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A B S T R A C T

A highly active and stable electro-catalyst for hydrogen evolution was developed by in-situ photo-deposition 
of Ni metal on MoS2 nano-sheets with many sulfur vacancies. It was found that Ni metal deposition improved 
the electrical conductivity of MoS2 and further enhanced the catalytic activity by synergistic effect with Ni 
metal with MoS2 nano-sheets. During photochemical deposition, photo-corrosion moved some sulfur, leading 
to many sulfur vacancies. Sulfur vacancies further enhance the activity of MoS2 nano-sheets. Electrochemical 
experiments demonstrate that the catalyst exhibited excellent hydrogen evolution reaction activity with a large 
cathode current and a Tafel slope as small as 81 per decade. The high hydrogen evolution activity of Ni-doped 
MoS2 was attributed to synergistic electro-catalytic effects between MoS2 nano-sheets and Ni ions. 
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1. Introduction

Hydrogen gas has been considered a clean energy source because 
modern society confronts energy deficits and environmental pollution. 
Electrochemical-catalytic hydrogen production in an acid solution is 
one of the most effective and reliable pathways [1-5]. There is no doubt 
that platinum and its alloys are the most efficient catalysts for hydrogen 
production. However, the high cost and low reserves have limited their 
utilization in water electrolysis. Therefore, searching for alternative earth-
abundant materials and decreasing the cost of catalysts remain crucial 
tasks [6-18]. Transition metal disulfides (MS2) have been considered an 
up-and-coming alternative to platinum due to their abundance, low cost, 
and considerable catalytic activity [19-21]. Norskov’s group calculated the 
hydrogen binding energy of MoS2 and found it was like that of platinum. 
However, the catalytic activity of 2D MoS2 was contributed to by its 
edge sites and sulfur vacancies, leaving many basal plane domains inert 
for Hydrogen electrochemical revolution (HER) [22]. The HER activity 
of MoS2 correlated with the number of catalytically active edge sites 
and sulfur vacancies that generated new gap states near the Fermi level 
for hydrogen binding [21,23,24]. As a result, nano-sized MoS2 is more 
active than the bulk form due to more exposed sulfur edge sites [25,26]. 
Based on this understanding, various strategies have been developed to 
synthesize nano-structured MoS2 with more defects to improve the HER 
[6,16,27]. Xie Yi found that the involved oxygen atom can effectively 
regulate the electronic structure of MoS2 nano-sheets, enhancing 
conductivity and HER performance [6]. Zhou Yao et al. synthesized Rh-
tin-MoSxOy. Electron-rich tin prefers to stabilize the unstable optical O 
site in MoSxOy, while Rh is a charge regulator, and oxygen in MoSxOy 
provides more activation sites. The triple enhancement effect makes 
Rh-Sn-MoSxOy have high electrochemical activity [28]. Using transition 

metal atoms, such as Ni, Co, Fe, Zn, and Mn-doped MoS2 nano-sheets, 
could significantly improve the electrochemical activity of MoS [29-34]. 
Wang et al. demonstrated that the exchange current density of MoS2 can 
be increased by incorporating transition metal atoms [33]. Activating the 
MoS2 basal plane could improve its HER activity compared to growing 
edge sites. Hong Li et al. used Ar plasma to activate the MoS2 basal plane 
by increasing sulfur vacancies to increase MoS2 catalytic activity [23]. 
By doping with other transition metal sulfides, such as NiS, MnS, ZnS, 
and CoS, MnS could improve the HER activity of MoS2 electro-catalysts 
[35-39].

Herein, we report a novel photochemical strategy to activate 
MoS2 monolayer nanosheets' electrocatalytic activity through NiS-
incorporated MoS2 nanosheets and increased sulfur vacancies. Linear 
sweep voltammetry and Chronoamperometry were used to study the 
electrochemical activity of MoS2 nanosheets and Ni-doping MoS2-x 
nanosheets. Ni displaced some of Mo through photochemical deposition 
to form the Ni-S band, which had higher electrochemical activity for 
hydrogen production. Ni dopant and S defects made Ni-doped MoS2 
monolayer nanosheets have higher catalytic activity for HER.

2. Materials and Methods 

2.1. Materials

Single MoS2 nanosheets were purchased from Jiangsu Xianfeng 
Nanomaterial Technology Co., Ltd. Nickel nitrate and methanol 
analytical reagents came from Shanghai Aladdin Biochemical 
Technology Co., Ltd. H2SO4 was purchased from Tianjin Kemiou 
Chemical Reagent Co., Ltd. The high-purity water was treated through 
the Ake water system.
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2.2. Synthesis of catalysts

Typically, 15 mg MoS2 monolayer nanosheets were dispersed in a 15 
mL ethanol solution through ultrasonication. Then, nickel nitrite and 
15 mL of pure water were added to the above solution. 0.1 M NaOH 
and 0.5M H2SO4 solution were used to adjust the pH value of the above 
mixture solution. The MoS2 nanosheets with different pH values were 
then illuminated under a 300W Xe light with a 530 nm optical filter for 
1 h. The product was washed with a 1:1 ethanol-water solution several 
times and dried by vacuum cooling drying.

2.3. Preparation of catalyst electrode

Typically, 2 mg of Ni-doping MoS2 nanosheets catalyst and 30 µL of 
0.5% Nafion 717 were dispersed in 1 mL of water by ultrasonication to 
form a uniform mixture. The catalyst slurry (4 µL) was dropped onto a 
pure Glass carbon electrode (GCE). Subsequently, a desicator was used 
to dry the catalyst-modified GCE at room temperature.

2.4. Electrochemical measurements

Electrochemical measurements were performed through a CHI 660C 
working station with a standard three-electrode cell. The Ni-MoS2-
modified GCE electrode acted as a working electrode, a Pt electrode 
as an auxiliary electrode, and a saturated calomel electrode (SCE) as a 
reference electrode. The electro-catalytic activity of MoS2 monolayer or 
Ni doped-MoS2 was examined through cyclic voltammetry, linear sweep 
voltammetry, and chrono-amperometry in 0.5M H2SO4 solution.

The photochemical deposition experiment was performed in 50 ml 
reaction tubes with ground glass at room temperature, using a 300W Xe 
lamp with a 530 nm light filter.

2.5. Characterization

An X-ray diffractometer recorded X-ray diffraction (XRD) patterns. 
Images were collected using a JEM-2100 transmission electron microscope 
(TEM). X-ray photoelectron spectroscopy (XPS) was studied to confirm 
the chemical composition of MoS2 nanomaterials and nickel-doped MoS2 
nanomaterials. The sample of nickel doping MoS2 nanosheets (Scanning 
electron microscope (SEM), XPS, and XRD studied) was prepared with 
the ratio of MoS2 to Nickel ions (0.8:1) at a pH value of 2.0.

3. Results and Discussion

3.1 Morphology and structure analysis of MoS2 and Ni doping MoS2

The XRD pattern of nickel-doping MoS2 nanosheets and pure MoS2 
nanosheets were studied to assess their crystal structures. The XRD 
pattern of MoS2 nanosheets in Figure 1 revealed the characteristic 
diffraction of 2H-MoS2 (JCPDS:73-1508). In contrast, no metallic nickel 
or nickel oxide diffraction was detected in the sample of nickel-doping 
MoS2 nanosheets, confirming the presence of a small amount of nickel 

in the nickel-doping MoS2 nanosheets. SEM and TEM characterized the 
MoS2 nano-sheet and Ni metal-doped MoS2 nano-sheet morphology. It 
can be seen in the SEM image in Figure 2 that there is no significant 
difference between the pure MoS2 nano-sheets and Ni-doped MoS2 
nano-sheets. The MoS2 nano-sheet was larger than 1 µm in both pure 
MoS2 nanosheets and nickel-doping MoS2 nanosheets.

The MoS2 nanosheets in Figure 3(a) present a folded nano-sheet-
like structure, and the morphology of NiS-doped MoS2 in Figure 3(b) 
also presents folded nanosheets with some small particles attached to 
the surface, which may be attributed to NiS produced by the photo-
deposition process. High resolution transmission electron microscope 
(HRTEM) of the MoS2 nanosheets in Figure 3(c) presents a clear and 
coherent lattice structure. Many tiny particles are scattered on the 

Figure 1. XRD image of MoS2 nanosheets and Ni doping MoS2 nanosheets. XRD: 
X-ray diffraction.

Figure 2. (a) SEM image of MoS2 nanosheets and (b) enlarged image of MoS2 
nanosheets, (c) SEM image of Ni doping MoS2 nanosheets and (d) enlarged image of Ni 
doping MoS2 nanosheets. SEM: Scanning electron microscope.

Figure 3. The MoS2 nanosheets in (a) present a folded nano-sheet-like structure, and 
the morphology of NiS-doped MoS2. (b) Presents folded nanosheets with some small 
particles attached to the surface, which may be attributed to NiS produced by the 
photo-deposition process. (c-d) HRTEM of the MoS2 nanosheets (c) presents a clear and 
coherent lattice structure, (d) with a lattice structure different from the lattice structure 
of MoS2, which are NiS particles formed during the photochemical deposition process. 
HRTEM: High resolution transmission electron microscope.
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surface of MoS2 nanosheets in Figure 3(d) with a lattice structure 
different from the lattice structure of MoS2, which are NiS particles 
formed during the photochemical deposition process. This phenomenon, 
which showed that Ni-doped MoS2 nano-sheets had little difference 
from pure MoS2 nano-sheets, could contribute to that small amount 
of Ni doping in the Ni-MoS2. The SEM and XRD images had the same 
phenomena as the TEM images, further confirming the small amount of 
nickel in Ni-MoS2 nano-sheets.

To further study that Ni had inserted into MoS2 nano-sheets, the 
EDX mapping method was used to study the Ni further doping MoS2 
monolayer nano-sheets fabrication. EDX mapping in Figure 4 showed the 
homogenous distribution of Mo, S, and Ni elements, further confirming 
that the Ni doping MoS2 nano-sheet was successfully fabricated using 
photo-chemical deposition. The EDX and EDX mapping in Figure 4 
confirmed that nickel had successfully inserted into MoS2 nano-sheets.

The Mo, Ni, and S chemical states in the Ni-doped single nanosheets 
are analyzed using the X-ray photoelectron spectroscopy technique 
(XPS). The 232.2 and 229 eV peaks belong to Mo 3d 3/2 and 3d 1/2 
binding energies (Figure 5a), respectively, which were constant with 
the structure of MoS2 nanosheets. The peak (223) belongs to MoO2, 
and the binding energy located at 232 belongs to molybdic acid, 
formed by MoS2 oxidized by photochemical corrosion. There are also 

three pairs of characteristic peaks belonging to S elements. The 159.4, 
160.6, and 166.6 eV peaks in Figure 5(b) contributed to MoS2, NiS, 
and S partly oxidizing, respectively. The electronic valence state of 
nickel in the above materials was also studied by XPS spectroscopy, 
with the peak located at 857.8, 871.2 eV in Figure 5(c) contributing to 
Ni 2p 2/3 and 2p 1/2. Meanwhile, the peak located at 859.1 belongs 
to nickel oxide. The XPS image research confirms that the Ni-doped 
MoS2 nanosheets contain Ni, Mo, and S elements. Nickel exists in the 
form of nickel sulfide in nickel-doped molybdenum disulfide materials. 
Like molybdenum disulfide, NiS has good electro-catalytic activity for 
hydrogen production. The synergistic effect of NiS and MoS2 gives Ni-
MoS2 higher electrocatalytic activity for hydrogen production.

3.2 Electrochemical performance

3.2.1 pH value affects the catalyst activity

MoS2 monolayer nanosheets have been widely studied in the 
electrocatalytic hydrogen reaction. Still, due to their activity, they only 
originated from edge sites and sulfur vacancies, leaving a tremendous 
amount of in-plane domains inert. To enhance the catalytic activity 
of MoS2 nanosheets, the photochemical method was used to fabricate 
Ni metal-doped MoS2 nanosheets. Furthermore, some sulfur atoms 
were moved by the photochemical corrosion reaction during the 
photochemical reaction. Subsequently, Ni-doped MoS2 with many 
sulfur vacancies has super catalytic activity in hydrogen production.

The pH value of the synthesis environment has dramatically affected 
the activity of the catalyst. It can be seen in Figure 6 that the pH value 
has significantly impacted the electro-catalytic activity of Ni-MoS2. 
When the pH value decreased from 11 to 2, the electro-catalytic activity 
of Ni-MoS2 increased with the pH value decreased. When the pH value 
was 2, the electrochemical activity got the highest value. pH value has 
dramatically impacted the activity of Ni-doped MoS2 nano-sheets for 
Ni metal deposition, which has been significantly affected by the pH 
value for hydrogen ions participating in Ni-doped MoS2 nano-sheet 
fabrication.

3.2.2 The possible mechanism of Ni-MoS2 fabrication by photochemical  
deposition

Ni ions were unstable in the alkaline solution, almost wholly 
changing into Ni(OH)2. Under the photochemical system, there is a 
reversible process of Ni ions and Ni(OH)2. The Ni ions were reduced 
to Ni metal on the surface of the MoS2 nano-sheet by following the 
chemical Eqs. (1) to (3):
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Figure 4. EDX mapping of elements in Ni-doping MoS2-x nano-sheets.

Figure 5. XPS image of (a) Mo 3d, (b) S 1s, and (c) Ni 2p in Ni doping MoS2 nanosheet. 
XPS: X-ray photoelectron spectroscopy.

Figure 6. Linear sweep scan image of Ni-MoS2 in 0.5M H2SO4 at a 
scan rate of 20 mV/s (fabricated in different pH values).
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At the same time, some of part of MoS2 nano-sheets were decomposed 
by the following photochemical reaction (Eq. 4):

MoS2 + 14MoS2(hole) + 8H2O → H2MoO4 + 2SO2 +  
14MoS2 + 14H+ (4)

Some molybdenum ions in the solution had reacted with oxygen to 
form molybdenum oxide, and other molybdenum ions dissolved in the 
solution as molybdic acid.

In the basement of the photochemical reaction, Ni metal was 
reduced by electrons, which were produced by light illumination on 
MoS2 nano-sheets to make holes and electrons. The holes were depleted 
by hole receptor ethanol. The Ni metal kept being deposited until the 
Ni ions were transferred to NiS and NiO or the light was suddenly shut 
down.

Under weak acid solution, Ni-MoS2-x was formed through chemical 
Eqs. (1)-(3). However, under an acid environmental system, the 
corrosion of MoS2 would become serious for hydrogen ions to take part 
in the corrosion process, as shown in the following Eqs. (5)-(7). The 
nickel metal cluster or nickel oxide particles were unstable and could 
be dissolved in a robust acid solution. With strong photo-corrosion, 
many molybdenum or Sulphur lose and leave many active sites; the Ni 
ions could be coordinated with S and form a Ni-S bond. So, nickel ions 
were inserted into the structure of MoS2 and displaced some of the Mo 
element. The XRD image (Figure 1) of Ni-MoS2 nano-sheets and MoS2 
nano-sheets had no difference, which confirmed that nickel doping was 
not only mixed with nickel metal or nickel oxide. 

14MoS2(hole) + 8H2O → H2MoO4+2SO2+13MoS2+14H+ (5)

 Ni MoS H� � � � � �� �
2

2

2 2
2 Ni MoS H (6)

Ni MoS Ni S MoS Mo
2

2 2

2
2
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During the photochemical deposition, some Ni-S or MoS2 decomposed 
to ions and then combined with oxygen to form NiO, MoO2, and molybdic 
acid. The Ni-S, NiO, MoO2, and molybdic acid could enhance MoS2’s 
electrochemical activity. Compared to the high amount of NiS, NiO, 
MoO2, and molybdic acid are lesser. A small amount of transition metal, 
transition sulfide, or transition oxide doping in MoS2 could enhance the 
electrocatalytic activity of MoS2 [37,38,40-43]. The existence of NiS, 
NiO, MnO2, and molybdic acid in Ni doping MoS2 nanosheets gives 
the Ni doping MoS2 nanosheets a higher electrocatalytic activity than 
pure MoS2 nanosheets. The hydrogen ions taking part in photochemical 
corrosion and Ni-MoS2 dissolution made a significant amount of MoS2 
decomposed, which led to the lower yield of Ni-MoS2-x.

3.2.3 Electrochemical hydrogen evolution research

Electrochemical hydrogen evolution reactions were studied with 
different amounts of Ni to Ni-MoS2-x and pure MoS2 nano-sheets in 
0.5M H2SO4 solution. Linear sweep voltammetry studies at a scan rate 
of 20 mv/s exhibit the current density as a function of applied potential. 
Figure 7 shows that pure MoS2 exhibited great over-potential value and 
low current density, contributing to low edge concentration and poor 

conductivity. In comparison, all the Ni metal doping MoS2-x nano-sheets 
possessed much lower onset over-potentials than the pure MoS2 nano-
sheets. When the Ni to Mo molar rate was 3.2, the current was 80 mA 
cm-2, eight times larger than a pure MoS2 nano-sheet. Under optimized 
synthesis conditions, the amount of Ni affected the electrochemical 
activity of the catalyst’s HER. When the molar rate of Ni ions to MoS2 
was 0.80, the current of Nickel -MoS2-x was 320 mA cm-2, almost 32 
times bigger than pure MoS2. Under optimized conditions, the over-
potential of Ni-MoS2 was smaller than 100 mV. This phenomenon 
was relevant to the complication of photochemical deposition. The 
photochemical deposition is always accompanied by photo-corrosion. 
Photo-corrosion would lead to S and Mo loss, which would result in 
more sulfur vacancies and further enhance the MoS2 catalyst’s activity. 
The higher electrochemical activity of Ni-doping MoS2-x could be 
attributed to the following reasons: photo-deposition corrosion left 
many S vacancies and defects, which enhanced HER activity. Ni doping 
further increased the HER activity of MoS2. In all, Ni doping and photo-
deposition method in acid circumstances made NiS-MoS2-x have higher 
HER activity. The existence of NiO, MoO2, and molybdic acid on MoS2 
further enhances the electrochemical activity for hydrogen production. 
The anisotropic factor of 2D nanomaterials towards their catalytic 
performance is demonstrated in the active edges.

The polarization curves were also measured in 0.5M H2SO4 
electrolyte with a scan rate of 20 mv/s, as shown in Figure 8(a). To 
evaluate the electrochemical activity of Ni-MoS2, the HER activity 
of the commercial Pt/C acted as a reference for assessing Ni-MoS2 
performance. Undoubtedly, the Pt/C electro-catalyst exhibits the best 
electrochemical activity for HER with nearly zero over-potential. The 
electrochemical activity of H-MoS2 was poor, with the highest over-
potential. The electrochemical activity of Pt-MoS2 is better than that 
of MoS2 nano-sheets, and its over-potential is lower than that of pure 
MoS2, which means that noble Pt has excellent catalytic activity. Tafel 
slope is often utilized to evaluate the catalyst's performance, and the 
smaller Tafel slope means a faster increase in the HER rate with a 
decrease in over-potentials. The results of the Tafel slope of MoS2 nano-
sheets in Figure 8(b) is 294 mV Dec-1, which matches several earlier 
reports for MoS2 nano-sheet catalysts. The Tafel slope of Ni doping 
MoS2-x is 81 mV decade-1, which is almost as good as Pt/C. To reach the 
current density of 10 mA cm-2, the reference point, the over-potential 
of -300mv, is required for the pure MoS2. Compared with pure MoS2, 
the over-potential is only -200mv for the Ni-doped MoS2-x monolayer 
nano-sheets.

Figure 7. LSV image of Ni-MOS2-x in 0.5M H2SO4 solution fabricated with different 
ratios of Ni ions compared with MoS2 at a scan rate of 20 mV/s.

Figure 8. (a) Polarization curves of different electrodes at a scan rate of 20 mV/s. 
(b) Tafel plots of different materials modified electrodes.

(a)
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To initiate HER in the acid electrolyte, three principal steps would 
involve H+ to H2, which contain the Volmer equation, Herrovsky 
equation, and Tafel reaction equation. The Ni-MoS2 nano-sheets exhibit 
a Tafel slope of 83 mv/dec, which is lower than pure MoS2 (294 mv/
dec) and Pt-MoS2 (197 mv/dec) nano-sheets. The Ni-MoS2 is almost 
as super as Pt/C (81 mv/dec), which gives them great potential in 
electrochemical hydrogen production. The Tafel plot of Ni-MoS2 nano-
sheets is shallow, meaning that the electrochemical reaction on the 
surface of Ni-MoS2 proceeds through the Volmer-Herrvosky mechanism 
step.

The electrochemical capacitance surface area measurements were 
also researched to study the electrochemical active area of MoS2 and 
Ni-MoS2 nano-sheets. The electrochemical double layer charge of MoS2 
and Ni single atom doped MoS2 were measured. As shown in Figure 
9(a) and 9(b), the capacitive current of Ni-doped MoS2 nano-sheets is 
more significant than that of pure MoS2 nano-sheets at the scan rate of 
40mv/s. Fig exhibits that the calculated capacitive current of Ni-MoS2 
is more significant than pure MoS2. Figure 9(c) displays the measured 
capacitive currents plotted as a function of scan rate, and it also reveals 
that Ni-doped MoS2 shows a larger double-layer capacitance than pure 
MoS2 nano-sheets, which further confirmed that Ni-doping MoS2 nano-
sheets had high catalytic activity than pure MoS2 nano-sheets.

Stability is another essential criterion used to evaluate the catalyst's 
HER activity. Continuous HER at a given over-potential was conducted 
to explore the durability of the Ni-doped MoS2 nano-sheets in a 0.5M 
H2SO4 environment. As shown in Figure 10(a), the stability of the 
cathodic current of Ni-MoS2 is higher than 10 mAcm-2, which is five 
times higher than pure MoS2. The 2H-MoS2 can act as HER catalyst, 

and the hydrogen evolution reaction occurred at a higher over-potential 
than Ni-doped MoS2 nano-sheets. The doping of Ni into MoS2 nano-
sheets leads to profound enhancements of HER activities. The recycle 
stability test was also studied through the LSV method in 0.5 M 
H2SO4 solution at a scan rate of 20 mV/s on the nickel doping MoS2 
nanosheet-modified electrode. As shown in Figure 10(b), there is no 
significant difference between the first scan of LSV of nickel doping 
MoS2 nanosheets and the 50th cycle, which further confirms that nickel 
doping MoS2 has stable catalytic activity for hydrogen production in 
acid solution.

4. Conclusions

We fabricated Ni doping MoS2-x nano-sheets using the photochemical 
method. The electrochemical activity of Ni-MoS2-x was greatly influenced 
by pH value. The Ni-doped MoS2 nano-sheets were fabricated using two 
different photochemical deposition mechanisms: acid and alkaline. The 
Ni-doped monolayer MoS2 fabricated in an acid solution with a pH value 
of 2 had the highest electrochemical activity. The Ni-doped monolayers 
fabricated in an acid solution were compared in terms of MoS2 corrosion 
and Ni deposition, leading to more S defects. Ni was inserted into the 
structure of MoS2 to displace some Mo elements. Ni displacement, S 
defects, NiO, MnO2, and molybdic acid in MoS2 made Ni-MoS2-x have 
the highest activity for hydrogen production in acid solution. This is a 
new method to fabricate high electro-catalytic nanomaterials with great 
potential in the hydrogen production industry.
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