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destructive to human health. Therefore, early identification of the pathogen is of substantial impor-
tance for quick ailments and healthcare outcomes. Several phenotype methods are used for the iden-
tification and resistance determination but most of the conventional procedures are time-
consuming, costly, and give qualitative results. Recently, great focus has been made on the utiliza-
tion of advanced techniques for microbial identification. This review is focused on the research stud-
ies performed in the last five years for the identification of microorganisms particularly, bacteria
using advanced spectroscopic techniques including mass spectrometry (MS), infrared (IR) spec-
troscopy, Raman spectroscopy (RS), and nuclear magnetic resonance (NMR) spectroscopy.
Among all the techniques, MS techniques, particularly MALDI-TOF/MS have been widely utilized
for microbial identification. A total of 44 bacteria i.e., 6 Staphylococcus spp., 3 Enterococcus spp., 6
Bacillus spp., 4 Streptococcus spp., 6 Salmonella spp., and one from each genus including Escheri-
chia, Acinetobacter, Pseudomonas, Proteus, Clostridioides, Candida, Brucella, Burkholderia, Fran-
cisella, Yersinia, Moraxella, Vibrio, Shigella, Serratia, Citrobacter, and Haemophilus (spp.) were
discussed in the review for their identification using the above-mentioned techniques. Among all
the identified microorganisms, 21% of studies have been conducted for the identification of
E. coli, 14% for S. aureus followed by 37% for other microorganisms.

© 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Infectious diseases are continuously growing and are the principal
cause of mortality and morbidity throughout the globe by the resis-
tance of pathogenic microorganisms to antibiotics. Antimicrobial
resistance (AMR) is a common phenomenon that occurs when
microbes are exposed to antimicrobials and the exchange of resistant
characters happens (Sharma et al., 2018); (Rodgers et al., 2019).
Antibiotic resistance is responsible for the worldwide deaths of more
than 0.5 million people, out of which more than 40 % comprise new-
born deaths every year (Foundation 2018). According to recent
reports, in the European Union (EU), every year more than 33 K peo-
ple lose life due to diseases stemming from antimicrobial-resistant bac-
teria (Anderson et al., 2019, Ben et al., 2019, Dadgostar 2019, Raoult
et al., 2019) and costs an estimated annual economic burden of 1.5 bil-
lion euros including healthcare and production loss (Anderson et al.,
2019). It is estimated by the latest Organization for Economic Co-
operation and Development (OECD) report, that over the next
30 years, 2.4 million people will die due to antimicrobial-resistant
pathogens in Europe, North America, and Australia and could cost
up to US$ 3.5 billion annually (https://www.oecd.org/health/stem-
ming-the-superbug-tide-9789264,307599-en.htm). This situation is
already severe in low and middle-income regions, which are likely to
rise significantly (Hofer 2019).

The identification of microorganisms based on traditional methods
is estimated to require 2—5 days or more which includes morphological,
physiological, chemical, and biochemical characterization. Further-
more, most of the phenotypic methods for microbial identification are
time and material-consuming, and laborious (Bochner 2008). However,
advanced spectroscopy techniques offer rapid and high-throughput
analysis for microbial identification at the genus and species levels.

Since the last decade, matrix-assisted laser desorption ionization
time-of-flight mass spectrometry (MALDI-TOF MS) has changed
the clinical microbiology field with a broader range, low cost, and early
and rapid microbial identification from grown bacterial colonies.
Microbial identification from BCs was further improved by applying
it on the plate with a shorter incubation period allowing early and reli-
able identification (Idelevich et al., 2014, Kohlmann et al., 2015). The
use of nanotechnology-assisted laser desorption/ionization time-of-
flight mass spectrometry (NALDI-TOF MS) could be an innovative
approach to enhance microbial analysis. This method uses a nanos-
tructured silicon-based target plate instead of traditional organic
matrices (Tatsuta et al., 2017). The primary function of nanomaterials
in this technique is to enrich analyte particles and allow for effective
desorption and ionization (Chu et al., 2018).

The surface-enhanced laser desorption/ionization time-of-flight
(SELDI-TOF) technique is another method for identifying microorgan-
isms. SELDI-TOF MS enables the direct study of bacterial lysates by
allowing the selective absorption of proteins on the chromatographic
array surface. Target protein homogenous binding enhances the
repeatability of MS analyses. Consequently, both the mass-to-charge
(m/z) ratio and the intensity values may be considered (Lundquist
etal., 2005, Seibold et al., 2007). The biggest restriction of this approach
is that most clinical microbiology laboratories do not have this expensive
equipment. Similarly, Sunner and Chen proposed surface-assisted laser
desorption/ionization mass spectrometry (SALDI-MS) (Law and
Larkin 2011). SALDI is a matrix-free laser desorption/ionization
method that replaces MALDI’s organic matrix with various substrate
surfaces such as graphite or nano silicon (Spraker et al., 2020). Because
organic matrices are avoided, SALDI is an excellent candidate for use in
low molecular-weight compounds (Song and Cheng 2020). Several
applications of biological and microbial SALDI imaging on various sil-
icon substrates have been developed during the last decade (Ronci et al.,
2012, Chenetal., 2018). As anillustration, Wang et al 2022, created gold
nanoparticles/thiol-cyclodextrin-functionalized TiO, nanowires as the
auxiliary surface for NP SALDI-MSI (Wang and Li 2021).

Various reviews have been published on physical, biochemical, and
imaging techniques for microbial identification and susceptibility test-
ing (Pulido et al., 2013, Van Belkum and Dunne Jr 2013, Idelevich and
Becker 2019, Maugeri et al., 2019, Smith and Kirby 2019). A review for
the designing and development of rapid detection of resistant microor-
ganisms based on traditional agar methods, E-test, staining, kits, and
MALDI methods has also been published (Leonard et al., 2018). Some
reviews have focused on the use of individual techniques in microbiol-
ogy such as MALDI-TOF techniques for detecting resistance biomark-
ers (Vrioni et al., 2018), identification of microorganisms from
bloodstream infections by automated antimicrobial susceptibility test-
ing (AST) (Wattal and Oberoi 2016, Nomura et al., 2020). Recently,
comprehensive reviews on Omics approaches and novel techniques
for microbial identification have been reported (Buszewski et al.,
2021, Janiszewska et al., 2022). The use of electrospray ionization mass
spectrometry (ESI-MS) for broad-range microbial identification
(Kailasa et al., 2019), the progress of proteomics and MS application
in clinical microbiology (van Belkum et al., 2015, Sanguinetti and
Posteraro 2016). The use of infra-red spectroscopy (XU et al., 2007,
Quintelas et al., 2018), Raman spectroscopy (Galvan and Yu 2018,
Kaprou et al., 2021), and NMR (Garcia—Alvarez et al., 2015), for bac-
terial typing and identification. However, all these articles are short of
the applications of advanced spectroscopic techniques in terms of
microbial identification.
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This review aimed to comprehensively summarize and combine the
applications of advanced spectroscopy techniques (MS, FT-IR, RS,
and NMR) for microbial identification by utilizing recent examples
of the past five years. Fig. | represents a schematic view of the review.

2. Microbial pathogenicity and their associated effects

Pathogenic microorganisms cause severe diseases and harm to
human beings. Worldwide, many diseases are reported due to
the pathogenicity of microbes. Some of the famous are related
to bloodstream infections, urinary tract infections (UTIs), res-
piratory tract infections (RTIs), ventilator-associated pneumo-
nia (VAP), etc. Table 1 represents the comprehensive details
related to the pathogenicity of microorganisms covered in
the study that causes various infections and diseases.

3. Use of advance spectroscopic techniques in the identification
of microorganisms

Different spectroscopic techniques have been used for micro-
bial identification. The use of mass spectrometry was first
reported in 1975 for the identification of bacteria (Anhalt
and Fenselau 1975). The analysis of proteins by MS had to
look out for the arrival of soft ionization techniques (MALDI
and ESI) because of their larger size and magnitudes (Sauer
and Kliem 2010). By the mid of 1990 s, it was being used for
bacterial identification due to its suitability in microbiological
research laboratories (Claydon et al., 1996, Holland et al.,
1996). Moreover, MALDI-TOF/MS and other hyphenated
techniques (, LC-MS, GC-MS, etc.) have been widely used
for the identification of various microorganisms.

IR spectroscopy was utilized for the identification and dis-
crimination of bacteria in the 1950 s and 1960 s (Whetsel
1991). Early methods of bacterial analysis by FT-IR were
impractical and laborious however, in the 1980 s significance
of FT-IR spectroscopy for biological application was resumed
with the advancement of modern interferometer and multivari-
ate statistical analysis tools (Burgula et al., 2007); (Preisner
et al., 2007). The analysis of biological samples by Raman
spectroscopy (RS) was reported for the first time in the

late1980s by focusing on the resonance Raman Effect
(Howard et al., 1980). Later on, different Raman techniques
were applied for the identification (Chauvet et al., 2017), and
discrimination of bacterial isolates (Jarvis and Goodacre
2004). Proton NMR (‘H NMR) was used for the first time
to differentiate bacteria at the genera level based on their cel-
lular metabolite composition (Delpassand et al., 1995).

A comprehensive Table 2 is presented for comparing the
possible advantages and disadvantages of the techniques
related to microbial identification. However, the choice for
choosing any of the techniques for studying microorganisms
depends upon the mindset and skills of the researcher in his
field.

Applications of the advanced spectroscopic techniques
related to microbial studies are focused on below in detail.

3.1. MALDI-TOF mass spectrometry

MALDI-TOF is a mass spectrometry technique, that was
introduced with great success in clinical diagnostics for the
identification of pathogens, a decade ago. Franz Hillenkamp
and Michael Karas developed matrix-assisted laser desorp-
tion/ionization mass spectrometry (MALDI-MS) in 1985
(Karas et al., 1985). In 1988, the first time their group reported
the detection of labile biopolymers - proteins with this technol-
ogy (Fuh et al., 2017). John Fenn and Koichi Tanaka work on
MALDI and its application to protein analysis and earned the
2002 Nobel Prize in Chemistry (Tanaka et al.,). MALDI cou-
pled with a time-of-flight (TOF) analyzer was used in microbi-
ology to differentiate intact bacterial cells in the late 1990 s
(Buszewski et al., 2021). MALDI became one of the primary
methods for the identification of proteins and, consequently,
for proteomics almost immediately after its discovery.

3.1.1. Mechanism of laser desorption ionization (LDI)

MALDI-TOF MS is a soft ionization technique that enables
the ionization of samples to charge molecules to measure their
m/z. Before analysis, samples are mixed with a small organic
compound known as a matrix, which facilitates energy transfer
to test samples, ionization, and analysis of non-volatile, high
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Table 1 A comprehensive table related to the pathogenicity of microorganisms covered in the study.

No. Microorganisms Pathogenicity
1 Staphylococcus aureus Causes skin infections, food poisoning, bone, and joint infections, etc.
2 Staphylococcus capitis Bloodstream infections, nosocomial infections, etc.
3 Staphylococcus warneri  UTID’s
4 Staphylococcus The nosocomial pathogen causes UTIs, sepsis,
haemolyticus
5 Staphylococcus Inflammations, wound infections, sinus infections, endocarditis, etc.
epidermidis
6 Staphylococcus UTIs, and cystitis in young women
saprophyticus
7 Enterococcus faecalis Bloodstream infections, periodontitis, UTIs, etc.
8 Enterococcus cloacae UTIs, respiratory tract infections, endocarditis, septic arthritis, skin, and soft tissue, abdominal, etc.
9 Enterococcus faecium UTIs, wound infections, prostatitis, bacteremia, endocarditis, and cellulitis.
10 Bacillus melitensis Mastitis, abortion, stillbirth, and weak offspring in animals
11 Bacillus suis swine brucellosis, and orchitis
12 Bacillus pseudomallei Whitmore’s disease in animals and humans.
13 Bacillus subtilis Pneumonia, endocarditis, septicemia, and bacteremia
14 Bacillus anthracis Anthrax
15 Bacillus cereus The emetic (vomiting) and the diarrheal syndrome.
16  Streptococcus pyogenes  Streptococcal Toxic Shock Syndrome (Strep. TSS), myonecrosis, bacteremia, pneumonia, scarlet fever, and
necrotizing fasciitis
17 Streptococcus agalactiae  Neonatal sepsis, and postpartum infection
18  Streptococcus milleri Pyogenic infections, and bacteremia
19 Streptococcus Pneumonia, middle ear infections, blood infection, and meningitis
pneumoniae
20  Salmonella enterica Nausea, vomiting, fever, abdominal pain, diarrhea, etc.
21 Salmonella typhi Malaise, anorexia, typhoid fever, non-productive cough, headache, relative bradycardia, and constipation or
diarrhea
22 Salmonella paratyphi A
23 Salmonella paratyphi B
24 Salmonella paratyphi C
25  Salmonella typhimurium  Gastroenteritis, bloodstream, infections in mice
26  Escherichia coli UTIs, pneumonia, diarrhea, neonatal meningitis, bloodstream infections, cholecystitis, cholangitis, etc.
27  Klebsiella pneumoniae Pneumonia, meningitis, bloodstream, wound infections, etc.
28  Acinetobacter baumannii Pneumonia, wound, UTIs, bloodstream infections
29  Pseudomonas aeruginosa Pneumonia, septicemia, endophthalmitis, endocarditis, meningitis, and malignant external otitis
30  Proteus mirabilis UTIs, bloodstream infections
31 Clostridioides difficile Intestinal diseases, severe diarrhea, food poisoning
32 Listeria monocytogenes Fever, miscarriage, muscle aches, CNS diseases
33 Candida albicans Candidiasis
34 Morganella morganii Skin and soft tissue infections, UTIs, septic arthritis, gastroenteritis, etc.
35  Brucella abortus Brucellosis
36  Burkholderia mallei Glanders in animals.
37  Francisella tularensis Tularemia in animals
38  Yersinia pestis Bubonic plague in humans and animals.
39  Moraxella catarrhalis Acute bacterial rhino sinusitis, and chronic obstructive pulmonary disease
40  Vibrio parahaemolyticus  gastroenteritis, sepsis, and wound infections
41 Shigella sonnei Shigellosis
42 Serratia marcescens UTIs, pneumonia, bloodstream infection, lower respiratory tract infection, meningitis, and wound infection.
43 Citrobacter freundii wound infections, UTIs, meningitis, and sepsis
44 Haemophilus influenzae  Ear infections, bloodstream infections

molecular weight, and polar substances. The matrix absorbs
UV radiation well, quickly sublimates, and after the desorp-
tion process, provides large amounts of ions in both positive
and negative ionization modes required for the ionization of
the test substance (Park et al., 2014). A test substance is depos-
ited on a steel plate (target plate) having spots for several dif-
ferent samples to be applied, followed by matrix deposition
and left for dryness. The sample spots are irradiated with a
short burst of a laser beam, and energetically remove matrix
particles from the sample surface absorb the laser energy and

transfer the analyte particles to the gas phase. Analyte mole-
cules are often ionized into singly charged positive ions
[M + H]" or negative ions [M-H] with neighboring matrix
molecules during the ablation process (Gao and Cassady
2008), followed by the detection of molecular weight and
time-of-flight (TOF). TOF works on the basis that ions of
varying m/z are time-scattered as they travel down a field-
less drift route of known length. Assuming that all of the ions
begin their travel at the same moment, the lighter ions will
reach the detector before the heavier ones. The analysis results



Table 2 Comparison of the techniques for their advantages and disadvantages applied to the microbial analysis.

Mass Spectrometry Techniques IR Raman NMR
MALDI-TOF MS LC-MS GC-MS
Advantages
-Fast analysis
-High-throughput-High sensitivity - Rapid analysis -Fast analysis and sensitivity -Fast and sensitive screening - High specificity -Intrinsically
(can detect as low as 10* CFU - High sensitivity -Good separation efficiency-Spectral - High-throughput- Automated - Little sample quantitative
mL™") -Good separation of polar database available (Wiley and National = microbial typing methods are preparation -Little sample
Automated e.g., MALDI compounds Institute Standard and Technology available e.g., S - Allows AST preparation
Biotyper®, VITEK®MS - Determination of ICs, values- (NIST) (IR-Biotyper®) - SERS -The same sample
SARAMIS™ AndromasDirect Direct identification libraries mass spectral database) -The whole organism identification of can be used
identification (shotgun proteomics method) (Garcia et al., 2008) fingerprinting specific biomarkers  repeatedly
(Sepsityper and SELTERS kits) -Targeted analysis -Cell lysis is not necessary for  helps to determine -High
(Lévesque et al., 2015, Jang and (Tracz et al., 2013, Berendsen et al., analysis MICs and AST reproducibility
Kim 2018) 2017, Roux-Dalvai et al., 2019, —non-invasive -Culture-free -Reliable
(Freiwald and Sauer 2009, Marko  Lasch et al., 2020) -little sample needed identification assignment of
et al., 2012) (Kosa et al., 2017, Hu et al., -The whole structure
2021) organism - Determination of
fingerprinting MIC

Disadvantages

-High initial costs of equipment-
Database development (spectra
from resistant and susceptible
strains)

should be developed

- Biomarker discovery for AMR
needed

- Not applicable for MIC
determination

- Lower discrimination power
between closely related species
(Rodrigues et al., 2017, Grenga
et al., 2019)

-High initial costs of equipment-
Database requirement (spectra
from resistant and susceptible
strains)

not available

- Biomarker discovery for AMR
needed

(Gowda and Djukovic 2014, Aszyk
et al., 2018)

-Time-consuming sample preparation
steps

- Complex sample preparation

-sample volatility requirements

- Applicable for only non-polar
compound

-High Temperatures usage

- Derivatization steps are required in the
case of non-volatile compounds
(Wittmann 2007, Lu et al., 2008)

-Testing of a purified single
strain,-Databases (spectra from
resistant and susceptible
strains)

should be developed

- Biomarker discovery for
AMR needed

- IR data vary by culture
conditions

-Not applicable for MIC
determination

-Multivariate statistical analysis
is a must

(Ami et al., 2012)

(Stockel et al., 2016,

Weiss et al., 2019,
Kumar et al., 2020)

-Poor sensitivity of
NRS

-Databases not
available
(Eberhardt et al.,
2015)

-Monitoring of
living systems
(Garcia—Alvurez

et al., 2015, Garcia-
Alvarez et al.,
2019)

-Large equipment
costs

-Lower sensitivity-
Low limit of
detection

(can’t detect below
10 CFU ml™})

- Databases not
available

(Pan and Raftery
2007, Gupta et al.,
2009)
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in a spectrum, which indicates the masses of the produced ions,
and the signals are ordered in an increase in mass.

3.1.2. Microbial identification based on MALDI-TOF MS

Identification of microorganisms by MALDI-TOF/MS is
based on four commercially available systems and with their
databases (a) the MALDI Biotyper (Bruker Daltonics, Bre-
men, Germany); (b) the Spectral Archive and Microbial Iden-
tification System (SARAMIS™) (AnagnosTec, Potsdam,
Germany); (c¢) the Andromas (Andromas, Paris, France) and
(d) the Vitek MS (bioMérieux, Marcy 1’Etoile, France)
(online:, online:). Most of the installed systems in routine diag-
nostics are the MALDI Biotyper and the Vitek MS which are
approved by FDA for microbial identification (Posteraro
et al., 2013). Both systems are different in instrumentation,
identification algorithms, and databases (Carroll and Patel
2015). Data reveals that both systems perform similarly and
the identification rate at the genus level is very high 97-99 %
while varies from 85 to 97 % at the species level (Cherkaoui
et al., 2010, Marko et al., 2012, Alby et al., 2013, Mancini
et al., 2013, Kérpdnoja et al., 2014, Mather et al., 2014).

The MALDI Biotyper employs a similarity pattern measure
(Cassini et al., 2019), with a database of references known as the
Main Spectrum Profile (MSP). When comparing the obtained
and reference spectra, the similarity is expressed as “log (scor-
ing),” where a score of 2.3 indicates a ‘‘high confidence identifi-
cation,” a score between 2.0 and 2.3 indicates a ‘“‘secure genus
identification,” a score between 1.7 and 2 indicates a “low con-
fidence identification,” and a score of 1.7 is considered to indi-
cate “no reliable identification.” A further measure to assess
the identification is the consistency of the top 10 findings. The
following criteria are used in the case of mycobacteria: Confi-
dence levels of 1.6 for low and 1.8 for high-level identification (-
Rodriguez-Sanchez et al., 2016). The VITEK®-MS uses a
machine learning-based algorithm “Advanced Spectra Classi-
fier”. Spectra ranging from 3000 to 17,000 Da are separated into
13,000 fragments and weighted based on their relevance in iden-
tifying a certain bacterial species. Unknown spectra are sub-
jected to the same procedure and are compared sequentially
with the Vitek MS database. The acquired findings are expressed
as percentages: 99.9 %—a perfect match, 60 % to 99.8 %—a
good match, and 60 %—no identification. Matching is deter-
mined in the SARAMIS system based on common strains that
incorporate intraspecific species diversity. Unknown strains
are identified by comparing their spectra to those in the
“SuperSpectra” database, and confidence levels range from high
(>98 %) to medium (85 % to 98 %) to low (75 % to 85 %)
(Leyer et al., 2017). According to the research, both methods
have equal rates of identification (Lévesque et al., 2015, Lee
et al., 2017).

Its precision though is heavily reliant on the database cov-
erage of commercially available MALDI-TOF MS equipment.
Identification of Brucella was not achievable since this genus
was not listed in the databases of the two major MALDI-
TOF MS system manufacturers (Rudrik et al., 2017, Tracz
et al., 2017). Bacteria that are not included in the database,
likewise cannot be identified. As a result, if a species cannot
be recognized using one approach, it must be verified using
another. If the species to be identified is not found in the data-
base, the score value of a similar species is high, and if the spe-
cies is displayed at the species level, the identification is

incorrect. Furthermore, enough biomass is necessary for good
identification outcomes. Although some researchers propose a
detection limit of 6 x 10* CFU/spot a limit of 1 x 10° CFU/
spot is frequently necessary (Hsieh et al., 2008, Kirkpatrick
and Viollier 2012). In the future, these limitations are needed
to be addressed. It can be helpful to build in-house libraries
of various microbial strains by research laboratories and its
integration with standard databases will further improve the
identification of microorganisms. Moreover, sample prepara-
tion procedures can also be modified for better results. More
importantly, the maintenance and calibration of the instru-
ment by skillful personnel are vital.

3.1.3. Sample preparation approaches

The most important component of each “Omics” approach is
the step of sample preparation. The synthesis of ethanol-
formic acid protein extracts, direct transfer, and direct transfer
with formic acid are among the most common sample prepara-
tion techniques used to identify bacteria using MALDI-TOF
MS. The gold standard for creating a reference database is
ethanol-formic acid extraction (Drevinek et al., 2012). The
three procedures were compared in a study for Gram-
positive rod identification, which revealed that the results
obtained from direct formic acid transfer were comparable
with ethanol-formic acid (Schulthess et al., 2014). Therefore,
in the routine clinical analysis, the direct transfer approach is
more successful. There are no appreciable changes in the iden-
tification rates between the direct sample transfer and the
extraction process for numerous environmental bacteria,
including Legionella spp. (Pascale et al., 2020). It gives promis-
ing identification results for rod-shaped Gram-negative bacte-
ria (Tsuchida et al., 2020a). However, anaerobic bacteria,
Gram-positive bacteria, and certain Mycobacteria had worse
results. It has been reported that B. Subtilis was misidentified
as Bacillus mojavensis and vice versa, this misguided identifica-
tion may have resulted from the two bacteria’s highly similar
mass spectra (Huang et al., 2016, Wang et al., 2021). Gram-
positive bacteria with a thick cell wall can be recognized in a
wider variety of methods, albeit not necessarily down to the
species level. With these strains, it is challenging to produce
a homogenous, sufficient number of bacterial cells in a smear
(Veloo et al., 2014). Thus, the extraction techniques are pre-
ferred for MALDI detection of Gram-positive bacteria due
to better protein recovery, especially for spore-forming
bacteria.

3.1.4. Identification based on commercial kits

To further enhance direct microbial identification from posi-
tive BCs using MALDI-TOF MS, several protocols have been
established. These protocols aim to remove blood cells and
host proteins from BCs before MALDI-TOF MS analysis.
Currently, there are various in-house methods as well as some
commercial kits available for BCs sample preparation making
it suitable for MALDI-TOF-MS analysis. The developed in-
house protocols are based on obtaining pure microbial cells
through the use of diverse lysis substances like saponin,
sodium dodecyl sulfate (SDS), and ammonium chloride, or
through stepwise centrifugation to separate blood cells from
bacteria (Maelegheer and Nulens 2017, Kayin et al., 2019,
Tsuchida et al., 2020b, Zengin Canalp and Bayraktar 2021).
Additionally, three kits commercially available are in use right
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now: the rapid BACpro® II (Nittobo Medical Co., Tokyo,
Japan), the Vitek MS blood culture kit (bioMérieux, Marcy-
IEtoile, France), and the Sepsityper® Kit (Bruker Daltonics
GmbH, Bremen, Germany) [(Martiny et al., 2012, Kayin
et al., 2019). However, the Sepsityper®Kit is the most popular
and FDA-approved kit among the three commercially avail-
able kits (Morgenthaler and Kostrzewa 2015). Marina., et al.
studied the application of rapidBACpro® II kit for bacterial
identification from positive blood cultures (BCs) using
MALDI-TOF/MS. A total of 801 microbial isolates were
screened by rapidBACpro® II kit and 80.0 % of isolates were
identified correctly at the species level (92.3 % of the Gram-
negative and 72.4 % of the Gram-positive bacteria (Oviafio
et al., 2021). The developed method was further evaluated
for the identification of gram-negative microbes in positive
BCs with the detection of extended-spectrum p-lactamases
(ESBL) and carbapenemases production using MALDI-TOF/
MS analysis (Roncarati et al., 2021). A comparison of the per-
formances of two commercial kits, named SepsiTyper™ Kit
and the SELTERS (Treibmann., et al. 2015) were also assessed
and proved to be comparable for the identification of BCs
microbes (Di Gaudio et al., 2018).

3.1.5. Identification based on various extraction protocols

Various extraction protocols have been established and
employed for microbial identification from blood cultures.
The direct identification of microbes from BCs was achieved
for the management of pediatric patients through a cost-
effective rapid method using MALDI-TOF/MS (Vitek MS bio-
Meérieux). Each positive BC was centrifuged to remove erythro-
cytes from bacterial cells followed by the addition of triton (10-
X) to the supernatant. From a total of 360 BCE samples, 85 %
were identified at the species level among mono-microbial cul-
tures. The method correctly identified 99 % of gram-negative
isolates at both genus and species levels while for gram-
positive 84 % and 81 %, respectively (Samaranayake et al.,
2020). Similarly, direct microbial identification from BCs was
achieved by adding 30 pL of 5 % saponin and 1 mL distilled
water followed by centrifugation, transfer, and re-
centrifugation of the supernatant. Resulted pellets were consti-
tuted in formic acid and screened by Clin-TOF/MS with
100 % accuracy. The estimated method cost was $0.5 per sample
in just 20 min turnaround time (Huang et al., 2019).

The VACUETTE® Z Serum Sep Clot Activator tube com-
prising a sterile gel was also used to identify microbes from
BCs. After centrifugation, the supernatant was discarded and
pellets were collected from the surface of the inert gel followed
by MALDI-TOF/MS analysis. In comparison with the routine
methods, the developed method accurately identified 90 %
while the SepsiTyper kit identified 99 % of the isolates
(Azrad et al., 2019). Direct identification from positive BCs
was achieved by optimizing the sample processing methodol-
ogy. 3 mL of blood was transferred to a tube containing sep-
arating gel followed by centrifugation. Addition of deionized
water in the supernatant followed by re-centrifugation. The
resulting bacterial cell membrane was subjected to MALDI-
MS analysis. A total of 829 samples were collected from which
7 false-positive samples were excluded. The rate of accuracy of
the optimized method for gram-negative bacteria was 91.5 %,
gram-positive 88.3 %, fungi 84.8 %, and other anaerobic and
rare bacteria 80 and 66.6 %, respectively (Yuan et al., 2020).

In one of the studies, direct identification of 80 % bacteria
in positive BCs was achieved by developing a 10 min extraction
protocol by adding 200 puL of blood in 1 mL solution of Triton
X-100 followed by centrifugation, deposition of target plate,
and MS analysis. In 632 blood culture bottles (BCBs), 80 %
of direct identification of bacteria (96 % of Enterobacteriaceae
spp., 95 % of S. aureus, 92 % of enterococci spp., and 62 % of
streptococci spp.) was achieved with a log (score) threshold > of
1.5 (Simon et al., 2019). A protocol for direct microbial iden-
tification using MALDI-TOF/MS from positive BCs after a
short-term incubation on a solid medium has also been stud-
ied. The protocol was evaluated to directly recognize microbes
from 162 positive BCs at different incubation periods i.e., 3, 5,
and 24 h. The identification of bacteria at the species level was
64.1, 85.0, and 94.1 % at 3, 5, and 24 h, respectively (Curtoni
et al., 2017).

3.1.6. Ildentification based on bacterial cell enrichment

Different methodologies were applied to enrich bacterial cells
before MALDI-MS analysis. A polyallylamine—polystyrene
copolymer was used for the enrichment of bacterial cells from
positive BCs followed by identification with MALDI-TOF/MS
analysis. By using representative species Escherichia (E.) coli
and  Staphylococcus (S.) capitis, it was found that
polyallylamine—polystyrene copolymer can form aggregates
with protocol processing time as shorter as 15 min. The iden-
tification from BCs by analyzing 17 strains of 5 species of
E. coli, Klebsiella (K.) pneumoniae, Enterococcus (E.) faecalis,
Staphylococcus (S.) aureus, and S. capitis was satisfactory
(Ashizawa et al., 2017). The use of fragment crystallizable
mannose-binding lectin-modified Fe;O04 (FcMBL@Fe;0y)
for capturing bacteria from aqueous solution and bovine
blood followed by MALDI-TOF/MS analysis has been
reported. It suggests that the release of bacteria from func-
tional material can increase the accuracy of identification
(Sun et al., 2021). Similarly, an uncommon pathogen, Vibrio
alginolyticus has been identified by using Fc-MBL@Fe304
enrichment with MALDI-TOF MS profiling in liquid-
cultured samples (Ying et al., 2021).

3.1.7. Protein chip techniques

ProteinChip Arrays with surfaces that nourish certain pro-
teins were developed by BioRad. Therefore, MALDI-TOF
MS was renamed to SELDI-TOF-MS by the company. The
ProteinChip method is a de novo method for discovering pro-
teins that do not require an early understanding of specific
proteins. ProteinChip arrays, ProteinChip reader, and spe-
cialized software make up the core components of the tech-
nology mentioned. According to Shah et al., three types of
matrices, hydrophobic (H50), strong anion exchange (SAX/
Q10), or mild cationic (CM10), can give wide proteome cov-
erage in all microorganisms. ProteinChip arrays are created
employing various chemical characteristics of the surface
(Shah et al., 2010). Biological materials, like cell lysates,
extracts, or bodily fluids, are applied to the ProteinChip
Array, allowing proteins to attach to the surface depending
on chromatographic characteristics or specifically tailored
biological affinity. The ProteinChip Reader and SELDI-
TOF MS are used to analyze and identify proteins that
remained on the template surface, unbound molecules have
been flushed away. The resulting MS spectra are analyzed
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employing alternative protein mapping techniques, which
compare the relative expression levels of distinct molecular
weights using statistical and bioinformatics methodologies
(Reddy and Dalmasso 2003).

Rajakarun’s research employing the CM10 ProteinChip
Array achieved a broader spectrum of S. aureus isolates
(Rajakaruna 2010). This was further supported by the research
of Shah et al., who distinguished accurately between S. aureus
strains with varying levels of methicillin resistance using the
SELDI-TOF MS method and CM10 (Shah et al., 2011). A
hydrophobic reversed-phase H50 surface was employed by Sch-
mid et al. to recognize the gonorrhea-causing Neisseria gonor-
rhoeae. SELDI-TOF MS may be able to identify minor
changes in the protein level between strains, as per initial
research on N. gonorrhoeae strains that indicated tiny differ-
ences in mass spectral patterns (Schmid et al., 2005).

Similarly, a microchannel silicon nanowire microfluidic
chip was used to capture bacteria in urine samples followed
by MALDI-TOF/MS screening. Bacteria can be identified by
their method without a culture with a concentration of 10°
CFU mL™" under optimum conditions, they identified with
low as 10> CFU mL~! concentration of bacteria incubated
for 4 h (Li et al., 2021). Direct microbial identification was
achieved by sample harvesting in 1 mL of fastidious anaerobe
broth (FAB) followed by centrifugation and removal of the
supernatant. The pellet was smeared on the target plate fol-
lowed by 1 uL of 70 % formic acid, organic matrix, and
MALDI analysis. An overall sensitivity of 70.4 % was
achieved when comparing MALDI-TOF/MS and routine pro-
cedures (Jaworski et al.,).

3.1.8. Ildentification of UTIs microbes

The high-throughput screening was carried out for uropatho-
gen in innate urine samples using MALDI-TOF/TOF tandem
mass spectrometry. The results obtained from the direct
approach were reliable at the genus level for single microbial
samples and also suitable for clinical settings with single-
organism infectious etiologies (Oros et al., 2020). Direct iden-
tification of carbapenemase-producing Enterobacteriaceae spp.
in urine samples was achieved by MALDI-TOF/MS in 90 min.
The assay reliably identified 91 % of the samples with 100 %
sensitivity (Oviafio et al., 2017). Identification of UTI-causing
microbes by the direct screening of urine specimens was also
reported by using MALDI-TOF/MS. A total of 307 out of
1638 bacterial species were identified and the most dominating
pathogens were E. coli (43.23 %), K. pneumoniae (15.28 %),
and Enterococcus spp. (13.97 %) (Lee et al., 2019). Identifica-
tion of UTI microbes directly in urine samples collected in
2015-2017 was also successfully achieved by using MALDI-
MS (Kitagawa et al., 2018).

Apart from biological sample analysis, a variety of Staphy-
lococcus species including S. aureus the dominant species
(79.1 %) followed by Staphylococcus (S.) warneri (12.5 %)
and Staphylococcus (S.) haemolyticus (8.3 %), respectively,
isolated from mobile phones were identified using MALDI-
TOF/MS (Noumi et al., 2020). Similarly, discrimination of
Clostridium spp. by analyzing 123 strains using MALDI-
TOF/MS with a multivariate statistical analysis method has
been conducted (Schaumann et al., 2018). The discovery of
specific biomarker peaks for discriminating and identification
of Clostridioides (C.) difficile genotype ST37 based on

MALDI-TOF/MS has been described. A set of specific peaks
at m/z 3,242 and 3286 appeared to be specific for C. difficile
genotype ST37 and can be distinguished from non-ST37 geno-
types (L1 et al., 2018).

3.1.9. Artificial intelligence with MALDI

MALDI-TOF MS has changed the face of microbiology by
making it possible to identify species with incredible accuracy
and speed. The use of machine learning has been increasing to
improve species identification and fast antimicrobial resistance
determination. Machine learning techniques have recently
been applied to extract as much useful information as possible
from MALDI-TOF MS (De Bruyne et al., 2011, Fangous
et al., 2014). Machine learning techniques are capable of iden-
tifying statistical relationships in the data while also taking
non-linear interactions and feature interactions into account.
Thus, using machine learning approaches, new or hidden
information that is present in MALDI-TOF mass spectra
can be uncovered. This knowledge has been valuable for iden-
tifying and distinguishing species, especially those that are phy-
logenetically close to one another and sub-lineages of those
species (Florio et al., 2018, Weis et al., 2020).

Recently developed ML models (e.g., SVM, RF, and ANN)
enable fast classification of group B. streptococcus serotypes
(Wang et al., 2019), distinguish between E. coli and Shigella
species (Ling et al., 2019), types of Staphylococcus haemolyti-
cus strains (Chung et al., 2019), and distinguish between
Clostridium (Schaumann et al., 2018), and Klebsiella species
(Rodrigues et al., 2018). Moreover, Desaire and Hua, used a
machine learning method designed for glycomics and glyco-
proteomics data classification to accurately identify between
closely related bacteria using MALDI-TOF MS. The authors
claimed that, on average, the model performed better than pre-
vious standards (Desaire and Hua 2019).

In addition, (Tomachewski et al., 2018), introduced a
protein-based bacterial classifying method. To do this, it uses
a library of more than 28,500 bacterial taxonomic records to
compare m/z data from MALDI-TOF MS analysis to ML
models. The m/z values of 13 r-proteins from 116 bacterial
strains were analyzed, and the results showed an accuracy of
95.7 %. In addition, successful systems utilizing a combination
of MALDI-TOF MS data and ML algorithms have been
reported for the detection of extended-spectrum beta-
lactamase-producing E. coli strains (Sousa et al., 2020), rapid
detection of cfiA metallo-b-lactamase-producing B. fragilis
strains (Ho et al., 2017), and identification of fluconazole resis-
tance in C. albicans strains (Delavy et al., 2020).

3.1.10. Alternate approaches

An alternate procedure for identifying pathogens is to use sig-
nals conserved from certain proteins present in microbial cells.
Due to their abundance, high degree of conservation, and
chromosomal gene encoding, ribosomal proteins are one of
the finest biomarkers (Ziegler et al., 2015). Although extremely
stable, interspecies and inter-strain variances in microbes can
be exploited for typing and subtyping. In MALDI-TOF MS,
reference databases including predicted masses of microbial
ribosomal subunits determined directly from genome
sequences became an alternative to pattern-based identifica-
tion of bacteria. PAPMIDTM (Mabritec AG, Riehen, Switzer-
land) was constructed as a database of probable protein
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weights for identification, which was proved to support refer-
ence databases like SARAMISTM (Mabritec, Riehen, Switzer-
land) (Ziegler et al., 2015). Suarez et al. classified Neisseria
meningitidis strain based on ribosomal signals into six group-
ings related to sequence types (Suarez et al., 2013), S. agalac-
tiae (Rothen et al., 2019), and E. coli (Matsumura et al.,
2014), complexes were effectively separated into subspecies
using this method in the MALDI-TOF MS study. Toh et al.
successfully employed this procedure to distinguish between
Acinetobacter haemolyticus and Acinetobacter genomic spe-
cies, including 13BJ/14 T strains (Toh et al., 2015). Addition-
ally, the MALDI technology also allows microbial
identification based on the profiling of other biological mole-
cules like lipids or nucleic acids. There is now a significant
surge in interest in the use of microbial lipid profiling for tax-
onomic classification (Gidden et al., 2009). It allowed the dis-
crimination of Bacillus and Brevibacillus, with an average
correct identification rate of 62.23 % (AlMasoud et al.,
2016). Similarly, the Bacillus spp., discrimination based on
conventional procedures is very difficult in comparison with
lipid fingerprinting (Shu et al., 2012).

3.1.11. Yeast identification

Over the past decade, substantial technological advancements
have been made in the field of clinical mycology. With
MALDI-TOF MS, identifying yeasts and molds down to the
species level is not only possible but also extremely feasible,
even within species complexes and cryptic organisms. When
these systems are widely used in diagnostic settings, they will
likely improve patient outcomes by allowing for earlier diagno-
sis and treatment. MALDI-TOF MS is ideally suited for low-
resource situations due to its ease of use and cheap consum-
ables (Sow et al., 2015). Pathogenic Candida species can be dif-
ficult to identify based on growth and biochemical reactions
alone, hence MALDI is employed commonly to distinguish
between them (Santos et al., 2011). MALDI-TOF MS can be
used to differentiate between species within the Candida com-
plexes such as the C. parapsilosis complex, the C. glabrata
complex, and the C. haemulonis complex, depending on the
available database. New taxonomy allows us to differentiate
between species within the C. neoformans and C. gattii com-
plexes (Walsh and McCarthy 2019). It is possible to identify
species from a single CFU using MALDI-TOF MS.

3.2. Other mass spectrometry techniques

In the last few years’ progress has been made in testing other
proteome and MS-based techniques such as liquid
chromatography-mass spectrometry (LC-MS), tandem mass
spectrometry (MS/MS), Gas chromatography-mass spectrom-
etry (GC-MS), etc. for the identification of pathogenic
microorganisms.

3.2.1. Identification based on LC-MS analysis

LC-MS with electrospray ionization is one of the important
techniques for the analysis of microbial proteome and metabo-
lome. Direct identification of pathogenic microorganisms based
on multiple discriminatory peptides was performed by develop-
ing an LC-MS/MS-based scheme. The method was found feasi-
ble for the identification of Bacillus ( B.) anthracis, Brucella ( B.)
abortus, Bacillus ( B.) melitensis, Bacillus ( B.) suis, Bacillus ( B.)

pseudomallei, Burkholderia ( B.) mallei, Francisella (F.) tularen-
sis, and Yersinia ('Y.) pestis directly from positive blood culture
flasks (Berendsen et al., 2020). An LC-MS/MS shotgun pro-
teomics method was developed for 33 aerobic cultures, with
100 % microorganisms while in 28 anaerobic cultures 96 % of
microorganisms were accurately identified (Berendsen et al.,
2017). Direct detection of extended-spectrum beta-lactamases
(CTX-M) in positive BCs using a saponin extraction workflow
followed by an LC-MS/MS bottom-up proteomics approach
was also established. It was applied to BBs containing E. coli
and K. pneumoniae. The proteome analysis identified 95 %
ESBLs CTX-M of the isolates directly from BCs (Fleurbaaij
et al., 2017).

The use and discovery of biomarkers are of great importance
in the diagnosis of infectious illnesses and clinical applications.
Therefore, an LC-MS/MS in combination with a machine learn-
ing approach has been applied to 15 UTIs pathogens. Peptide
libraries were obtained from pure bacterial colonies in data-
dependent analysis (DDA) mode followed by verification by
data-independent analysis (DIA) mode in urine samples.
Machine learning classifiers (NaiveBayes, BayesNet, and
Hoeffding tree) were used to express a peptide marker to dis-
criminate from each other in less than 4 h (Roux-Dalvai et al.,
2019). The use of LC-MS/MS-based proteotyping for S. aureus,
Moraxella (M.) catarrhalis, Haemophilus (H.) influenza, and
Streptococcus (S.) pneumoniae which are commonly responsi-
ble for RTIs was also reported. Species-unique peptides were ini-
tially found on pure cultures of reference strains in the discovery
phase, followed by spiking negative samples in the qualification
phase while positive samples were analyzed to find species-
unique peptides in the verification phase. Positive samples were
analyzed by using the targeted-MS method for the selected pep-
tide (Karlsson et al., 2020).

The early identification of VAP-causing bacteria i.e., Acine-
tobacter (A.) baumannii, E. coli, S. aureus, S. pneumoniae,
Pseudomonas (P.) aeruginosa, and H. influenza by targeted
bottom-up proteomics approach was also established. Strain-
specific peptide identification was performed in DDA mode
using LC-ESI-Q-TOF-MS (Bardet et al., 2021). An LC-MS-
based bottom-up approach and in silico peptide mass data
have been used for microbial identification. The MS data were
tested against the in-house build library which was calculated
from the UniProt Knowledgebase, Swiss-Prot, and TrTEMBL
databases. Identification was carried out from the calculation
of spectral distances between instrumental and in silico peptide
mass data (Lasch et al., 2020). The identification of pathogenic
microorganisms from public libraries was achieved by using a
proteomic approach. A total of 42 collected samples were
grown in Luria Broth (LB) medium in the presence of ampi-
cillin or kanamycin followed by trypsin digestion and analysis
by LC-ESI-MS/MS. Identification at the species level can be
done by species-unique peptides with a Python-based script
which allows the detection of such unique peptides (Jung
et al., 2019).

3.2.2. Ildentification based on GC—MS analysis

Microorganisms in a variety of conditions whether it competes
with other microbes or lack sufficient nutrients, produce com-
pounds or metabolites like toxins or antibiotics generally
known as secondary metabolites. However, it also produces
some low molecular weight compounds known as volatile
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organic compounds. Therefore, the detection of these metabo-
lites is important in the identification or characterization of the
microbes.

Drees., et al. reported early and fast pathogen differentia-
tion from BCs using gas chromatography-ion mobility spec-
trometry (GC-IMS) analysis. Samples of E. coli (DSM
25944), S. aureus (DSM 13661), and P. aeruginosa (DSM
1117) cultures were incubated for 8 h and the point of differ-
entiation was determined. The differentiation was based on the
intensities of the detected signals in the investigated species
were found to be possible by performing the principal compo-
nent analysis (PCA) (Drees et al., 2019).

Similarly, S. aureus, E. coli, and Candida (C.) albicans,
responsible for respiratory tract infections (RTIs) were identi-
fied from their VOCs profile by using GC-MS coupled to
solid-phase micro-extraction (SPME) fiber. The utmost com-
mon volatile compound formed by E. coli was indole, S. aureus
produced 2,3-pentandione by, cis-dihydro-a-terpinyl acetate,
1-decyne, 1,3-heptadiene, 2,5-dimethyl pyrazine, ethyl butano-
ate, and cyclohexene,4-ethenyl while, C. albicans major com-
pounds were alcohols (Karami et al., 2017). Similarly, S.
aureus, Vibrio (V.) parahaemolyticus, and Shigella (S.) sonnei
were also identified based on their metabolite profiling by
SPME coupled with GC-MS analysis. A total of 32 VOCs
including 17 for S. aureus, 13 for V. parahaemolyticus, and
14 for S. sonnei were identified (Wang et al., 2018). The studies
suggest that the screening of microbial VOC can be helpful in
the diagnosis and identification of microorganisms by GC-MS
analysis.

3.3. FT-IR spectroscopy

The infra-red (IR) region of the electromagnetic spectrum is
consisting of three regions near-, mid, and far-IR. The mid-
IR region (400-4000 cm-1) is the most frequently utilized
region for the acquisition of bacterial analysis. The principle
of this technique for analyses of different samples is that when
radiations of IR are conceded through a sample (e.g., bacteria
cell) it causes excitation and vibration of different functional
groups thus; characteristic spectral peaks originate on IR spec-
tra. All bacterial species have a complex cell arrangement
specific to a particular strain and present a specific pattern of
fingerprint on the FT-IR spectrum (Davis and Mauer 2010).
Five spectral windows have been reported to correspond to
absorption expressed in wavenumbers, including, the spectral
region of 3000-2800 cm™! is commonly dominated by fatty
acids-related compounds, the spectral region of 1700-
1500 cm~! by carbonyl residual proteins, the carbonyl group
of the peptide at about 1650 and 1500 cm™' for C=0 and
—C—0O— respectively, and polysaccharides and free amino
acids in the region of (1450-1400 cm_1). The window 900—
700 cm ™! is referred to as the fingerprint region and contains
information significant to strain-specific discrimination
(Maity et al., 2013). Today time-domain spectroscopy is used
and radiant power data is recorded as a function of time which
is achieved by Fourier Transform (FT) (Baravkar et al., 2011).

FT-IR spectroscopy has already been successfully applied
for rapid microbial identification. Many studies have reported
its application in combination with artificial intelligence (AI)
systems, such as artificial neural networks (ANN), which is a
powerful tool in microbial diagnostics.

3.3.1. Identification based on various algorithms

Many studies have been conducted for microbial identification
based on various algorithms. In one of the studies, four gram-
negative bacilli, P. aeruginosa, K. pneumoniae, Enterococcus
(E.) cloacae, and A. baumannii, were discriminated by IR-
biotyper within 3hr. The congruence of IR spectral clusters
was compared with two reference methods, multilocus sequence
Typing (MLST) and (Pulsed-field gel electrophoresis) PFGE. It
was found that FT-IR spectroscopy correctly clustered P. aerug-
inosa, K. pneumoniae, and E. cloacae isolates, belonging to the
same Sequence Type (ST) (Martak et al., 2019).

The discriminatory power of FT-IR spectroscopy was eval-
uated as a fast technique for typing K. pneumoniae clinical iso-
lates, and compared to whole-genome-sequencing (WGS). An
average linkage algorithm was used to generate clusters for
FT-IR spectral data showing that the similarity of Klebsiella
strains can be quickly calculated by FT-IR spectroscopy with
high resolution that displays high congruence with WGS typ-
ing (Dinkelacker et al., 2018). Automated analysis of microbial
FT-IR spectra which identify the spectral components that
were determined by the strain genotype and not by culture
conditions has been reported. The algorithm has also been
tried out on the clinical isolates of S. aureus against several
bacterial isolates causing infection, including, E. faecalis, Ente-
rococcus (E.) faecium, K. pneumoniae, E. coli, Serratia (S.)
marcescens, E. cloacae, A. baumannii, P. aeruginosa, Staphylo-
coccus (S.) epidermidis, and C. albicans cultured in different
media for diverse times, and found reliably discriminated from
rest of the bacterial isolates (Suntsova et al., 2018). FT-IR
spectroscopy with multivariate analysis was used for the dis-
crimination of clinically relevant serogroups, sub-serogroups,
and serotypes of non-typhoid Salmonella. The serogroups
determination is based on the polysaccharide’s composition
of O-antigen. Sharp differences were reported in the polysac-
charide region in the spectra which were used in subsequent
salmonella typing. Salmonella enterica isolates belonging to
Sero-groups (B, C, D, and E) were discriminated against with
high accuracy (Campos et al., 2018).

3.3.2. Identification based on artificial neural Network (ANN)

FT-IR hyperspectral imaging combined with ANN-based
image segmentation was used for the identification of Gram-
positive and Gram-negative bacteria through FT-IR micro
spectroscopic imaging. Spectral data were resolved with the help
of supervised modular ANN classifiers for hyperspectral image
segmentation. The resultant segmentation maps suggest a taxo-
nomic determination below the species level (Lasch et al., 2018).

Cordovana., et al. reported the identification of biochemi-
cally verified Salmonella isolates associated with typhoid and
paratyphoid fever based on FT-IR Biotyper. Isolates of Sal-
monella (S.) Typhi, Salmonella (S.) paratyphi A, Salmonella
(S.) paratyphi B, Salmonella (S.) paratyphi C, and other phy-
logenetically closely related Salmonella serovars from ser-
ogroup O:2, O:4, O:7, and O:9 was analyzed based on each
O-serogroups. ANN was used to build the classifiers to differ-
entiate between typhoidal and non-typhoidal serovars within
each of the four serogroups. The correctness of the classifiers
was 99.9 %, 87.0 %, 99.5 %, and 99.0 % for S. Typhi, S.
Paratyphi A, B, and C, respectively (Cordovana et al., 2021),
ANN-assisted FT-IR spectroscopy-based rapid identification
of the Bacillus (B.) cereus group by performing multivariate
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data analysis using the deep learning toolbox of MATLAB to
construct an ANN allowing the differentiation of B. cereus
group members. The model resultedin being 100 % correct
for the identification of the training set and 95.5 % for overall
identification (Bagcioglu et al., 2019). FT-IR in combination
with ANN was performed on clinical isolates of the E. cloacae
complex. This study reports the development of ANN that was
trained to recognize if the two isolates belong to the same ser-
otype (ST) assuming the differences between two IR spectra
(Vogt et al., 2019).

3.4. Raman spectroscopy

Raman spectroscopy (RS) is a non-invasive optical technique
that was first discovered in 1928. It works on the principle of
the excitation of electron clouds for scattering using a non-
ionizing laser. When the vibrational state of the molecule
changes, energy transfers either from the molecule to the pho-
ton or from the photon to the molecule, and is called Raman
scattering. (Tu and Chang 2012, Bumbrah and Sharma 2016).

Studies revealed that Surface Enhanced Raman spec-
troscopy (SERS) emerged as a potentially powerful technique
for pathogenic bacterial detection (Hong et al., 2018,
Kirchhoff et al., 2018, Novelli-Rousseau et al., 2018). It is also
advantageous because it consents to the identification of
pathogens as well as AST in a similar assay in just less than
3 h. SERS identification of specific biomarkers helps to deter-
mine MICs and AST of bacterial species (Athamneh et al.,
2014, Liu et al., 2017, Puttaswamy et al., 2018).

3.4.1. Identification based on algorithms

Identification of microorganisms has been achieved using var-
ious Raman spectroscopy-based approaches including some
deep learning procedures and mathematical algorithms.

A Raman dataset for common pharmaceutical microorgan-
isms was used as a deep learning strategy known as convolu-
tion neural network (CNN) to classify Dbacterial
contaminations. The successful classification of different sam-
ples containing individual bacteria and bacteria mixed with
Chinese Hamster Ovary (CHO) cells with 95 %—-100 % accu-
racy (Maruthamuthu et al., 2020), a database of Raman bacte-
rial spectra applying deep learning analysis for the
identification of commonly occurring pathogenic bacteria.
The proposed method is culture-free, and label-free, based
on single-cell analysis for the phenotypic identification of bac-
terial strains (Ho et al., 2019). A study included 115 different
bacterial strains and the obtained spectra were evaluated by
one-way analysis of variance and differentiated peaks repre-
senting the different biochemical compositions. Spectral differ-
ences were identified with 89.5 % accuracy by studying Raman
spectra of nine bacterial strains of P. aeruginosa, Enterococcus
spp., S. aureus, E. cloacae, Morganella ( M.) morganii, K. pneu-
moniae, E. coli, Listeria (L.) monocytogenes, Proteus (P.) mir-
abilis species (Oliveira et al..).

3.4.2. Identification based on Surface-Enhanced Raman
spectroscopy (SERS)

SERS with some modifications in nano-composites along with
mathematical algorithms has been used for the identification of
various microbial strains.

A SERS method was reported for the identification and dis-
crimination of bacterial strains using SERS substrate of
uncoated spherical gold nanoparticles (AuNPs) with PCA
and partial least square analysis (PSA) (Akanny et al., 2020).
The screening of Salmonella (S.) typhimurium based on a
novel three-dimensional DNA walker method on gold-
surfaced magnetic nanoparticles has also been reported
(Yanget al., 2021). A spectroscopic database based on spectral
signatures by typing several Mycobacterium species, E. coli,
Bacillis (S.) subtilis, K. pneumoniae, and many other bacterial
species was developed. The spectral signatures of live and dead
bacteria were differentiated from spectra of treated and
untreated mycobacteria (Kumar et al., 2020).

3.4.3. Identification based on isotope labeling

Few tag-free and isotope labeling methods along with algo-
rithms have also been reported for the identification of
microorganisms using Raman spectroscopy.

The identification of pathogenic E. coli in less than 1 h by
using gold-enabled substrate in SERS scattering to evaluate
the spectra of quinolone-resistant E. coli isolated strains by
processing spectral data with the help of PCA along with the
selected multi-support vector machine (SVM) algorithm
(Kim et al., 2019). The quantitative differentiation of bacteria
labeled with varying concentrations of '*C/'*C-glucose and
"N/"*N-ammonium chloride has been achieved using SERS
involving in situ synthesis of silver nanoparticles, along with
multivariate chemometrics of the resultant SERS spectra
(Chisanga et al., 2017). A drop-coating deposition surface-
enhanced Raman scattering (DCD-SERS) procedure coupled
with a multivariate statistical method for the identification of
quinolone-resistant K. pneumoniae has also been reported
(Cheong et al., 2017). A SERS approach for the label-free
detection of pathogenic bacteria based on specific DNA apta-
mer binding with customized silver nanoparticles has also been
reported (Chen et al., 2017, Gao et al., 2017).

3.5. Nuclear magnetic resonance (NMR) spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy is a domi-
nant technique widely used for the structural elucidation of
unknown molecules or compounds that are isotopically
enriched.

The current status of NMR for studying pathogenic
microorganisms is not so impressive. However, it has been
used in the last decades for the identification of microbes
and AST. Therefore, some examples from the past are given
below to make a clear idea about the potential of NMR for
microbial identification.

The first use of '"H NMR for microbial identification was
reported in 1995. The identification of S. aureus, Staphylococ-
cus (S.) epidermidis, E. faecalis, Streptococcus (S.) pneumo-
niae, Streptococcus (S.) pyogenes, Streptococcus (S.)
agalactiae, and the Streptococcus (S.) milleri was achieved
by Bourne et al., 2001, (Bourne et al., 2001) by combining pro-
ton magnetic resonance spectroscopy ('"H MRS) with multi-
variate statistical analysis. Isolates were identified based on
consistent high-probability classification of spectra from dupli-
cate cultures with 92 % of agreement with conventional iden-
tification methods.
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In the same year, Ohara. et al. evaluated 50 strains of
methicillin-resistant S. aureus from 42 patients using 'H
NMR, and DNA fingerprints were acquired by pulsed-field
gel electrophoresis (PFGE). Each strain was found to have 8
to 9 specific resonance features in the spectral region of 0.5—
4.5 ppm but with different intensities among the strains
(Ohara et al., 2001).

The applications of '"H NMR in the diagnosis of UTIs have
been reported by Gupta et al. In the first study, the potential of
"H NMR for the detection of P. aeruginosa in UTIs. The diag-
nosis of P. aeruginosa was achieved from its particular prop-
erty of metabolizing nicotinic acid to 6-hydroxynicotinic acid
(6-OHNA). The produced quantity of 6-OHNA is associated
with the viable bacterial count while other UTIs-causing bac-
teria do not possess this property (Gupta et al., 2005). Simi-
larly, "H NMR was utilized for diagnosing K. pneumoniae in
UTIs from its specific property to metabolize glycerol to 1,3-
propanediol (1,3-PD), acetate, ethanol, and succinate. The
amount of 1,3-PD correlates with K. pneumoniae counts while
the rest of the UTI cause bacteria to lack this property (Gupta
et al., 2006). Furthermore, '"H NMR was utilized for the qual-
itative and quantitative diagnosis of E. coli, P. aeruginosa, K.
pneumoniae, and Proteus (P.) mirabilis in urine samples sus-
pected of UTIs. For the quantification of P. aeruginosa, NA
was added to the suspension while glycerol, lactose, and
methionine were added to K. prneumoniae, E. coli, and P. mir-
abilis suspensions, respectively. From 'H NMR spectra, it was
found that P. aeruginosa only metabolizes NA while the rest of
the others do not metabolize. Similarly, K. pneumoniae partic-
ularly metabolize glycerol into 1,3-propanediol. E. coli pro-
duce lactate through lactose metabolism while P. mirabilis
metabolizes methionine to 4—methylthio—2—oxobutyric acid
(MOBA) while the rest of the other UTIs bacteria do not
metabolize (Gupta et al., 2009).

Moreover, 'H NMR was utilized to quantify acetate, lac-
tate, ethanol, succinate, citrate, creatinine, glycine, trimethy-
lamine, trimethylamin-N-oxide, urea, and hippurate as the
metabolic products for the identification of E. coli, P. aerugi-
nosa, K. pneumoniae, Enterobacter ssp., Acinetobacter spp.,
P. mirabilis, Citrobacter (S.) frundii and gram-positive E. fae-
calis, Bacillus spp., and Staphylococcus (S.) saprophyticus in
urine samples infected with UTI. Univariate and Multivariate
discriminant function analysis (DFA) was also performed to
describe the key biomarkers that separate the infected group
from the control group. DFA revealed that acetate, lactate,
succinate, and formate were able to discriminate healthy con-
trols from UTI patients with 99.5 % accuracy (Gupta et al.,
2012b).

For the last few years, there is a brake to the application of
NMR in microbiology from the research community related to
microbial identification. It might be due to the high per-sample
cost of the technique or some other limitations of it. Anyhow,
NMR is a powerful technique having the capabilities for broad
applications in microbiological fields, novel, and advanced
studies might be expected in near future.

4. General perspectives

The review has been conducted to explore the applications of
advanced spectroscopic techniques i.e., MS, FT-IR, RS, and
NMR in the field of clinical microbiology. All these techniques

(excluding NMR because of no recent studies in the last
5 years) have been extensively used for the development of
new methodologies related to bacterial identification. Fig. 2
shows the number of publications in the last five years i.e.,
2017-2021. The figure clearly shows that MS tools and RS
are widely used for microbial identification followed by FT-
IR and NMR spectroscopy. Similarly, Fig. 3 represents the
number of studies conducted in the last five years against bac-
terial identification through advanced spectroscopy tech-
niques. It reveals that about 21 % of studies have been
conducted only for E. coli, 14 % for S. aureus, 11 % for K.
pneumoniae, and 37 % for other microorganisms. The con-
ducted data provides insight into the scope and importance
of advanced spectroscopic techniques for microbial identifica-
tion for better health and research outcomes.

It is well understood that MALDI-TOF/MS has a lot of
contributions in the field but, it has also some limitations in
comparison to its counterparts. Sometimes issues occur due
to the use of a laser and a chemical matrix (organic acid) asso-
ciated with it. In comparison, ESI-MS is a technique that ion-
izes samples at high atmospheric pressure and analyzes it in a
liquid state irrespective of the laser as same as in MALDI-
TOF/MS. Due to this feature of ESI-MS, it has a broad range
of applications concerning microbial identification (Smith
et al., 1995, Vaidyanathan and Goodacre 2006, Sampath
et al., 2007). LC-MS usually has lower temperatures required
regardless of the sample volatility as in the case of GC-MS.
It is used for microbial identification in clinical diagnosis due
to its simple sample preparations, and lower cost, and has also
been applied for the determination of whole metabolome cov-
erage of Saccharomyces (S.) cerevisiae, and the detection of
commercially available metabolites of the in silico metabolome
of Bacillus (B.) subtilis, and E. coli (Bakhtiar et al., 2002).
GC-MS offers better separation, sensitivity, robustness, simple
handling with lower cost, and numerous linearity range with
access to commercial and, public libraries and generally has
been used for the analysis of non-polar compounds. (Christie
1998, Dettmer et al., 2007, Garcia et al., 2008, Franco-
Duarte et al., 2019). GC-MS demands sample volatility as
most of the compounds are not volatiles and thus need com-
plex and time-consuming derivatization steps.

FT-IR allows a cost-effective depiction of the complex bio-
logical system that comprises undefiled cells, tissues, and even
whole-model organisms (Ami et al., 2012). The basic applica-
tions of the FT-IR are associated with the possibility to screen
many samples at the same time, do not require cell lysis, being
environment-friendly, and executing high-throughput screen-
ing and monitoring real-time processes (Kosa et al., 2017).
RS is differentiable from other techniques due to its low cost,
fast screening, and extensive report about the chemical compo-
sition, structures, and interactions of metabolites in microbes
(Walsh et al., 2011, Stockel et al., 2016). Vibrational spec-
troscopy differentiates microbes based on their biochemical
composition; it is very advantageous for discriminating
between slight differences among the same species. Both IR
and Raman techniques are forms of vibrational spectroscopy
and can offer “whole organism fingerprinting (Lu et al.,
2011). In comparison to other methods, NMR can be used
in a congenital mode. It has low sensitivity and a lower limit
of detection (if the concentration is lower than 10> CFU/mL)
some metabolites could not be detected and thus can give
false-negative results (Gupta et al., 2012a). However, these lim-
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itations are adjusted by their quantitative nature (Pan and
Raftery 2007). The application of NMR is its non-
destructive nature which means that the same sample can be
used several times if needed. Furthermore, the NMR tube
can be used as an incubator for the development of AST and
the monitoring of living system processes (Garcia-Alvarez
et al., 2015).

5. Future challenges and perspective

In the future, there will be not only a need for rapid diagnoses
and standardization of testing but also for the detection of new

pathogens and the development of diagnostic tests for new dis-
eases that have a high social impact, as was the case with the
outbreak of severe acute respiratory syndrome (SARS) and
more recently COVID-19. Scientific responses to new emerging
threats are more rapid than administrative responses, and
there are often prolonged delays in the approval of new diag-
nostic tests for use outside research laboratories.

For rapid microbial identification, culture time is a rate-
limiting step, reducing this time for microbial identification
will be a major challenge in the future. Other challenges for
the future are the desire to have even more rapid analysis by
removing the need to enrich and isolate the bacteria before
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analysis. Advances in instrumentation and methods will sup-
port the finding of accurate means of microbial identification.

Mass spectrometry technology has improved to a point
where it can make improvements in bacterial identification.
In the future, the identification of microbial agents for the
diagnosis of the disease can be achieved by searching the
recorded MS data for the particular peptide that is a marker
of a specific disease strain from the positive culture, as an alter-
native to today’s laboratory diagnostic tests. Fully automated
sample preparation and dedicated software for microbial data
analysis have to be developed before spectroscopy-based diag-
nostics can be applied as routine analysis in clinical microbiol-
ogy. IR spectroscopy and Raman spectroscopy in parallel with
multivariate chemometrics may play a crucial role in rapid and
sensitive screening. NMR might also play a vital role if sensi-
tivity issues are resolved without exceeding the overall instru-
mental costs.

The global exchange of laboratory data should be pro-
moted which could significantly assist infection control, guide
therapy, characterize resistance epidemiology, identify errors
in laboratory testing, and promote collaboration in surveil-
lance activities through the data exchange.

6. Conclusion

Advanced spectroscopic techniques have emerged as rapid tools for
microbial identification in the last decades. Despite the limitations of
some techniques, great attention has been made to exploring the appli-
cation of advanced spectroscopy techniques in microbiological fields.
MS techniques particularly, MALDI-TOF/MS and LC-MS have
shown to be convenient, rapid, and simple techniques for microbial
identification. However, it is used for pure samples, since the complex
samples may promote background interference. Vibrational spec-
troscopy techniques i.e., FT-IR and RS with fast analysis, and simple
sample preparation procedures are used. Although, NMR with a lower
limit of detection has been used for bacterial identification and the low
sensitivity issues might be resolved in the future. In today’s growing
world of microbial infections and resistance to antibiotics, high-
throughput advanced spectroscopy tools will be the right options for
developing new methodologies for accurate and rapid microbial
identification.
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