find the vector waj
that has the highest correlation with the present

residual.

4. Change waj
from 0 to the least square coefficient of the current

residual on waj
until another predictor wak

has the same correlation

with the current residual as waj
.

5. Change a aaj ; aak
� �T

together in the direction given by their joint

least square coefficient of the current residual on waj
;wak

n o
until

some other predictor wal
shows the same correlation with the cur-

rent residual.

Go on this manner until m � min (P, N � 1) estimators are

entered.

The active coefficients are ‘‘moved” toward their least square value

in steps 3 and 4. It is equivalent to amending the form

â kþ1ð Þ ¼ â kð Þ þ c kð Þ ew kð Þ (Efron, 2004; Khan et al., 2007).

The LAR descent direction and step are denoted by vector ew kð Þ and
coefficient c(k). As shown, both values may be obtained algebraically.

It is important to mention that if N P P, then the ordinary least-

square solution is provided by the final stage of LAR.

Kernel ridge regression (KRR), the other approach employed, is

centered on ridge regression and ordinary least squares (OLS) regres-

sion. Suppose a data set xi; yið Þf gNi¼1 is given and contains N data

points pulled from an undetermined distribution P over X � ℝ. The

objective is to predict a function that optimizes the MSE of the data

[ f xð Þ � yð Þ2], where the expectation is taken jointly over X;Yð Þ pairs.

The conditional mean f� xð Þ :¼ E YjX ¼ x½ � is widely accepted as the

best function (Byrne and Schniter, 2016). To predict the undetermined

function f�, An alternative solution is to use an M�estimator with least

squares loss over the dataset and a weighted penalty based on the

squared Hilbert norm (Vovk, 2013);

bf :¼ argmin
f2H

1

N

XN
i¼1

f xið Þ � yið Þ2 þ kjjfjj2H
( )

ð1Þ
In the above equation, greater than 0k is a regularization param-

eter and H indicates a reproducing kernel Hilbert space, the estimator

is determined as the kernel ridge regression estimate, or KRR for short

(Zhang et al., 2013). It is a natural non-parametric extension of the tra-

ditional ridge regression estimate (Hoerl and Kennard, 1970).

The multilayer perceptron analyzes a nonlinear mapping between

input and output vectors. It comprises a group of simple intercon-

nected units called neurons or nodes. There is a simple job that each

neuron must do.

In contrast, neurons with many connections can solve complex and

challenging problems that are not linear. Neurons are usually placed in

layers. Multilayer Perceptron (MLP) is frequently used as an input

layer, followed by numerous hidden layers, and finally an output layer.

All these structures are called Multilayer Perceptron networks

(Mucherino et al., 2009).

When paired with other training methods, the Levenberg–Mar-

quardt algorithm produced the greatest accuracy when compared to

gradient-based methods, and it was selected for network testing due

to its quicker convergence. Sigmoid-log and tangent-sigmoid are the

most often used model ANN activation functions, as is BP (Back Prop-

agation). The input elements xið Þ, weight wij

� �
, bias bj

� �
, and F Yð Þ are

represented in the following equations. Function or output is the value

(Deo and S�ahin, 2015).
These three models have some important hyper-parameters that we

optimize them using Grid Search method that tests different combina-

tions to find the best combination. These hyper-parameters are listed in

Table 3.

2. Results

To optimize models with their Hyper-parameters, different
combinations examined, and the final models implemented.

The final values are listed in Table 4.



Table 4 Final Hyper-Parameters.

Model Hyper-Parameters for Solubility Hyper-Parameters for Density

LAR � Alpha: 0.0009Fit intercept: False � Alpha: 0.1478Fit intercept: True

KRR � Alpha: 0.19653Fit intercept: TrueSolver: sagTolerance:

14.2303

� Alpha: 0.01993Fit intercept: TrueSolver: autoTolerance:

12.7768

MLP � Hidden layer sizes: 32Activation: reluSolver: lbfgsTolerance:

0.00237

� Hidden layer sizes: 28Activation: logisticSolver: lbfgsTolerance:

0.0245

Table 5 R-squared scores for Final Model Results.

Models / Output Density Solubility

KRR 0.416 0.957

LAR 0.682 0.875

MLP 0.999 0.994

Table 6 Error Rates for Final Model Results.

Metric Mean Absolute Error (MAE) Root Mean Square Error

(RMSE)

output Density Solubility Density Solubility

KRR 4.37E + 01 5.92E-02 8.05E + 01 7.04E-02

LAR 4.40E + 01 8.53E-02 7.58E + 01 1.00E-01

MLP 1.30E + 00 1.80E-02 1.59E + 00 2.77E-02

Fig. 3 Expected vs Estimated values
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After tuning of models, the evaluation is done with multiple
numeric and visual method. In Table 5 the R-square (Coeffi-

cient of Determination) scores of final models are displayed.
This metric is used on a regression line to determine how close
the predicted values are to the true (expected) values

(Botchkarev, 2018).

R2 � score ¼ 1�
Pn

i¼1 yi � byið Þ2Pn
i¼1 yi � lð Þ2 ð2Þ
Mean Absolute Percentage Error

(MAPE)

Max Error

Density Solubility Density Solubility

9.54E-02 8.33E-01 1.97E + 02 1.16E-01

9.49E-02 9.41E-01 1.80E + 02 1.89E-01

2.23E-03 5.54E-01 2.92E + 00 6.44E-02

of Density (kg m�3) (KRR model).



Fig. 4 Expected vs Estimated values of Solubility (mole fraction) (KRR model).

Fig. 5 Expected vs Estimated values of Density (kg m�3) (LAR model).
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Fig. 6 Expected vs Estimated values of Solubility (mole fraction) (LAR model).

Fig. 7 Expected vs Estimated values of Density (kg m�3) (MLP model).

Novel numerical simulation of drug solubility in supercritical CO2 using machine learning technique 7



Fig. 8 Expected vs Estimated values of Solubility (mole fraction) (MLP model).

Fig. 9 Final prediction surface for density. Fig. 10 Final prediction surface for solubility.
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Where, l indicates the mean of the expected data. For sol-
ubility prediction both KRR and MLP methods have scores

more than 0.95 but for density prediction the only accurate
model is MLP.

Error Rates of models are also displayed in Table 6 with

metrics such as Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), and Maximum Error (De
Myttenaere, 2016; Paula, 2020):

MAE ¼ 1

n
�
Xn

i¼1

jbyi � yij ð3Þ
MAPE ¼ 1

n
�
Xn

i¼1

j byi � yi
yi

j ð4Þ

Figs. 3 to 8 schematically compare the expected and pre-
dicted values. In these figures, the black line shows the
expected values, red squares indicate the test data and sign plus

denotes the train data. According to Table 6, the MLP model
has the least errors in all cases for both outputs. Also, in
Figs. 3–8, the visual comparison of expected and predicted val-



Fig. 11 Density Trends of Temperature (K) on different values of Pressure (bar).

Fig. 12 Density Trends of Pressure (bar) on different values of Temperature (K).

Novel numerical simulation of drug solubility in supercritical CO2 using machine learning technique 9
ues is displayed. All these figures together confirm the fact that
MLP is the most accurate and general model. Therefore, MLP
was selected as the main model for both outputs in this study.

Figs. 9 and 10 demonstrate the simultaneous effects of
temperature and pressure on the density and solubility of
Lenalidomide based on MLP model. By looking at the fig-
ures, it can be understood that increment of pressure
directly improves the Lenalidomide solubility in SC-CO2

system. Increment of pressure possesses encouraging impact
on the density of solvent, which frequently improves the



Fig. 13 Solubility Trends of Temperature (K) on different values of Pressure (bar).

Fig. 14 Solubility Trends of Pressure (bar) on different values of Temperature (K).
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solvating strength of the SC-CO2 and thus, improves the

solubility of drug. Despite the positive effect of pressure
on the solubility of drugs, there is a paradoxical trend in
the connection of temperature and solubility. As can be

seen in Figs. 11, 12, 13 and 14, increase in pressure results
in a significant enhancement in the compactness of solvent,

which is attributed to greater density and superior solvating
power of SC-CO2 as solvent. With the aim of assessing the
effect of temperature on Lenalidomide solubility, study on

the role of two factors including sublimation pressure and
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density above and below the cross-over pressure (COP) is
of prime importance. By increasing the temperature at the
pressures above the COP, the positive effect of sublimation

pressure on Lenalidomide solubility overcomes the destruc-
tive influence of density reduction by increasing tempera-
ture. In doing so, at the pressures above the COP,

increase in the temperature significantly improves the solu-
bility of drugs in SC-CO2 system. At the pressures less than
the COP, the deteriorative effect of density decrement is

greater than the encouraging impact of sublimation pres-
sure. Thus, at these pressures, increment of the temperature
dramatically declines the solubility Lenalidomide in SC-CO2

solvent (Alshehri, 2022).

3. Conclusion

Application of SC-CO2 as a robust, cost-effective, and versatile sol-

vent has been of great attention in current decades. The prominent

objective of this research was applying machine learning (ML)

models to investigate and create a model for the density and solu-

bility of Lenalidomide in SC-CO2. The data that is currently avail-

able consists of 28 rows, including two inputs temperature and

pressure. Both density and solubility are produced as the results.

Kernel Ridge Regression (KRR), Least Angle Regression (LAR),

and Multilayer Perceptron are some of the models that have been

selected (MLP). The MLP was ultimately chosen as the primary

model for this research after it was optimized and compared to

several other models. The R-squared scores for our model are

0.999 for density and 0.994 for solubility. Both metrics are highly

accurate. In addition, the maximum errors for these outputs are

both 2.92 and 6.44 � 10-2, which demonstrates both the precision

and significant generality of the model. In terms of MAPE the

model has error rate of 2.23 � 10-3on density and 5.54 � 10-1

on solubility.
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