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A B S T R A C T   

Mangifera rufocostata, a member of the Mangifera genus, is a source of secondary metabolites and has been used 
traditionally as antidiabetic agent. Therefore, this study aims to determine the total flavonoid contens (TFC), 
total phenolic contents (TPC), antioxidant, α-glucosidase inhibitory, and cytotoxic activities of M. rufocostata 
stem bark extract. Antioxidant activity were evaluated by 2-2″-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid 
(ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and ferric reducing-antioxidant power (FRAP) tests. α-glucosi-
dase inhibitory to prediction antidiabetic activity, and cytotoxic activity were studied against HT-29, HeLa, and 
MCF-7 cancer cell lines. The results showed that the methanol extract have the highest TFC, TPC, antioxidant, 
and α-glucosidase inhibitory activity. Furthermore, the methanol extract has strong cytotoxicity againts HT-29 
cancer cells. Based on LC-MS/MS, the methanol extract contain several major compounds such as mangiferin, 
quinic acid, gallic acid, and 3-methoxy-4-hydroxy-phenyl glycol.   

1. Introduction 

The Mangifera genus consist of 69 species spread across Sumatra, 
Borneo, and the Malay Peninsula (Kostermans & Bomphard, 1993). 
They are rich in various secondary metabolites and display various 
bioactivities. About 23 species are found in Kalimantan (Uji, 2004), with 
some being active as antioxidants, antidiabetics, and anticancer. 

One species that is active as an antidiabetic is M. indica as indicated 
by the leaf (Gazwi & Mahmoud, 2019; Mohammed & Rizvi, 2016; Ngo 
et al., 2019), fruit peel (Chowdhury et al., 2017), and stem bark extract 
(Bhowmik et al., 2009), which demonstrated significant hypoglycemic 
activity in diabetic-induced mice (Ojewole, 2005). Methanol extract of 
fruit peel with concentrations of 200 and 400 mg/kg can reduce plasma 
glucose by 13.95 to 26.18 % after 90–150 min, compared to standard 
glibenclamide (14.90––20.67 %) (Chowdhury et al., 2017). The leaves 
extract of M. indica is active as antioxidant with IC50 values of 3.18 to 

13.37 μg/mL (Fitria et al., 2016; Itoh et al., 2020; Mohan et al., 2013; 
Park et al., 2015; Prommajak et al., 2014), while the peel has an anti-
oxidant capacity of 23 ± 2.85 to 53.9 ± 4.2 (mM Trolox/100 g DW) 
(Marcillo-Parra et al., 2021), and 2986 ± 380 μmol QE/100 g FW 
(Abbasi et al., 2017). M. indica fruit extract can inhibit free radicals up to 
45 % (Septembre-Malaterre et al., 2016), while the bark is active as an 
antioxidant with an IC50 12 μg/mL (Itoh et al., 2020). The kernel, peel, 
pulp, and seeds of the fruits are cytotoxic by inhibiting the growth of 
breast cancer cells MCF-7 and MDAMB-231 (Abdullah et al., 2014, 2015; 
Arbizu-Berrocal et al., 2019; Banerjee et al., 2015; Wilkinson et al., 
2011), prostate LNCaP (S. Prasad et al., 2007), leukemia HL-60 (Percival 
et al., 2006), HepG2 (Abbasi et al., 2017), cervix HeLa (Timsina & 
Nadumane, 2015), lung A-549, leukemia Molt-4, and colon SW480 
(Noratto et al., 2010) with IC50 15 to 30 µg/mL. M. indica pulp at a dose 
of 0.3 % can inhibit the growth of colon cancer in mice by up to 60 % (p 
= 0.05), after 10 weeks of treatment (Corrales-Bernal et al., 2014). The 
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bark also showed toxic effects on pancreatic carcinogen PANC-1 
(Nguyen, Do, et al., 2016), ovarian cell line SKOV-3, as well as breast 
MCF-7, and MDAMB-231 (Ediriweera et al., 2016). In contrast, M. indica 
leaf was less active in inhibiting gastric carcinoma Kato-III, Hepato-
blastoma HepG2, ductal carcinoma BT474, colon adenocarcinoma SW 
620, and bronchogenic carcinoma Chago K1 (Ganogpichayagrai et al., 
2017). Other mangifera species also has been proven to be active as 
antioxidants, including M. casturi (Lestari et al., 2021; Pardede & 
Koketsu, 2017), and M. longipes (Guha et al., 2021). α-Glucosidase 
inhibitory from M. foetida, and M. mekongensis, with IC50 13.49 mg/mL 
and 1.71 µg/mL, respectively (Nguyen et al., 2021; Nguyen, Le, et al., 
2016; Yusro et al., 2016). 

The mangifera species usually contain similar compounds, such as 
mangiferin, gallic acid, and quercetin. Mangiferin is an active compound 
that functions as an anticancer agent (Núñez Selles et al., 2016). It 
actively inhibited the growth of breast cell cancer MCF-7 and MDAMB- 
231(Fernández-Ponce et al., 2017), lung cancer in white mice in vivo 
(Rajendran et al., 2014; Singh et al., 2018), leukemia carcinogenic cells 
(Zhang et al., 2014), and neuroblastoma IMR-32 (Das et al., 2011). The 
compound has been shown to strongly inhibits the activity of α-amylase 
and α-glucosidase (Kulkarni & Rathod, 2018; Sekar et al., 2019). 
α-Glucosidase is an enzyme that catalyzes the cleavage of poly-
saccharides into glucose. Therefore, its inhibitors have been used to treat 
type 2 DM (diabetes mellitus). 

M. rufocostata is a Mangifera species found in Kalimantan and is also 
known as Asem Tanduy in South Kalimantan (Kostermans & Bomphard, 
1993). Traditionally, the community use the boiled water of the bark as 
a medicine for diabetes and mild stroke. Although M. rufocostata shows 
potential benefits in traditional medicine, research on the biological 
activity of M. rufocostata stem bark is limited to antioxidant activity. The 
ethanol extract of M. rufocostata stem bark was reported to be active as 
an antioxidant with an IC50 of 8.254 ppm (Sutomo et al., 2023), with a 
total phenolic content (TPC) of 471.3126 mg GAE/g, and total flavonoid 
content (TFC) of 872.075 mg QE/g (Susiani et al., 2023). Phytochemical 
screening studies show that the extract contains tannins, phenols, fla-
vonoids and saponins (Sutomo et al., 2023). Therefore, this study aims 
to evaluate TFC, TPC, the activity of antioxidants ((2-2″-azino-bis(3- 
ethylbenzothiazoline-6-sulfonic acid (ABTS), 1.1-diphenyl-2-picrylhy-
drazyl (DPPH), and ferric reducing-antioxidant power (FRAP)), 
α-glucosidase inhibitory, and cytotoxic activity against cancer cells HT- 
29, HeLa, MCF-7 of M. rufocostata stem bark extract comprehensively. 
LC-MS/MS was also used to identify the compounds present in the active 
extract. 

2. Material and methods 

2.1. Plant material 

The stem bark of M. rufocostata was obtained in September 2021 at 
Barabai, Hulu Sungai Tengah, South Kalimantan. The samples were 
identified by Dr. Gunawan, M.Si the Plant botanist of the Faculty of 
Mathematics and Science, Lambung Mangkurat University, Banjarbaru, 
Indonesia. 

2.2. Extraction 

M. rufocostata bark is dried at 40 ◦C, then ground into powder with a 
size of 60–80 mesh. The dry powder 25.0 g each was extracted with 300 
mL n-hexane, dichloromethane (CH2Cl2), ethyl acetate (EtOAc), and 
methanol (MeOH) (Merck) for 24 h at room temperature. Each extract 
was concentrated using a rotary evaporator to produce dry extracts. 

2.3. Total flavonoid contents (TFC) 

The TFC value of M. rufocostata stem bark extract was measured 
using the method of Idris et al. (2022). Extracts including n-hexane, 

CH2Cl2, EtOAc, and MeOH with a certain concentration were taken up to 
1 mL and mixed with 1 mL of AlCl3 solution (2 %) in methanol (Merck), 
then the mixture was incubated for 1 h. The absorbance of the mixture 
was measured using a UV–vis spectrophotometer (415 nm). The stan-
dard curve of quercetin (Sigma-Aldrich) ranged from a concentration of 
0–60 mg/L and the TFC value is equivalent to quercetin (mg QE)/g dry 
extract. 

2.4. Total phenolic content (TPC) 

The total phenolic content of M. rufocostata stem bark extract was 
measured using the Follin-Ciocalteu method (Idris et al., 2022). Each 
extract including n-hexane, CH2Cl2, EtOAc, and MeOH with a certain 
concentration was taken up to 0.5 mL each, then added with sodium 
carbonate solution (7.5 %; 2.0 mL), and 2.5 mL of Follin–Ciocalteu so-
lution (10 %) (Sigma-Aldrich). After the mixture was incubated (1 h), it 
was measured using a UV–vis spectrophotometer (765 nm) to determine 
the absorbance. The standard curve of gallic acid (Sigma-Aldrich) has a 
0–130 mg/L concentration. The calculated TPC value was equivalent to 
gallic acid (mg GAE)/g dry extract. 

2.5. ABTS radical scavenging assay 

Free radical scavenging activity of M. rufocostata stem extract was 
performed using the ABTS method, as reported by Idris et al. (2022) with 
slight modifications. About 5 mL of 7 mM ABTS (Sigma-Aldrich) was 
mixed with 8.8 mL of 1.40 mM potassium persulfate (Merck) and stored 
in a dark place at room temperature for 12 to 16 h. The mixture was 
diluted with ethanol (Merck) to obtain an absorbance of 0.700 ± 0.015 
at a wavelength of 734 nm and was referred to as the ABTS working 
solution. Furthermore, 3 mL of ABTS working solution and 30 µL of the 
extract with various concentrations were vortexed for 10 s and incu-
bated at 30 ◦C for 4 min. The absorbance of each solution was measured 
with a UV–vis spectrophotometer at a wavelength of 734 nm. Gallic acid 
(Sigma-Aldrich) was used as a positive control. 

2.6. DPPH radical scavenging assay 

The antioxidant activity of M. rufocostata stem bark extract was 
analyzed using the modified DPPH method (Kuntorini et al., 2022). The 
n-hexane, CH2Cl2, EtOAc, and MeOH extracts were diluted to a certain 
concentration in methanol. Afterward, 2 mL of DPPH (0.15 mM) (Sigma- 
Aldrich) was mixed with 2 mL of sample, then the mixture was incu-
bated for 30 min in the dark at room temperature. The absorbance of the 
mixture was measured using a UV/Vis spectrophotometer (517 nm). The 
antioxidant activity was measured in moles of Trolox equivalent (Sigma- 
Aldrich)/g dry extract (μg TE/g). Gallic acid (Sigma-Aldrich) was used 
as a positive control. 

2.7. Ferric-reducing antioxidant power (FRAP) assay 

The antioxidant activity of M. rufocostata stem bark was also 
measured using the FRAP method modified by Kuntorini et al. (2022). 
The TPTZ in HCl (2.5 mL; 10 mM) (Sigma Aldrich), 25 mL of acetate 
buffer (300 mM) with a pH of 3.6, and 2.5 mL of FeCl3⋅6H2O (20 mM) 
solution (Merck) is referred to as FRAP solution. Extracts including n- 
hexane, CH2Cl2, EtOAc, and MeOH with a certain concentration of 1 mL 
were reacted with the FRAP solution of 3 mL. The mixture was incubated 
for 15 min at room temperature in a dark place and the absorbance of 
the mixture was measured using a UV/Vis spectrophotometer at a 
wavelength of 597 nm. FeSO4⋅7H2O (Merck) and Trolox (Sigma-Aldrich) 
were used as standard curves, while the antioxidant capacity was 
expressed as the mole equivalent of Trolox (TE)/g dry extract (μg TE/g). 
Gallic acid (Sigma-Aldrich) was used as a positive control. 
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2.8. a-glucosidase inhibitory activity 

Stem bark of M. rufocostata was carried out using in vitro based assay 
againts the inhibition of α-glucosidase enzymes (rat intestinal acetone 
powder, Sigma) (Fatmawati et al., 2011; Idris et al., 2022). About 10 µL 
of M. rufocostata stem bark extract (10 mg/mL in DMSO) was reacted 
with phosphate buffer (50 µL; 0.1 M) at pH 6.9 and maltose substrate 
(20 µL; 10 mM) in 0.1 M phosphate buffer (Merck). Then 80 µL of 
glucose kit (Human) and α-glukosidase enzyme solution (20 µL) were 
added. Then the mixture was incubated (37 ◦C; 10 min) and the 
absorbance was measured using a microplate reader at 520 nm (Spec-
trostar nano, BMG Labtech). 

2.9. Cytotoxic activity 

The in vitro cytotoxicity assay was carried using MTT assay againts 
HT29 (human colon cancer from ATCC, HTB-38), HeLa (human cervical 
adenocarcinoma from ATCC, CCL-2), and MCF-7 (human breast 
adenocarcinoma from ATCC, HTB-22) cells (Ali et al., 2021). HT29 was 
grown in McCoy’s 5A Medium (Gibco), while HeLa and MCF-7 were 
grown in DMEM (Gibco). They were supplemented with 10 % fetal 
bovine serum (FBS, Gibco), sodium pyruvate 1 % (Gibco), and peni-
cillin/streptomycin 1 % (Gibco). They were preserved in complete me-
dium containing 10 % (v/v) PBS in 96 well plate cultures at a density of 
185,000 cells per mL of medium, then incubated for 24 h at 37 ◦C (5 % 
CO2). Furthermore, the MeOH extract with a concentration of 7.8 to 
1000 µg mL− 1 was added to the media and incubated for 48 h. At 42 h, 3- 
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, 
Sigma-Aldrich) solution (20 µL, 5 mg mL− 1) was added to each well and 
incubation continued for six hours at 37 ◦C. The absorbance of the 
mixture was measured at 570 nm using an ELISA reader (Zenix). The 
negative control was in the form of media, while cisplatin (Sigma- 
Aldrich) was used as the positive control. Cell morphology was observed 
using an inverted microscope. 

2.10. LC-MS/MS analysis 

About 10 mg/mL of the MeOH extract was dissolved in methanol and 
filtered through a 0.2 μm PTFE membrane, then measured with UHPLC 
Vanquish Tandem Q Exactive Plus Orbitrap HRMS ThermoScientific at 
column temperature of 30 ◦C; flow rate 0.2 mL/min, mobile phase H2O 
+ 0.1 % formic acid (A) and acetonitrile + 0.1 % formic acid (B), and 
elution gradient, 0–1 min (5 % B), 1–25 min (5–95 % B), 25–28 min (95 
% B), and 28–30 min (5 % B). The mass spectrometry conditions elec-
trospray ionization (ESI) source, scanning range of 100–1500 m/z with 
the ChemSpider and Mzcloud database (Resida et al., 2021). 

2.11. Statistical analysis 

The data obtained were summarized using the standard deviation 
formula including antioxidant activity, TFC and TPC values, α-glucosi-
dase inhibitory which were calculated with the linear regression equa-
tion. Meanwhile, cytotoxic activity against several cancer cells was 
calculated using Probit analysis with p < 0.05. Differences in the anti-
oxidant, TPC, TFC, and α-glucosidase inhibitory of each extract were 
analyzed by Student’s t-test with p < 0.01. The relationship between 
antioxidant, TPC, TFC, and, α-glucosidase inhibitory was analyzed using 
the Pearson Correlation test with p < 0.01. 

3. Results and discussion 

3.1. Extraction yield 

The solvents chosen for extraction of M. rufocostata stem bark were n- 
hexane, dichloromethane, ethyl acetate and methanol. The solvents 
were chosen based on differences in polarity, because the polarity of the 

solvent greatly influences the yield of the extract. The order of polarity 
of the solvent used is n-hexane < CH2Cl2 < EtOAc < MeOH. The 
extraction results of the four solvents are presented in Table 1. It can be 
seen that the greatest extract yield was obtained from extraction with 
methanol in the order MeOH > EtOAc > CH2Cl2 > n-hexane. This is 
caused by the polar protic nature and dielectric constant of methanol 
which is greater than other solvents. This shows that the secondary 
metabolite compounds in the stem bark of M.rufocostata are dominated 
by polar compounds. This trend is in line with the results of extraction of 
N. leucophylla plants (Sharma & Cannoo, 2017). 

However, the opposite results were found in the extraction results of 
the D. pentandra (L.) plant, where the extract from the non-polar solvent 
(n-hexane) was greater than the polar solvent (ethanol) (Kristiningrum 
et al., 2018). Therefore, the choice of solvent for extraction depends on 
the type and polarity of the secondary metabolite compounds of a plant 
material (El Mannoubi, 2023). 

3.2. Total flavonoids and phenolics contents 

The total flavonoids and phenolic content of M. rufocostata stem bark 
extract is shown in Table 2. 

The TFC value of the M. rufocostata extract is equivalent to that of 
quercetin, hence, it was determined by the linear standard curve of 
quercetin. The results of the TFC showed significant differences among 
all extracts, except between n-hexane and CH2Cl2 extracts (t-Test; p <
0.01). Moreover, the MeOH extract showed the highest flavonoid con-
tent compared to other extract, in the order MeOH > EtOAc > CH2Cl2 >

n-hexane. These results indicate that M. rufocostata flavonoids accu-
mulated more in polar extracts and less in the semipolar and non-polar. 
This trend is in line with several other research results, including on the 
flavonoid content in plants Gracilaria changii (Chan et al., 2015) and 
N. leucophylla (Sharma & Cannoo, 2016). The results of research by 
Susiani et al. (2023) regarding the TFC test on M. rufocostata stem bark 
using EtOH solvent produced TFC levels of 872.075 mg QE/g. The re-
sults of this study were greater when compared with the MeOH extract 
in this study. This condition is possible if the flavonoid compounds in the 
bark of M. rufocostata are more easily extracted into EtOH. However, the 
flavonoid content in the stem bark of M. rufocostata MeOH extract in this 
study was greater when compared to other mangifera species (M. foetida 
and M. kemanga) even though EtOH solvent was used. The TFC values of 
M. foetida and M. kemanga EtOH extracts were 94.34 ± 0.24 and 87.46 
± 0.35 mg QE/g dry extract, respectively (Fitmawati et al., 2020). 

The TPC was determined from a linear gallic acid standard curve and 
the results of each extract showed a significant difference (t-test; p <
0.01). TPC value trends are in line with TFC. The trend in TPC values is 

Table 1 
Extraction yield of M. rufocostata stem bark.  

Extract Yield 

weight (g) w/w (%) 

n-Hexane  0.50  2.00 
CH2Cl2  0.75  3.00 
EtOAc  1.50  6.00 
MeOH  2.47  9.88  

Table 2 
TFC and TPC value of M. rufocostata stem barka.  

Extract TFC (mg QE g− 1 dry extract) TPC (mg GAE g− 1 dry extract) 

n-Hexane 1.74 ± 0.05b 19.29 ± 0.08d 

CH2Cl2 1.93 ± 0.03c 22.72 ± 0.26d 

EtOAc 9.18 ± 0.07b,c 27.05 ± 0.14d 

MeOH 195.44 ± 0.71b,c 446.07 ± 3.01d  

a Data represent mean ± SD (triplicate experiments), b,c,d p < 0.01 vs each 
extract. 
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in line with TFC, where the phenolic compounds also accumulates more 
in MeOH as a polar solvent, and becomes smaller with decreasing po-
larity (MeOH > EtOAc > CH2Cl2 > n-hexane). This result is also in line 
with the results of TPC analysis on plants G. changii (Chan et al., 2015) 
and N. leucophylla (Sharma & Cannoo, 2016). The phenolic content in 
the MeOH extract of M. rufocostata stem bark in this study was also lower 
when compared to the EtOH extract (471.3126 mg GAE/g) reported by 
Susiani et al. (2023). This result is in line with the TPC value of the EtOH 
extract of M. caesia fruit which is greater than the MeOH extract (Yunus 
et al., 2021). The TPC value of the MeOH extract of M. rufocostata stem 
bark in this study was also greater than the EtOH extract of stem bark 
M. caesia (48.54 ± 1.75 mg GAE/crude extract) (Yunus et al., 2021), 
M. foetida (100.65 ± 1.94 mg GAE/g) and M. kemanga (90.65 ± 0.59 mg 
GAE/g) (Fitmawati et al., 2020). 

3.3. Antioxidant activity 

The antioxidant activity of the extract was analyzed by ABTS, DPPH, 
and FRAP methods. The test results are shown in Table 3. 

As shown in Table 3, the test results between extracts indicated 
significant differences in antioxidant activity (t-test; p < 0.01). 

The ABTS method is used to evaluate the antioxidant activity 
through free radical scavenging with a proton donor (Aguirre-Becerra 
et al., 2020; Chohra et al., 2020). The test results showed that the MeOH 
extract have the highest antioxidant activity, with IC50 value of 30.84 ±
0.05 µg mL− 1. This value indicates that the antioxidant activity of the 
MeOH extract is very strong, although it is still weaker compared to the 
positive control of gallic acid. Gallic acid is a polyphenolic compound 
that is very active as an antioxidant which can act as a neuroprotective 
agent in oxidative stress, neurodegeneration and neurotoxicity (Daglia 
et al., 2014). Antioxidant activity decreased in descending order MeOH 
> EtOAc > CH2Cl2 > n-hexane. 

The DPPH method was used to test the antioxidant activity using free 
radicals derived from DPPH compounds. The radical derived electrons 
or hydroxyl radicals from the extract’s antioxidant compounds and 
became stable diamagnetic compounds. The presence of antioxidant 
activity was indicated by the change in color of the solution, from purple 
to yellow. Based on the results, the MeOH extract had the greatest 
antioxidant activity as shown in Table 3. The antioxidant capacity of 
MeOH extract is almost 63 times the antioxidant capacity of EtOAc, 
although it is smaller compared to the antioxidant capacity of gallic acid 
(1.5 x). 

The FRAP method was used to evaluate the antioxidant activity 
based on the capacity of the sample to participate in a redox reaction 
with the FRAP reagent. The MeOH extract also showed the highest ac-
tivity as shown in Table 3. In contrast, the smallest antioxidant activity 
was obtained in the other extract (EtOAc > CH2Cl2 > n-hexane), 
although it was smaller than the antioxidant capacity of gallic acid (1.2 
x). 

The results of antioxidant tests using three different methods (ABTS, 
DPPH, FRAP) in this study showed the same trend. These results are in 
line with the results of the antioxidant test of the Garciinia forbesi King 
plant (Wairata et al., 2022). MeOH extract has the highest inhibitory 
activity against free radicals, because MeOH extract contains the most 

flavonoid and phenolic compounds compared to other extracts, as evi-
denced by the high TFC and TPC (Table 2). 

3.4. α-glucosidase inhibitory 

The results of the α-glucosidase inhibitory activity assay of stem bark 
M. rufocostata extract are shown in Table 4. 

Table 4 shows the α-glucosidase inhibitory activity screening results 
of n-hexane, CH2Cl2, EtOAc, MeOH extracts, and acarbose as positive 
controls. The MeOH extract showed the highest activity with inhibition 
of 99.07 ± 0.50 % in concentration 10 mg mL− 1 but not significantly 
different compared to acarbose as a positive control (t-test, p < 0.01). 
The EtOAc, CH2Cl2 and n-hexane extracts showed less inhibitory activity 
compared to acarbose in the same concentration but have a significant 
difference (t-test; p < 0.01). Several concentrations series of MeOH 
extract in the α-glucosidase enzyme inhibition produced an IC50 value of 
49.57 ± 15.56 µg mL− 1, although the value is weaker compared to 
acarbose with IC50 = 10.42 ± 2.39 µg mL− 1. The results of α-Glucosidase 
inhibition from M. rufocostata stem bark extract are smaller when 
compared to other mangifera species, such as M. mekongensis and 
M. foetida. The n-hexane extract of M. mekongensis stem bark was able to 
inhibit the α-glucosidase enzyme with an IC50 of 1.71 µg/mL, while the 
MeOH extract of M. foetida had an IC50 of 13.49 mg/mL. Several com-
pounds that were isolated from M. reba, and M. gedebe were also active in 
inhibiting α-glucosidase with IC50 28.5 to 162.8 mM, and 45.3 to 142.6 
µM, respectively (Duong et al., 2017; Nguyen et al., 2021; Nguyen, Le, 
et al., 2016; Yusro et al., 2016). This shows that plants from the genus 
Mangifera have great potential as sources of phytopharmaceuticals. 

This study is the first to report on the inhibitory activity of 
α-glucosidase in vitro by the stem bark extract of M. rufocostata. The 
results provide support for further investigations on the utilization of 
M. rufocostata stem bark extract as an antidiabetic therapy, through in 
vivo study and isolation of active compounds. Based on the screening 
results, MeOH extract showed the most potential with the highest in-
hibition. One therapy for treating type 2 DM is through the inhibitory 
activity of the α-glucosidase enzyme. The enzymes located on the border 
of the small intestine function to break down complex carbohydrates 
into glucose. When the α-glucosidase enzyme is inhibited, then the 
metabolism of complex carbohydrates will be delayed, thereby reducing 
glucose levels in the blood. 

Table 3 
The antioxidant activity of M. rufocostata stem bark a.  

Extracts ABTS DPPH FRAP 

IC50 (µg mL− 1) Antioxidant Capacity (µg TE/g dry extract) Antioxidant Capacity (µg TE/g dry extract) 

n-Hexane 10,780 ± 255.85b 2,789.17 ± 57.50c 7,356.95 ± 34.55d 

CH2Cl2 2,035.00 ± 25.47b 3,317.73 ± 99.59c 7,680.18 ± 22.62d 

EtOAc 1,137.44 ± 4.07b 6,407.78 ± 152.13c 19,805.85 ± 56.93d 

MeOH 30.84 ± 0.05b 377,961.70 ± 18,426.9c 173,031.40 ± 345.55d 

Gallic Acid 2.02 ± 0.01b 560,925.10 ± 6,003.2c 203,998.10 ± 513.32d  

a Data represent mean ± SD (triplicate experiments), b,c,d p < 0.01 vs each extract. 

Table 4 
The α-glucosidase inhibitory activity of M. rufocostata stem barka.  

Extracts α-glukosidase 

% inhibition ± SD (10 mg mL− 1) IC50 (µg/mL) 

n-Hexane 16.64 ± 3.09b,c nt 
CH2Cl2 40.28 ± 6.04b,c nt 
EtOAc 67.24 ± 6.45b,c nt 
MeOH 99.07 ± 0.50b 49.57 ± 15.56 
Acarbose 99.47 ± 0.19c 10.42 ± 2.39  

a Data represent mean ± SD (triplicate experiments), b,c p < 0.01 vs each 
extract and positive control, nt; not tested. 
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3.5. Cytotoxic activity 

Cytotoxic activity of M. rufocostata stem bark was evaluated using 
the cell viability of the MTT method against three cancer cells, namely 
HT-29 (colon), HeLa (cervix), and MCF-7 (breast). The reason for 
selecting these three cancer cells in this research is based on literature 
studies which state that extracts from the other plants from genus 

mangifera, consist of M. indica and M. Pajang are toxic to colon, breast 
and cervical cancer cells line (Ahmad et al., 2015; Navarro et al., 2019). 
The MeOH extract of stem bark M. rufocostata was evaluated for its 
toxicity effect on these three cells and the test results are shown in 
Table 5. 

Table 5 shows that the MeOH extract has less citotoxic against HeLa 
cancer cells with an IC50 value of 801.93 ± 0.02 µg/mL, less potential 
when compared to cisplatin as a positive control. This result is also less 
potent when compared with the cytotoxicity of MeOH extract of 
M. pajang stem bark against HeLa cells (>30 μg/mL) (Ahmad et al., 
2015). However, it was more potent against HT-29 with an IC50 value of 
0.25 ± 2.74 µg/mL. It was also more active than cisplatin as a positive 
control. This result is also more toxic when compared with the toxicity of 
MeOH extract of M.pajang stem bark against HT-29 (>30 μg/mL). These 
results are also very potential when compared with Cetuximab, the drug 
for colorectal cancer accepted by the FDA (Wu et al., 2022). Cetuximab 

Table 5 
The in-vitro anticancer activity of M. rufocostata stem barka.  

Extract IC50 (µg/mL) 

HT-29 HeLa MCF-7 

MeOH 0.25 ± 2,74 801.93 ± 0.02 3,579.33 ± 0.05 
Cisplatin 3.00 ± 0.04 50.00 ± 0.03 100.00 ± 0.08  

a Data represent by Probit analysis (p < 0.05). 

Fig. 1. LC-MS/MS Chromatogram of methanol extract stem bark M. rufocostata in a negative ion mode.  

Table 6 
List of compounds detected from methanol extract of M. rufocostata stem bark observed by LC-MS/MS negative ions.  

No TR (min) Molecular formula Major ion [M− H]- (m/z) Calculate Molecular Weight Tentative Assignment 

1  1.513 C14H24O12  383.1268  384.12678 1-O-acetyl-alpha-maltose 
2  1.522 C7H12O6  191.0626  192.06264 Quinic acid 
3  1.529 C6H8O7  191.0267  192.02669 Citric acid 
4  1.543 C4H6O5  133.0206  134.02057 Malic acid 
5  2.088 C4H6O4  117.0257  118.02571 Methylmalonic acid 
6  2.670 C7H6O5  169.0208  170.02075 Gallic acid 
7  4.750 C7H6O4  153.0259  154.02589 Gentisic acid 
9  6.305 C22H28N4O6  443.2000  444.19996 Mitoxantrone 
10  6.650 C8H8O5  183.0367  184.03667 3.4-Dihydroxyphenyl glycolic acid 
11  7.507 C19H18O11  421.0849  422.08494 Mangiferin 
13  7.658 C20H22O10  421.1193  422.11925 Catechin 7-O-ß-D-xyloside 
14  7.730 C11H14O8S  305.0411  306.04109 4-Hydroxy-5-(dihydroxyphenyl)-valeric acid-O-sulphate 
15  7.929 C20H20O11  435.1006  436.1006 Irisxanthone 
16  8.150 C13H16O7  283.0898  284.0898 4-Methylphenyl-ß-D-glucopyranosiduronic acid 
17  8.679 C8H8O4  167.0416  168.04162 5-Methoxysalicylic acid 
18  8.970 C21H20O10  431.1061  432.10609 Apigetrin 
19  9.149 C22H22O10  445.1215  446.12153 NP-018731 
20  9.413 C19H16O10  403.0745  404.07451 Urolithin A-8-O-glucuronide 
21  9.466 C22H22O10  445.1213  446.12153 Glycitin 
22  10.450 C9H12O4  183.0728  184.07281 3-Methoxy-4-hydroxy-phenylglycol 
23  11.495 C9H14O4  185.0886  186.08859 1-(Carboxymethyl) cyclohexane carboxylic acid 
24  11.557 C15H10O8S  349.0098  350.00981 Apigenin 7-sulfate 
25  11.940 C15H10O7  301.0428  302.0428 Quercetin 
26  17.047 C18H2206  333.1418  334.14183 Adlerol  
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toxicity test results against colon cancer cells (E705) with IC50 0.165 ±
0.047 µg/mL (Bovio et al., 2020). But, the MeOH extract did not 
potentially inhibit MCF-7 cells, as indicated by the high IC50 value, while 
the MeOH extracts of M. pajang and M. indica are toxic with IC50 > 30 
and 15 µg/mL, respectively (Ahmad et al., 2015; Navarro et al., 2019). 

Several investigations have been carried out on the development of 
effective source of anticancer drugs using plants with diverse chemical 
structures. This study shows that M. rufocostata has potential as a source 
of new phytopharmaceuticals. The toxycity of M. rufocostata methanol 
extract originates from the combination of the phenolic and flavonoid 
content. These compounds including mangiferin, gallic acid, and quer-
cetin are commonly found in the Mangifera genus. 

3.6. LC-MS/MS analysis 

The compounds in the methanol extract of M. rufocostata stem bark 
were analyzed using LC-MS/MS. The total ion current chromatogram in 
negative ESI mode is displayed in Fig. 1, and the compounds tentatively 
detected are summarized in Table 6. 

Based on the LC-MS/MS results, the dominant compounds present in 
the MeOH extract are mangiferin, quinic acid, gallic acid, 3-methoxy-4- 
hydroxy-phenyl glycol, as well as a quercetin compound. These com-
pounds play a role in antioxidant, antidiabetic, and anticancer activities. 
According to previous studies, mangiferin is active as an anticancer (du 
Plessis-Stoman et al., 2011; Jung et al., 2012; Núñez Selles et al., 2016; 
Peng et al., 2004; Shoji et al., 2011), antidiabetic (Ganogpichayagrai 
et al., 2017; Kulkarni & Rathod, 2018; Muruganandan et al., 2005), 
while quinic acid also has bioactivity as an antioxidant, antidiabetic, and 
anticancer (Benali et al., 2022). Moreover, gallic acid is active as an 
antioxidant (Badhani et al., 2015), anticancer (Subramanian et al., 
2015), and antidiabetic (Variya et al., 2020). Another polyphenol 
compound, quercetin, is also an antioxidant and anticancer agent 
(Baghel et al., 2012). Mangiferin, gallic acid, and quercetin compounds 
were also identified in other Mangifera species, such as M. indica (Gu 
et al., 2019; Ronchi et al., 2015) and M. pajang (Bakar et al., 2010 (a); 
2010 (b); Prasad et al., 2011). Based on taxonomy, some species have 
close kinship relationships because they belong to the same genus. 

The combination of several secondary metabolite compounds in the 
flavonoid and polyphenol groups such as mangiferin, gallic acid quinic 
acid and quercetin in the MeOH extract of M. rufocostata allows these 
compounds to jointly inhibit cancer cells. The ability of flavonoids and 
polyphenols to capture free radicals can help regulate cell metabolism 
and prevent diseases caused by oxidative stress. There is a lot of evi-
dence showing that these two groups of compounds have anticancer 
activity, but the molecular mechanism is not completely clear. Cancer is 
a disease caused by uncontrolled cell proliferation processes, resulting in 
abnormal cell growth. Oxidative stress, and reduced apoptotic function 
are the main causes of internal cancer. Therefore, the ability of flavonoid 
and phenolic compounds to capture free radicals such as ROS can pre-
vent cell damage (Kopustinskiene et al., 2020). 

3.7. Correlation of TFC, TPC, antioxidant and antidiabetic activity 

Pearson’s test was used to determine the correlation between TFC, 
TPC, as well as the antioxidant and antidiabetic activities of 

M. rufocostata stem bark extract. As shown in Table 7, the total flavo-
noids positively correlated with total phenolics (r = 1.000, p < 0.01), 
meaning that the higher the TFC, the higher the TPC content. Both TFC 
and TPC play an important role in antioxidant activity as indicated by a 
strong positive correlation between TFC vs DPPH and TPC vs DPPH r =
0.998 (p < 0.01). There was also a strong positive correlation between 
TFC vs FRAP (r = 0.999; p < 0.01) as well as TPC vs FRAP with r = 0.998 
(p < 0.01). Meanwhile, the correlation between TFC and TPC with ABTS 
was negative. The greater the flavonoid and phenolic content, the 
smaller the IC50 (ABTS) value and the more active the extract is as an 
antioxidant. The level of correlation obtained was moderate in TFC vs 
ABTS (r = -0.489; p < 0.01) and TPC vs ABTS with r = -0.482 (p < 0.01). 
Furthermore, DPPH, FRAP, and ABTS were strongly correlated with the 
inhibitory activity of α-glucosidase enzymes, with Pearson’s coefficient 
(r) of 0.807, 0.838, and − 0.830 (p < 0.01), respectively. This data shows 
that there is a correlation between antioxidant and antidiabetic activity 
as also reported by Wairata et al.,(2022). 

A correlation between antioxidants and antidiabetes is possible, 
because as an antioxidant a plant can neutralize cell damage caused by 
reactive nitrogen and reactive oxygen species (ROS) such as singlet 
oxygen, free radicals and hydroperoxides. Cells damaged by free radicals 
appear to be the main cause of diabetes mellitus. Apart from that, it also 
has an impact on degenerative diseases such as cancer. Secondary 
metabolite compounds may help enzymes in the body to reduce free 
radicals. 

4. Conclusions 

This study showed that the methanol extract of M. rufocostata stems 
bark had the highest TFC and TPC content compared to other extracts. 
These results affected the highest antioxidant activity. The methanol 
extract inhibited the α-glucosidase enzyme, and strong cytotoxicity 
against HT-29 cells. Based on the LC/MS-MS results, the extract contains 
main compounds such as mangiferin, quinic acid, gallic acid, and 3- 
methoxy-4-hydroxy-phenyl glycol. This suggests that the methanol 
extract of M. rufocostata stem bark can be utilized as a source of bio-
pharmaceutical in the future. 
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Table 7 
Pearson correlation coefficient of TFC, TPC, antioxidant and antidiabetic activity.   

TFC TPC DPPH FRAP ABTS α-Glukosidase 

TFC 1      
TPC 1.000** 1     
DPPH 0.998** 0.998** 1    
FRAP 0.999** 0.998** 0.997** 1   
ABTS − 0.489* − 0.482* − 0.475* − 0.507* 1  
α-Glucosidase 0.822** 0.812** 0.807** 0.838** − 0.830** 1 

*Correlation is moderate at p < 0.01, ** correlation is strongly at p < 0.01. 
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