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Abstract

Background: Diabetic retinopathy (DR) is the major complication of diabetes, which causes

acquired vision loss in the working-age group population.

Objective: Here, we planned to address the therapeutic roles of geraniin against the streptozo-

tocin (STZ)-challenged DR in rats

Methodology: The DR was induced in the animals by 60 mg/kg of STZ, and then treated with

25 mg/kg of geraniin for 60 days. Later, bodyweight, food consumption, and blood glucose levels

were investigated. The levels of antioxidants, MMP-9, MCP-1, and VEGF, and inflammatory cyto-

kine status were measured using marker-specific kits. The morphometric study was conducted to

assess the retinal thickness. The pancreatic tissues were analyzed microscopically.

Results: Geraniin reduced the blood glucose (270.36 ± 81 mg/dL), hemoglobin, and enhanced

bodyweight (261.93 ± 72 g)in the DR rats. The antioxidant levels in the STZ-challenged DR rats

were substantially improved by geraniin. Geraniin also decreased inflammatory cytokines, MCP-I,
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MMP-9, and VEGF levels and enhanced the retinal thickness. A histological study demonstrated

that geraniin reduced the pancreatic islet cell damage in STZ-induced DR rats.

Conclusion: Our outcomes witnessed that geraniin reduced retinal inflammation and oxidative

stress in the STZ-induced DR rats.

� 2022 Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Diabetic retinopathy (DR) is a common problem among diabetic

patients and a major cause of acquired vision loss in the working-

age population (Yamagishi and Matsui, 2011). The occurrence of

DR among diabetic patients was estimated at 35 %, and almost

10 % of patients among them had the risk of vision loss (Sayres

et al., 2019; Hu et al., 2012). DR results in the detachment and edema

of the retina, which further directs to vision loss. Diabetic patients are

more likely to suffer from chronic vascular damage caused by high

blood sugar levels, and they are at a higher risk of developing diabetes

(Barot et al., 2013). The exact etiology of DR is not yet known, but the

causes may comprise hyperglycemia, inflammation, oxidative stress,

and depletion of antioxidants that could initiate the DR progression

(Abougalambou and Abougalambou, 2015; Zheng et al., 2018). The

uncontrolled hyperglycemia due to diabetes leads to oxidative stress

via facilitating increased glucose oxidation, protein kinase-C and

polyol fluctuations, and elevated end products of glycation (Rains

and Jain, 2011; Singh et al., 2011). The eye cells are more vulnerable

to oxidative stress than other body tissues because of the high levels

of membrane-bound polyunsaturated fatty acids and higher glucose

oxidation and oxygen utilization. The depletion of antioxidant defen-

sive mechanisms and improved oxidative stress are the crucial contrib-

utors to hyperglycemia-mediated injury (Cao et al., 2014). The

increased energy needs during diabetes and retinal exposure to light

could elevate the DR risks. Hence, adjusting the oxidative and antiox-

idant proportions could be a hopeful approach to prevent DR-

provoked injuries (Vakifahmetoglu-Norberg et al., 2017).

Chronic inflammation at the retinal blood vessels is caused by arte-

riosclerotic plate depositions caused by high blood glucose levels, mak-

ing them vulnerable to microrupture, which results in fluid leakage into

the retina. If this condition is left undiagnosed, there could be new ves-

sel growth that alters the retinal microvasculature and this conse-

quently triggers the detachment of retina (Aylward, 2005; Kern,

2007). NF-B activates many genes involved in disease progression dur-

ing DR progression, enhancing inflammatory regulators such as

cytokines and intercellular adhesion molecules-1 (ICAM-1) (Leal

et al., 2010). These regulators simultaneously control the BRB perme-

ability combined with leukostasis (Zhong and Kowluru, 2011). Angio-

genesis is one of the imperative pathological features of DR

progression. The elevated expression of angiogenic proteins like VEGF

is tightly connected with diabetes-provoked neurodegeneration and

oxidative stress. Calcium dobesilate is a well-known angioprotective

and vasoactive drug, which is extensively employed to treat DR at

the local ocular and systematic level with hopeful outcomes (Cai

et al., 2017). For many years, laser photocoagulation has been consid-

ered as the gold standard therapeutic option to treat the DR. However,

much recent evidence has shown that the intravitreal administration of

anti-VEGF agents has the potential to alleviate the DR and is hence

currently being explored broadly (Wells et al., 2016). Nonetheless,

not all the DR patients responded well to the anti-VEGF drugs and

also experienced several adverse effects. Hence, the discovery of novel

therapeutic agents with minimal adverse effects from natural sources

to treat the DR were highly demanded.

Geraniin is a crystalline tannin found in several medicinal plant

species from the Sapindaceae, Geranium, and Euphobiaceae families,

e.g., Nephelium lappaceum. Geraniin is reported to exhibit numerous

biological actions like antioxidants (Lin et al., 2008), antihypertensive
and antihyperglycaemic properties (Palanisamy et al., 2011). It was

also highlighted that the geraniin revealed potent hepatoprotective

(Aayadi et al., 2017), anti-inflammatory (Wang et al., 2016; Okabe

et al., 2001), anticancer (Wang et al., 2017), antitumor (Guo et al.,

2018), insulin sensitizing (Perera et al., 2020), and anti -

atherosclerosis (Lin et al., 2022 Jul). In contrast, the therapeutic role

of geraniin in the DR has yet to be investigated. As a result, we con-

ducted this study to address the therapeutic role of geraniin against

the streptozotocin (STZ)-triggered DR in rats via ameliorating oxida-

tive stress and inflammation.

2. Materials and methods

2.1. Chemicals

Geraniin, STZ, citrate buffer (CB), and other chemicals were

purchased from Sigma Aldrich, USA. The marker-specific
assay kits were procured from Thermofisher and R&D Sys-
tems, USA.

3. Experimental animals

The 6–8 week old Wistar rats (male breed) weighing approxi-

mately 230 ± 30 g were chosen for this study and purchased
from the institutional animal house. The experimental proto-
col has been approved by the institutional ethics committee

at Shandong First Medical University, Shandong, China. Rats
were caged with the utmost care in organized laboratory con-
ditions, which were conserved with a 22–26 �C temperature,
40–70 % air moisture, and a 12-h dark-light sequence. All rats

were administered pure water and standard rat chow during
the study period. Before the experiments started, all of the rats
were in the lab for a week to get used to it.

3.1. Experimental design

The rats were distributed into four groups (n = 6). Group I

was control rats received only 0.1 M of CB instead of STZ.
Group II rats were administered with 60 mg/kg of STZ (dis-
solved in 0.1 M of CB) to provoke the DR and were considered
as a DR control. After 48 h of STZ administration, the blood

glucose of rats was examined, and the animals with 200 mg/dl
or above were deliberated as diabetic. Group III were diabetic
rats provided orally with 25 mg/kg of geraniin for 60 days.

Group IV were diabetic rats provided with 350 mg/kg of met-
formin for 60 days (standard drug). Finally, the blood was
gathered and utilized for the biochemical assessments.

3.2. Measurement of changes in the blood glucose, glycosylated

hemoglobin (HbA1c), food intake, and bodyweight

The average food intake levels of all the experimental animals
were measured and tabulated carefully. The body weight of
animals was detected using a sensitive weighing balance and

http://creativecommons.org/licenses/by-nc-nd/4.0/
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values were tabulated. The blood glucose in the treated ani-
mals was examined with the help of a glucometer. The HbA1c
levels in the blood samples of rats were examined using an

assay kit according to the protocols described by the manufac-
turer (Thermofisher, USA).

3.3. Measurement of enzymatic and non-enzymatic antioxidant
levels

The activities of superoxide dismutase (SOD) and SOD/cata-

lase (CAT) in the retina of experimental animals were investi-
gated using marker-specific kits using manufacturer’s
guidelines (Thermofisher, USA). The levels of glutathione

(GSH) and GSH/oxidized glutathione (GSSG) in the retina
were investigated using assay kits by the manufacturer’s guide-
lines (Thermofisher, USA).

3.4. Determination of VEGF, MCP-1, and MMP-9 levels

The angiogenic protein MCP-1, VEGF and MMP-9 status in
the experimental rats were investigated using assay kits as

per the described protocols by the manufacturer (R&D Sys-
tems, USA). Each assay was done in triplicate and the out-
comes were depicted as ng/l.

3.5. Assay of pro-inflammatory cytokine levels

The inflammatory cytokines, i.e., TNF-a, IL-6, IL-1b, IFN-c,
IL-8, IL-12, IL-2, IL-3, and IL-10 contents in the serum of
Fig. 1 Effect of geraniin on the bodyweight, blood glucose, hemog

Control; Group II: STZ-induced DR rats; Group III: STZ-induced D

DR + 350 mg/kg of metformin treated rats. Values are represented

ANOVA and Tukey’s multiple comparison assay. ‘#’ reveals significanc

from STZ group.
experimental animals were assayed using marker specific kits
in accordance with the recommended protocols of the manu-
facturer (Thermofisher and MyBioSource, USA, respectively).

Each assay was done in triplicate and the outcomes were
depicted as ng/l.

3.6. Morphometric analysis

The morphometric assessment was conducted on the retinal
tissues of experimental rats with the aid of a computer-

assisted image analysis technique. The thickness of the retina
and the cells in the ganglion cell layer (GCL) was detected
using a morphometric study using the Image J software.

3.7. Histopathological study

The pancreatic tissues were removed from the experimental
animals and processed with 10 % formalin for 24 h and then

dehydrated by the addition of isopropyl alcohol/xylene for
12 h. Afterward, pancreatic tissues were paraffin fixed and
cut into 5 mm size. The sections were then stained with

H&E and the changes in pancreatic islet cells were assayed
using an optical microscope at 40 � magnification.

3.8. Statistical analysis

The outcomes were interpreted statistically using GraphPad
Prism software (ver.7.0). Outcomes were illustrated as
lobin, and food intake in the STZ-challenged DR rats. Group I:

R + 25 mg/kg of geraniin treated rats; Group IV: STZ-induced

as the mean ± SD of triplicates assessed statistically by one-way

e at p < 0.05 from control and ‘*’ reveals significance at p < 0.01
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mean ± SD of triplicates, which were investigated using one-
way ANOVA and Tukey’s post hoc assay. Significance was
fixed at ‘p’ <0.05.

4. Results

4.1. Geraniin treatment modulates the changes in the STZ-

provoked DR rats

Fig. 1 demonstrates the impacts of geraniin on bodyweight,
food consumption, HbA1c, and blood glucose in the STZ-
provoked DR rats. The improved bodyweight, HbA1c, and

blood glucose were evidenced in the STZ-triggered DR rats,
which is in contrast to the control. STZ-induced rats also
had a lower bodyweight than control. Conversely, the

25 mg/kg of geraniin treatment appreciably suppressed the
food consumption, HbA1c, and blood glucose in the STZ-
challenged DR rats. The bodyweight of the STZ-challenged
rats was also improved by the geraniin treatment. These results

were found to be consistent with the results of standard drug
metformin treatment.

4.2. Geraniin treatment improved the antioxidant levels in the
retinal tissues of STZ-challenged DR rats

Fig. 2 shows the effects of geraniin on the antioxidants in the

retina of STZ-challenged DR animals. When compared to con-
trol, STZ-administered DR rats had lower SOD and SOD/
CAT activity as well as lower GSH and GSH/GSSG contents.
Fig. 2 Effect of geraniin on the antioxidant levels in the retinal tissu

induced DR rats; Group III: STZ-induced DR + 25 mg/kg of gera

metformin treated rats. Values are represented as the mean ± SD of

multiple comparison assay. ‘#’ reveals significance at p < 0.05 from c
The 25 mg/kg of geraniin administration remarkably enhanced
the SOD and SOD/CAT activities and GSH and GSH/GSSG
contents in the STZ-provoked DR rats, which proves the

antioxidant action of geraniin. The outcomes of geraniin treat-
ment were slightly similar to those of metformin treatment.

4.3. Geraniin treatment decreased the angiogenic and
inflammatory markers in the serum of STZ-challenged DR rats

Fig. 3 exhibits the levels of the angiogenic protein VEGF and

the inflammatory proteins MMP-9 and MCP-1 in the experi-
mental rats. The STZ-provoked rats displayed improved levels
of VEGF, MCP-I, and MMP-9 in the serum. Nonetheless,

these elevations were remarkably decreased by the geraniin
treatment. The 25 mg/kg of geraniin appreciably reduced the
levels of VEGF, MCP-I, and MMP-9. Metformin also
decreased the amount of VEGF, MCP-I, and MMP-9 in the

serum of DR rats that had been given STZ.

4.4. Geraniin treatment reduced the inflammatory cytokines level
in the serum of STZ-challenged DR rats

Fig. 4 displays the inhibitory actions of geraniin on the inflam-
matory cytokine content in the serum of STZ-challenged DR

animals. The levels of inflammatory cytokines, i.e., TNF-a,
IL-6, IL-1b, IFN-c, IL-8, IL-12, IL-2, IL-3, and IL-10 were
found elevated in the serum of DR rats, which is in contrast
to the control. Interestingly, the drastic reductions in the con-

tents of TNF-a, IL-6, IL-1b, IFN-c, IL-8, IL-12, IL-2, IL-3,
es of STZ-provoked DR rats. Group I: Control; Group II: STZ-

niin treated rats; Group IV: STZ-induced DR + 350 mg/kg of

triplicates assessed statistically by one-way ANOVA and Tukey’s

ontrol and ‘*’ reveals significance at p < 0.01 from STZ group.



Fig. 3 Effect of geraniin on the angiogenic marker levels in the serum of STZ-challenged DR rats. Group I: Control; Group II: STZ-

induced DR rats; Group III: STZ-induced DR + 25 mg/kg of geraniin treated rats; Group IV: STZ-induced DR + 350 mg/kg of

metformin treated rats. Values are represented as the mean ± SD of triplicates assessed statistically by one-way ANOVA and Tukey’s

multiple comparison assay. ‘#’ reveals significance at p < 0.05 from control and ‘*’ reveals significance at p < 0.01 from STZ group.

Fig. 4 Effect of geraniin on the inflammatory cytokines level in the serum of STZ-challenged DR rats. Group I: Control; Group II: STZ-

induced DR rats; Group III: STZ-induced DR + 25 mg/kg of geraniin treated rats; Group IV: STZ-induced DR + 350 mg/kg of

metformin treated rats. Values are represented as the mean ± SD of triplicates assessed statistically by one-way ANOVA and Tukey’s

multiple comparison assay. ‘#’ reveals significance at p < 0.05 from control and ‘*’ reveals significance at p < 0.01 from STZ group.
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and IL-10 were witnessed in the 25 mg/kg of geraniin admin-
istered to DR animals. Hence, it was clear that the geraniin

could decrease the inflammatory cytokine level, which is found
to be similar to the outcomes of metformin.

4.5. Geraniin enhanced the retinal thickness and cell number in
CGL of STZ-challenged DR rats

Fig. 5 demonstrates the findings of morphometric analysis of

the retinas of experimental rats. The findings demonstrated
that retinal thickness and the number of cells in the CGL of
the retina were diminished in the DR rats. Fascinatingly, ger-
aniin effectively modulated these changes in the STZ-
challenged animals. The increased retinal thickness and cell

numbers in the CGL were witnessed in the retinal tissues of
25 mg/kg of geraniin administered DR rats. The metformin
also moderated these alterations in the STZ-challenged DR

rats.

4.6. Geraniin treatment improved the pancreas histology of the
STZ-challenged DR rats

Fig. 6 displays the histological changes of pancreas tissues
from control and treated rats. The control rats demonstrated



Fig. 5 Effect of geraniin on the retinal thickness and cell numbers in CGL of STZ-challenged DR rats. Group I: Control; Group II:

STZ-induced DR rats; Group III: STZ-induced DR + 25 mg/kg of geraniin treated rats; Group IV: STZ-induced DR + 350 mg/kg of

metformin treated rats. Values are represented as the mean ± SD of triplicates assessed statistically by one-way ANOVA and Tukey’s

multiple comparison assay. ‘#’ reveals significance at p < 0.05 from control and ‘*’ reveals significance at p < 0.01 from STZ group.

Fig. 6 Effect of geraniin on the pancreas histology of the STZ-provoked DR rats. Group I: control animals demonstrated the normal

histological appearance. Group II: STZ-challenged DR animals demonstrated the inflammatory signs and pancreatic islets contractions in

the pancreas. Group III & IV: The reduced pancreatic lesions and improved islets appearances were noted in the geraniin and metformin

treated animals, respectively.
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the normal histological appearance without inflammatory
signs. Conversely, the inflammatory symptoms and inflamma-
tory cell infiltrations, as well as pancreatic islet contractions

were observed in the pancreas of STZ-provoked DR rats.
However, these histological alterations were remarkably ame-
liorated by the geraniin treatment. The 25 mg/kg of geraniin

demonstrated reduced pancreatic lesions and improved islet
appearances in the STZ-challenged DR rats, which is consis-
tent with the results of metformin treatment.

5. Discussion

DR is a major difficulty faced by diabetic patients, which is
responsible for their blindness. DR has a complex pathogene-
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sis, but it is widely thought that chronic hyperglycemia could
be the initiator of DR (Rui et al., 2017). The changes in the
retinal microvascular system are the distinctive feature of

DR. The diabetic neurodegeneration of the retina comprises
retinal cell apoptosis that further leads to the retinal layer thin-
ning and loss of neuronal activity (Sohn et al., 2016). The

pathological features of DR are elevated vascular permeabil-
ity, neovascularization, and edema. In particular, the main
pathological feature is the elevated vascular permeability. This

occurrence is intimately related to the expression of inflamma-
tory mediators (Funatsu et al., 2009). The retinal neurovascu-
lar system was primarily affected during DR that further
provoked inflammation, plasma leakage, neurodegeneration,

and BRB integrity loss. DR also develops retinal edema, neo-
vascularization, vision loss, and ultimately blindness
(Abcouwer, 2013).

There is strong evidence that oxidative stress and local
inflammation are actively involved in the progression of DR
and play a critical role in the disorder’s development. In vascu-

lar inflammation, the participation of several pro-
inflammatory factors like TNF-a and IL-1b were identified
(Williams et al., 2013). It has already been reported that

inflammation is a crucial regulator of DR progression, and
DR is primarily recognized as the inflammatory ailment
(Semeraro et al., 2015). Increased production of proinflamma-
tory cytokines is a major cause of DR development, and

inflammation actively contributes to DR development. Several
retinal pathological and biochemical complications are con-
nected with diabetes, which is consistent with inflammation

(Joussen et al., 2004). A number of studies have demonstrated
that the elevated leukocyte adhesion to the retinal vessels in
experimental diabetic models and the status of several proin-

flammatory regulators were elevated in the retina to activate
the proinflammatory response. Such elevated leukostasis and
inflammatory mediators may play a role in BRB breakdown,

which is an early event in the development of DR (Joussen
et al., 2001).

In inflammatory conditions, several regulators like
chemokines and cytokines are actively involved. Inflammation

is fundamentally involved in the progression of DR. General
proinflammatory mediators like TNF-a, IL-6, and IL-1b were
primarily augmented in the retinal tissues and serum of dia-

betic patients as well as animal models. In diabetic animal
models of DR, inflammatory cytokines such as IL-2, IL-3,
IL-8, and IFN-c were found to be elevated (Liu et al., 2012;

Li et al., 2012). It has already been stated that IL-1 increases
retinal capillary cell apoptosis by activating the NF-B cascade.
Additionally, IL-1b also linked with angiogenesis and
improved vascular permeability, and promotes retinal cell

apoptosis, and the mechanism is aggravated in hyperglycemic
situations (Santiago et al., 2020). During DR development, IL-
1b is activated and further improves the vascular permeability

due to leukocyte adhesion and retinal capillary cell apoptosis.
TNF-a is an important inflammatory regulator that causes cell
differentiation, apoptosis, and inflammation (Wu et al., 2017).

TNF-a is required for the breakdown of BRB in DR, and it
may improve BRB breakdown and leukostasis (Huang et al.,
2011). TNF-a inhibition has been shown in preliminary studies

to suppress inflammatory responses. Similarly, the level of IL-
1b was also augmented during DR (Mukhopadhyay et al.,
2006). Here, our findings showed that geraniin remarkably
suppressed the inflammatory cytokines in the serum of DR
rats.

Oxidative stress due to the disproportion of free radical

development and antioxidant mechanisms is tightly connected
with the damage of several biological macromolecules like pro-
teins, carbohydrates, nucleic acids, and lipids and participates in

the stimulation of numerous ailments like diabetes, eye diseases,
neurodegenerative ailments, glaucoma, and DR (Sies et al.,
2017; Masuda et al., 2017). Our outcomes confirmed that the

geraniin remarkably enhanced the antioxidants in the DR rats.
Uncontrolled oxidative stress enhances the VEGF expres-

sion that eventually translocate to the nucleus to enhance the
proinflammatory mediators’ expression like ICAM-1 and

MCP-1(Behl and Kotwani, 2015). During diabetic conditions,
ICAM-1 improves the leukocyte chemoattraction in the vascu-
lar membranes of the retina. TNF-a regulates ICAM-1 expres-

sion and improves leukostasis and BRB injury in DR (Zhang
et al., 2011). ICAM-1 is a vital player that mediates the leuko-
cytes’ adhesion to the endothelial cells, and augmented ICAM-

1 was mentioned to be connected with DR initiation and devel-
opment. The well-known pro-inflammatory mediators IL-1b
and TNF-a have been linked to the development of DR

(Ugurlu et al., 2013; Capitao and Soares, 2016). The adhesion
of leukocytes is the major cause of retinal endothelial cell dam-
age and apoptosis. It directs to capillary occlusion, local ische-
mia, and vessel non-perfusion. Consequently, it elevates the

VEGF and ICAM-1 and aggravates vascular leakage, finally
resulting in the DR. ICAM-1 actively participates in the migra-
tion of inflammatory cells and controls the expression of inflam-

matory mediators. Hence, the alteration in the ICAM-1 level is
closely connected with inflammation (Miyamoto et al., 1999).

VEGF is one of the crucial proteins that improves angio-

genesis. It has already been discovered that an increased level
of VEGF in the retina is closely linked to the development of
DR (Rezzola et al., 2019). In recent decades, several clinical

reports have identified that the expressions of inflammatory
factors are found augmented in the retina of DR rats. Overex-
pression of inflammatory markers such as VEGF, TNF-a and
IL-1b may disrupt BRB homeostasis and lead to hypoxia and

ischemia (Wang et al., 2018). It was identified that the vitreous
VEGF expressions were augmented in the DR patients (Abu
El-Asrar et al., 2012). Our results have demonstrated that

the geraniin treatment efficiently decreased the VEGF, MCP-
1, and MMP-2 status in the serum of STZ-challenged DR rats.

6. Conclusion

Our results showed that geraniin inhibited retinal inflammation and

oxidative stress in the STZ-triggered DR rats. The findings also proved

that geraniin could alleviate the retinal inflammation, lower retinal

MCP-1, ICAM-1, and VEGF levels, and ameliorate retinal oxidative

stress, in that way, lessening the DR development. As a result, geraniin

could be considered as a therapeutic agent to treat DR patients, fol-

lowed by additional research in the future to elucidate the systematic

role of geraniin.
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