
Arabian Journal of Chemistry (2015) 8, 105–117
King Saud University

Arabian Journal of Chemistry

www.ksu.edu.sa
www.sciencedirect.com
ORIGINAL ARTICLE
Removal of toxic chromium from aqueous solution,

wastewater and saline water by marine red alga

Pterocladia capillacea and its activated carbon
* Corresponding author. Tel./fax: +20 35740944.

E-mail address: ahmedmoustafaelnemr@yahoo.com (A. El Nemr).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.arabjc.2011.01.016
1878-5352 ª 2011 Production and hosting by Elsevier B.V. on behalf of King Saud University.
Ahmed El Nemr *, AmanyEl-Sikaily, Azza Khaled, Ola Abdelwahab
Department of Pollution, Environmental Division, National Institute of Oceanography and Fisheries, El Anfoushy,
Kayet Bey, Alexandria, Egypt
Received 17 October 2010; accepted 16 January 2011

Available online 21 January 2011
KEYWORDS

Marine algae;

Pterocladia capillacea;

Biosorption;

Chromium;

Wastewater;

Saline water;

Isotherm models
Abstract Pterocladia capillacea, a red marine macroalgae, was tested for its ability to remove toxic

hexavalent chromium from aqueous solution. A new activated carbon obtained from P. capillacea

via acid dehydration was also investigated as an adsorbent for toxic chromium. The experiments

were conducted to study the effect of important parameters such as pH, chromium concentration

and adsorbent weight. Batch equilibrium tests at different pH conditions showed that at pH 1.0,

a maximum chromium uptake was observed for both inactivated dried red alga P. capillacea and

its activated carbon. The maximum sorption capacities for dried red alga and its activated carbon

were about 12 and 66 mg g�1, respectively, as calculated by Langmuir model. The ability of inacti-

vated red alga P. capillacea and developed activated carbon to remove chromium from synthetic sea

water, natural sea water and wastewater was investigated as well. Different isotherm models were

used to analyze the experimental data and the models parameters were evaluated. This study

showed that the activated carbon developed from red alga P. capillacea is a promising activated car-

bon for removal of toxic chromium.
ª 2011 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction
Heavy metal pollution represents an important environmental
problem due to toxic effects and accumulation throughout
the food chain. These pollutants are toxic and non-biode-
gradable and probably have health effect (Pellerin and

Booker, 2000). Several industries like paint and pigment man-
ufacturing, stainless steel production, corrosion control, tex-
tile, leather tanning, chrome electroplating, metal finishing
industries, wood preservation, photography, etc. discharge

effluent containing hexavalent chromium, Cr6+, to surface
water. Hexavalent chromium is toxic and a suspected carcin-
ogen material and it is quite soluble in the aqueous phase

almost over the entire pH range and mobile in the natural
environment (Gode and Pehlivan, 2005). A very high positive
redox potential is demonstrated for acidic solution of hexava-
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lent chromium which is strongly oxidizing and unstable in the

presence of electron donors. Several species can be obtained
from hexavalent chromium depending on pH and its total
concentration. The HCrO2�

4 form exists in the solution if
the solution pH > 7, while in the pH between 1 and 6,

CrO2�
4 is predominant. Therefore, within the normal pH

range in natural waters, the CrO2�
4 , CrO2�

4 and Cr2O
2�
7 ions

are forms expected and they constituted a lot of hexavalent

chromium compounds, which are quite soluble and mobile
in water streams (Gode and Pehlivan, 2005; Ko et al.,
2002). The maximum permissible levels for Cr3+ and Cr6+

ions in wastewater are 5 and 0.05 mg L�1, respectively. They
exist as low levels in the environment. While Cr3+ apparently
plays an essential role in plant and animal metabolism, the

Cr6+ is directly toxic to bacteria, plants and animals (Rich-
ard and Bourg, 1991). The most severe chromium compounds
are chromium oxide and chromium sulfate as trivalent and
chromium trioxide, chromic acid and dichromates as hexava-

lent chromium (Ramos et al., 1994).
Sorption process has been extensively used to remove

toxic metals from aquatic medium using low cost adsorbents

such as agriculture wastes and activated carbon developed
from agriculture wastes (Babel and Kurniawan, 2003; Demir-
bas et al., 2004; Ahalya et al., 2005; El Nemr et al., 2006,

2007, 2010; Abdelwahab et al., 2007; Wang et al., 2009).
Among the most promising biomaterials studied is algal bio-
mass (Vijayaraghavan et al., 2005; Kalyani et al., 2004; Gupta
et al., 2001; Zeroual et al., 2003; Abdelwahab et al., 2006a,b;

El-Sikaily et al., 2006; Han et al., 2008; Gupta and Rastogi,
2009; Ncibi et al., 2009; Deng et al., 2009; Zakhama et al.,
2011). The presence of carboxylic (–COOH), sulfonic (–

SO3H) and hydroxyl (–OH) groups in the marine algae poly-
saccharides are believed to be responsible for impressive
metal uptake by marine algae (McKay et al., 1999; Davis

et al., 2003). Moreover, the macroscopic structures for mar-
ine algae present a convenient basis for the production of
biosorbent particles suitable for sorption process applications

(Vieira and Volesky, 2000).
As the most toxic species of chromium cannot be removed

directly by precipitation, the main objective of this study was
to evaluate the possibility of using dried red alga Pterocladia

capillacea (DRA) and activated carbon developed from P.
capillacea (CRA) as sorbents for the elimination of Cr6+

from polluted waters by systematic evaluation of the param-

eters involved, such as pH, sorbents mass, initial chromium
concentration and time. The interference of the real wastewa-
ter and saline water on the Cr6+ sorption was additionally

investigated.
2. Materials and methods

2.1. Biomass

Fresh red algal biomass of P. capillacea species was collected
from Abo-Quir Bay, Alexandria, Egypt. Before being dried,
it was washed with sea water and then with tap water followed

by washing with distilled water. After this, the clean algal bio-
mass was sun dried for two days followed by air oven drying at
105 �C for 72 h, and the dried red alga (DRA) was milled and

sieved to select particles 60.063 mm for use (Deng et al., 2009;
Gupta and Rastogi, 2009).
2.2. Activated carbon from red alga (CRA)

The dried red algal (DRA) biomass of P. capillacea (1.0 kg)
was added in small portion to 600 ml of 98% H2SO4 and the

resulting reaction mixture was kept for 1 h at room tempera-
ture followed by refluxing for 5 h in an efficient fume hood.
After cooling to room temperature, the reaction mixture was

poured onto cold water (4 L) and filtered. The resulting mate-
rial was washed repeatedly with water and then soaked in 1%
NaHCO3 solution to remove any remaining acid. The obtained
carbon was then washed with distilled water until pH of the

activated carbon reached 6, dried in an oven at 250 �C for
1 h in the absence of oxygen and sieved to the particle size
60.063 mm and kept in a glass bottle until used.

2.3. Preparation of synthetic solution

A stock solution of 1.0 g L�1 was prepared by dissolving the
2.831 g of potassium dichromate (K2Cr2O7) in 100 ml and
completed to 1000 ml with distilled water. Concentrations ran-

ged between 5 and 100 mg L�1 were prepared from the stock
solution to have the standard curve. All the chemicals used
throughout this study were of analytical-grade reagents. Dou-
ble-distilled water was used for preparing all of the solutions

and reagents. The initial pH is adjusted with 0.1 M HCl or
0.1 M NaOH. All the sorption experiments were carried out
at room temperature (25 ± 2 �C).

The concentration of Cr6+ ions in solution was measured
by using an indirect UV–visible spectrophotometric method
based on the reaction of Cr6+ and 1,5-diphenylcarbazide,

which forms a red-violet colored complex (Gilcreas et al.,
1965). The absorbance of the colored complex was measured
using UV–VIS spectrophotometer (Milton Roy, Spectronic
21D) using silica cells of path length 1 cm at wavelength k
540 nm, and Cr6+ concentration was determined by compar-
ing absorbance to a calibration curve mentioned above. All
the experiments are duplicated and only the mean values are

reported. The maximum deviation observed was less than
±5% (Ncibi et al., 2009).

2.4. Red alga characterization

The functional groups present in the red alga and its activated

carbon were characterized by a Fourier transform infrared
(FT-IR), using KBr disks to prepare the alga samples.

The X-ray diffraction spectrum was obtained by passing the
sample through 44 l copper target. Samples were exposed to

X-ray (k = 1.5418 Å) with the 2h angle, scan range varying
between 4�–9� and scan speed 2 deg/min. The applied voltage
and current were 30 kV and 30 mA, respectively.

The morphological characteristics of red alga and its acti-
vated carbon were evaluated by using a JEOL JSM-6360 scan-
ning electron microscope with an electron acceleration voltage

of 20 kV.

2.5. Simulation studies

Synthetic sea water was prepared by dissolving 35 g of NaCl in
1000 ml distilled water and used instead of distilled water.
Different weights of chromium were dissolved in the synthetic

sea water to obtain different concentrations of Cr6+.
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Natural sea water was collected from Eastern Harbor,

Alexandria, Egypt and filtered using Whatman filter paper.
The clear natural seawater was used instead of distilled water
used above to prepare different concentrations of Cr6+.

Wastewater was collected from El-Emoum drain (contains

several industrial effluents and agriculture drain from Alexan-
dria Governorate) near lake Maruit, Alexandria, Egypt. The
collected wastewater was filtered through Whatman filter

paper to remove suspended particulates and used as above
for preparing of different concentrations of Cr6+.

2.6. Batch biosorption studies

2.6.1. Effect of pH on chromium biosorption
The effect of pH on the equilibrium uptake of chromium ions
was investigated by employing different initial concentrations
of Cr+6 (75 mg L�1) and 5 g L�1 of DRA and CRA. The ini-

tial pH values were adjusted to 1, 2, 3, 4, 5, 6 and 7 with 0.1 M
HCl or 0.1 M NaOH. The suspensions were shaken at room
temperature (25 ± 2 �C) using agitation speed (200 rpm) for

the minimum contact time required to reach the equilibrium
(120 min) and the amount of chromium adsorbed determined
(Malkoç and Nuhoglu, 2003; Wang et al., 2009).

2.6.2. Effect of sorbents dose
The effect of sorbents dose on the equilibrium uptake of chro-

mium ions was investigated with sorbent concentrations of 3,
4, 5 and 10 g L�1. The experiments were performed by shaking
known chromium concentration with the above different sor-

bent concentrations to the equilibrium uptake (120 min) and
the amount of chromium adsorbed determined (Wang et al.,
2009).
2.6.3. Kinetics studies
Sorption studies were conducted in 300 ml conical flasks at
solution pH 1.0. DRA biomass (10 g L�1) or CRA (3, 4 and

5 g L�1) was thoroughly mixed individually with 100 ml of
chromium solution (5, 10, 20, 30, 50, 75, 100 and 125 mg L�1)
and the suspensions were shaken at room temperature

(27 �C). Samples of 0.5 ml were collected from the duplicate
flasks at required time intervals viz. 5, 10, 20, 30, 45, 60, 90
and 120 min and were centrifuged for 5 min. The clear solu-

tions were analyzed for residual chromium concentration in
the solution (Zakhama et al., 2011).
2.6.4. Sorption isotherm
Batch sorption experiments were carried out in 300 ml conical
flasks at 27 �C on a shaker for 120 min. The DRA (1.0 g) and

CRA (0.3, 0.4 and 0.5 g) were thoroughly mixed with 100 ml of
chromium solutions. The isotherm studies were performed by
varying the initial chromium concentrations from 5 to
125 mg L�1 at pH 1.0. The pH value was adjusted using

0.1 M HCl or 0.1 M NaOH before addition of biomass and
was maintained throughout the experiment. After shaking
the flasks for 120 min, the reaction mixture was analyzed for

the residual chromium concentration (Zakhama et al., 2011).
Sorption of Cr+6 from its solutions in synthetic sea water,

natural sea water and wastewater was studied using 5 g L�1 of

red alga and its activated carbon and Cr6+ concentrations
125 mg L�1 and initial pH 1.0.
3. Results and discussion

3.1. Fourier transform infrared spectroscopy (FT-IR) analysis

The FT-IR technique is an important tool to identify some
characteristic functional groups, which are capable of adsorb-

ing metal ions. The FT-IR spectra for red alga P. capillacea
and its activated carbon are shown in Fig. 1a and b and Table
1. The FT-IR spectra display number of absorption peaks, the

bands at 3433 and 3436 cm�1 in both charts of red alga and its
activated carbon representing bonded –OH group on their sur-
face (Kamath and Proctor, 1998). Aliphatic C–H group is rep-

resented by the peak at 2925 cm�1. The peaks located at 1637
and 1635 cm�1 are characteristics for C‚O stretching for alde-
hydes and ketones, which can be conjugated or non-conju-

gated to aromatic rings (Cesar Ricardo and Marco Aurelio,
2004), while deformations related to C–H and C–O bonds were
observed in carbon of red alga at 1062 cm�1 this may be due to
carbonization method. Also, a peak observed at 1182 cm�1 in

chart of red alga carbon indicates the presences of bisulfate
(HSO�4 ). The peaks at 873, (594–584 cm�1), 445 and 381
cm�1 are due to the presences of H2PO

4�, PO2�
4 and metal

oxide. These different functional groups have a high affinity
toward heavy metals so that they can form complex with metal
ions (Hawari and Mulligan, 2006). Untreated biomass gener-

ally contains light metal ions such as K+, Na+ Ca2+ and
Mg2+ (Padilha et al., 2005; Malkoc and Nuhoglu, 2006).
The biosorption process of nickel, copper and cadmium can
be mainly accounted for by ion exchange with calcium

(Hawari and Mulligan, 2006). There was a significant release
of Ca2+, Mg2+, K+ and H+ from the biosorbent due to
uptake of Cu (II), Cr (III, VI) and Ni (II). This might indicate

the displacement of these cations by the metals (Villaescusa
et al., 2004).

3.2. X-ray diffraction analysis

The X-ray diffraction patterns for red alga and its activated

carbon are shown in Fig. 2. The humb peak which appears
in the front of sheet of X-ray diffraction ofP. capillacea reflects
the presence of high percent of organic compounds. The mid-
dle zone of the X-ray sheet is occupied by significant peaks

ranged from 2h = 11.95–24.178 with highest value recorded
at 22.68 corresponding to d-spacing values 7.39, 3.67 and
3.91 Å, which proves the presence of silicate as orthoclase.

This finding is in agreement with the FT-IR which reveals
the presence of silicate group. The carbonization of alga with
sulfuric acid affects on the crystal form structure of the alga.

The humb which appeared in the red alga disappeared in its
activated carbon. In addition, the mean peak in the red alga
at 2h = 77.45 also disappeared which indicates that the treat-

ment arranged the crystal lattice of the samples. In the carbon
of alga the main peak recorded at 2h = 25.8 is corresponding
to the presence of silicate in quartz form (Griffen, 1971).

3.3. Scanning electron microscope (SEM)

Scanning electron microscope of red alga and its activated car-

bon is shown in Fig. 3. The morphology of this material can
facilitate the sorption of metals, due to the irregular surface
of the alga, thus makes the sorption of metal possible on



Figure 1 (a) The FT-IR spectra of red alga P. capillacea biomass before sorption and (b) the FT-IR spectra of carbon red alga P.

capillacea biomass before sorption.

Table 1 The FT-IR spectral characteristics of red alga (P.

capillacea) and its carbon.

IR peak Frequency (cm�1) Assignment

Red alga Carbon red alga

1 3433.05 3436.91 Bonded –OH group

2 2922.00 2925.81 Aliphatic C–H group

3 2383.85 2360.71 Dibasic phosphate (HPO2�
4 )

4 1637.45 1635.50 C‚O stretching

5 – 1182.20 Bisulfate (HSO�4 )
6 – 1062.70 C–H and C–O deformation

7 873.69 873.070 Silicate

8 594.03 584.39 H2PO
�
4 or PO2�

4

9 – 445.53 Metal compounds

10 – 381.88 Metal oxide
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different parts of this material. So, based on the morphology,
as well as on the fact that high amounts of silicate which con-
centrated on the alga and its carbon, it can be concluded that
this material presents an adequate morphological profile to

adsorb metal ions.

3.4. Effect of pH on Cr6+ uptake

The Fig. 4 shows that the lowest sorption occurred at pH 7.0
and the greatest sorption occurred at pH 1.0. Hence all sorp-
Figure 2 X-ray diffractograms of (a) red alga P. c
tion experiments were conducted at the acidic pH (pH 1.0)
(Malkoç and Nuhoglu, 2003, 2006). The pH dependence of
metal sorption can largely be related to the type and ionic state

of these functional groups and also on the metal chemistry in
solution. Moreover, at very low pH values (acidic), the surface
of sorbent would also be surrounded by the hydronium ions

which enhance the Cr6+ interaction with binding sites of
DRA and CRA by greater attractive forces. Sorption of
Cr6+ below pH 3 suggests that negatively charged species
(chromate/dichromate in the sample solution) bind through

electrostatic attraction to positively charged functional groups
on the surface of algae because at this pH more functional
group carrying positive charge would be exposed. At pH above

3, the algae possess more functional groups carrying a net neg-
ative charge, which tends to repulse the anions. However, there
is also Cr6+ ions removal occurred above pH 3, as indicated by

Fig. 4, but the rate of removal is considerably reduced. There-
fore, the mechanism of the sorption occurs basically due to the
interaction of negatively charged species of Cr and the positive
charged occurred on the adsorbent surface, which may be

proved by decreasing of the sorption capacity by decreasing
the acidity of the solution Fig. 5.

3.5. Effect of adsorbent dose on metal sorption

The effects of DRA and CRA dosage on the removal of Cr6+

from its aqueous solutions were investigated using different
apillacea and (b) carbon red alga P. capillacea.



Figure 3 Scanning electron micrograph of (a) red alga P.

capillacea and (b) carbon of red alga P. capillacea.
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adsorbent concentrations. DRA and CRA dosage were varied

from 1 to 10 g L�1 and their effect on the sorption capacities of
Cr6+ ion were studied at pH of 1 and 125 mg L�1 initial chro-
mium concentration. Fig. 6 shows increase in biomass dose

after optimum value did not show corresponding increase in
the Cr6+ ion uptake from the solution. Interaction of sorbent
and metal ions is generally electrostatic in nature on the bind-

ing sites present on the surface of sorbent. For a given constant
of sorbent concentration, the initial Cr6+ ion sorption
increased up to the stage of saturation of all the binding sites

and further increase in the dose of sorbent did not change
the metal sorption/biomass ratio. Also, the high concentration
of sorbent resulted in screen effect of dense outer layer of cells
and blocking the binding site from metal ions, resulting in

lower metal removal per unit of sorbent (Meena et al., 2004).
3.6. Effect of contact time and initial Cr6+ ion concentration

The results of percentage removal of Cr6+ at pH 1 with
increasing of contact time using DRA and CRA are presented
in Fig. 6, respectively. The maximum amount of Cr6+ uptake

was observed after 60 min. Increase in contact time from 60 to
180 min did not result in corresponding increase in sorption. It
is a rapid process as most of the sorption (80–85%) was com-

pleted in the initial 45 min. These results indicated that the
sorption sites were bind up in the initial 60 min by the metal
ions passively. After this, the increase in contact time might
not help for more sorption of metal ions with this sorbent

(Meena et al., 2004). The uptake of metal ions was observed
for different initial ion concentration of Cr6+ at optimum con-
tact time and sorbent dose. The results revealed that an

increase in metal ion concentration resulted in gradual
decrease in percent sorption of Cr6+ up to 100 mg L�1 and
after that a sharp decrease in metal uptake percentage. An

increase in initial concentration of metal ions resulted in the
lowering of metal ion uptake due to reduction in ratio of sorp-
tive surface to ion concentration (Chandra et al., 2005; Meena

et al., 2004).
3.7. Isotherm data analysis

In order to model the sorption behavior and calculate the sorp-

tion capacity of DRA and CRA, sorption isotherms were stud-
ied. The most widely accepted surface sorption models for
single-solute systems are the Langmuir and Freundlich models.

The correlation with the amount of adsorbent and the liquid-
phase concentration was tested with the Langmuir, Freund-
lich, Temkin and Dubinin–Radushkevich (D–R) isotherm

equations. Linear regression is frequently used to determine
the best-fitting isotherm, and the method of least squares has
been used for finding the parameters of the isotherms.
3.7.1. Langmuir isotherm
At room temperature (25 �C), Cr6+ ions adsorbed onto the
DRA and CRA will be in equilibrium with Cr6+ ions in aque-

ous solution. The Langmuir isotherm model was chosen for
the estimation of maximum sorption capacity corresponding
to complete monolayer coverage on the sorbent surface. The
saturated monolayer isotherm can be explained by the Lang-

muir non-linear equation as followed (Langmuir, 1916):

qe ¼
QmKaCe

1þ KaCe

ð1Þ

where Ce is the equilibrium concentration (mg L�1); qe the
amount of metal ion sorbed (mg g�1); Qm ‘‘maximum sorption
capacity’’ is a complete monolayer (mg g�1); Ka is sorption

equilibrium constant (L mg�1) that is related to the apparent
energy of sorption. The Langmuir isotherm Eq. (1) can be lin-
earized into four different forms (Eq. (2)), which give different
parameter estimates (Longhinotti et al., 1998).
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Table 2 Isotherm parameters obtained from the four linear

forms of Langmuir model for the sorption of Cr6+ using dried

red alga (DRA) and its activated carbon (CRA).

Langmuir DRA concentration (g L�1) CRA concentrations (g L�1)

Wt. 10.0 3.0 4.0 5.0

Qm 12.85 66.75 30.37 25.02

Ka 0.015 0.06 0.54 1.16

R2 0.998 0.994 0.999 0.994

Qm (mg g�1) and Ka (L mg�1).
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Ce

qe
¼ 1

KaQm

þ 1

Qm

� Ce ð2Þ

The value of r2 (correlation coefficient) shows that the sorption
data for Cr6+ was fitted well into Langmuir sorption isotherm
(Table 2) (Baran et al., 2005).
3.7.2. Freundlich isotherm
Freundlich model was chosen to estimate the sorption intensity
of the sorbate on the sorbent surface. The empirical Freundlich
isotherm, based on sorption heterogeneous surface, can be

derived assuming a logarithmic decrease in the enthalpy of
sorption with the increase in the fraction of occupied sites
and is given by the following non-linear equation (Freundlich,

1906):

qe ¼ KFC
1=n
e ð3Þ

where KF and 1/n are the Freundlich constants characteristics
of the system, indicating the sorption capacity and sorption

intensity of metal ions on the sorbent, respectively. Eq. (3)
can be linearized in logarithmic form Eq. (4) and the Freund-
lich constants can be determined.

log qe ¼ logKF þ
1

n
logCe ð4Þ
3.7.3. Redlich–Peterson isotherm
Redlich–Peterson isotherm (Redlich and Peterson, 1959) con-
tains three parameters and involves the features of both Lang-
muir and Freundlich isotherms. It can be described in the

following non-linear Eq. (4):

qe ¼
ACe

1þ BCg
e

ð5Þ

It has three isotherm constants, namely, A, B and g, where g
must fluctuate between zero and one and it can characterize
the isotherm. If g = 1, Langmuir will be the preferable

isotherm, while if g = 0, Freundlich will be the preferable
isotherm. Eq. (5) can be converted to the next linear form
through the logarithms as follows:

ln A
Ce

qe
� 1

� �
¼ g ln ðCeÞ þ ln ðBÞ ð6Þ

The isotherm constants can be evaluated from Eq. (5) using

a trial-and-error optimization method, which is applicable to
computer operation was developed to calculate the isotherm
constants through maximization of the coefficient of determi-

nation and the results were included in Table 3.

3.7.4. Tempkin isotherm
Tempkin isotherm model was chosen to evaluate the sorption
potentials of the sorbent for sorbates. The derivation of Temp-
kin isotherm assumes that the fall in the heat of sorption is lin-
ear rather than logarithmic, as implied in Freundlich equation.

Tempkin isotherm has generally been applied in the following
form Eq. (10) (Wang and Qin, 2005):



Table 3 Comparison of the coefficients isotherm parameters for Cr6+ sorption by dried red alga

(DRA) and its activated carbon (CRA).

Model DRA concentration CRA concentrations

10 (g L�1) 3 (g L�1) 4 (g L�1) 5 (g L�1)

Freundlich

1/n 0.688 0.401 0.232 0.212

KF (mg g�1) 0.752 10.32 14.26 14.08

R2 0.913 0.996 1.000 1.000

Redlich–Peterson

A (L g�1) 0.229 9.04 18.48 15.84

B (L mg�1)g 0.023 0.43 0.61 0.26

g 0.739 0.767 1.00 1.00

R2 0.958 0.989 0.982 1.000

Temkin

A (L g�1) 0.461 2.71 12.30 30.49

b (mg L�1) 2.90 7.97 5.14 4.00

R2 0.770 0.999 1.000 0.999

Dubinin–Radushkevich

Qm (mg g�1) 11.77 38.52 27.91 23.46

K · 106 (mol2 kJ�2) 45.60 8.10 0.70 0.20

E (kJ mol�1) 0.104 0.248 0.845 1.581

R2 0.966 0.985 0.996 0.997
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qe ¼
RT

b
ln ðACeÞ ð7Þ

Eq. (6) can be simplified to the Eq. (7):

qe ¼ B lnAþ B lnCe ð8Þ

where B = (RT)/b, qe (mg g�1) and Ce (mg L�1) are the

amounts of adsorbed Cr6+ per unit weight of sorbent and
unsorbed Cr6+ concentration in solution at equilibrium,
respectively. Also, T is the absolute temperature in Kelvin

and R is the universal gas constant, 8.314 J mol�1 K�1. The
constant b is related to the heat of sorption (Pearce et al.,
2003; Akkaya and Ozer, 2005). The sorption data were ana-
lyzed according to the linear form of the Tempkin isotherm

Eq. (7) and the results are shown in Table 3.

3.7.5. Dubinin–Radushkevich isotherm
Dubinin–Radushkevich (D–R) model was chosen to estimate
the characteristic porosity and the apparent free energy of sorp-
tion (Radushkevich, 1949; Dubinin, 1960, 1965). The D–R iso-

therm is more general than the Langmuir isotherm, because it
does not assume a homogeneous surface or constant sorption
potential. The D–Rmodel has generally been applied in the fol-

lowing formEq. (8) and its linear form can be shown in Eq. (13):

qe ¼ Qm expð�Ke2Þ ð9Þ

ln qe ¼ ln Qm � Ke2 ð10Þ

where K is a constant related to the sorption energy, Qm the
theoretical saturation capacity, e is the Polanyi potential, cal-
culated from Eq. (10).

e ¼ RT ln 1þ 1

Ce

� �
ð11Þ

The slope of the plot of ln qe versus e2 gives K (mol2 (kJ2)�1)
and the intercept yields the sorption capacity, Qm (mol g�1).

The mean free energy of sorption (E), defined as the free
energy change when one mole of ion is transferred from infin-
ity in solution to the surface of the solid, was calculated from
the K value using the following relation Eq. (11) (Kundu and
Gupta, 2006):

E ¼ 1ffiffiffiffiffiffi
2K
p ð12Þ

The calculated values of E are given in Table 3. The maxi-
mum sorption capacity obtained Qm obtained using D–R iso-
therm model for sorption of Cr6+ over DRA was 11.77 mg g�1

(Table 3), which is very close to that obtained from Langmuir
isotherm model (Table 2), while the Qm obtained from D–R
isotherm model for CRA (38.52 mg L�1) is very far from that

calculated from Langmuir isotherm model (Table 2). However,
the Qm calculated from D–R and Langmuir isotherm models
at higher doses of activated carbon (4 and 5 g L�1) were very

close to each other. The typical range of bonding energy for
ion-exchange mechanisms is 8–16 kJ mol�1, while the values
of E are 0.104 kJ mol�1 for DRA and 0.248, 0.845 and
1.581 kJ mol�1 for CRA, indicating that physisorption plays

a significant role in the sorption process of Cr6+ ion onto
DRA and CRA, which is in agreement with the result obtained
from pH study for both DRA and CRA sorbents.

3.7.6. Choosing the best isotherm model
The results obtained in Table 2 showed the strong positive

evidence that the sorption of chromium ions onto DRA
and CRA follows the Langmuir isotherm. The applicability
of the linear form of Langmuir model to both of two sor-

bents investigated was proved by the high correlation coeffi-
cients R2 > 0.994. The Qm obtained from the linear forms of
Langmuir were �12 and �66 mg L�1 for DRA and CRA,

respectively. The correlation coefficient obtained from Red-
lich–Peterson isotherm was higher than that obtained from
Freundlich isotherm for data obtained from sorption of
Cr6+ onto DRA, on the other hand, the sorption of Cr6+



Table 4 Summary of some adsorbents used for the removal of Cr(VI) ions from aqueous solution.

Adsorbent Qmax (mg g�1) References

DRA 12.85 This work

CRA 66.67 This work

Terminalia arjuna nuts 28.43 Mohanty et al. (2005)

Chitosan 273 Udaybhaskar et al. (1990)

Non-crosslinked chitosan 80 Schmuhl et al. (2001)

Crosslinked chitosan 50 Schmuhl et al. (2001)

Commercial activated carbon (granular) 6.84 Monser and Adhoum (2002)

Fly ash–China clay 0.31 Panday et al. (1984)

Sphagnum peat moss 43.9 Sharma and Forster (1995)
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over DRA is not modeled by Tempkin isotherm as well
across the concentration range studied. This indicates that
the sorption system is more likely monolayer coverage of
DRA surface by the chromium ions.

The correlation coefficient obtained from analysis of the
sorption of Cr6+ using activated carbon was high for all stud-
ied isotherm models, Langmuir, Freundlich Redlich–Peterson

and Tempkin isotherm models, which indicates the presence
of more than one sorption system in the case of using CRA
as sorbent for chromium sorption. However, the four linear

forms of Langmuir isotherm fit well the results for both the
DRA and CRA for all the chromium ions concentration and
sorbents doses, which indicate that the most-suitable isotherm
for the data set was the Langmuir isotherm.

The different correlations of the various isotherm models
applied for both DRA and CRA implies that different sorp-
tion mechanisms are involved for the alga and its activated car-

bon samples. The sorption capacities obtained for DRA and
CRA are comparable to that obtained for some sorbents
(Table 4) (Mohanty et al., 2005; Udaybhaskar et al., 1990;

Schmuhl et al., 2001; Monser and Adhoum, 2002; Panday
et al., 1984; Sharma and Forster, 1995) such as Terminalia
arjuna nuts (Mohanty et al., 2005), Crosslinked chitosan

(Schmuhl et al., 2001), commercial activated carbon (granular)
and Sphagnum peat moss (Sharma and Forster, 1995) and
much more than that reported for Fly ash–China clay (Panday
et al., 1984).
3.8. Kinetic studies

The kinetics of sorption describes the rate of chromium ions
uptake on DRA and CRA and this rat controls the equilib-
rium time. The kinetics of Cr6+ sorption DRA and CRA is

required for selecting optimum operating conditions for the
full-scale batch process. The kinetic parameters, which are
helpful for the prediction of sorption rate, give important
information for designing and modeling the processes. Thus,

the kinetics of Cr6+ sorption on the activated carbons were
analyzed using pseudo first-order (Lagergren, 1898), pseudo
second-order (Ho et al., 2000), Elovich (Zeldowitsch, 1934;

Chien and Clayton, 1980; Sparks 1986) and intraparticle diffu-
sion (Weber and Morris, 1963; Srinivasan et al., 1988) kinetic
models. The conformity between experimental data and the

model-predicted values were expressed by the correlation coef-
ficients (R2, values close or equal to 1). The relatively higher
value is the more applicable model to the kinetics of Cr6+

sorption.
3.8.1. Pseudo first-order kinetic model
The kinetic data were treated with the Lagergren first-order
model (Lagergren, 1898), which is the earliest known one

describing the sorption rate based on the sorption capacity.
It is generally expressed as follows:

dqt
dt
¼ k1ðqe � qtÞ ð13Þ

where, qe and qt are the sorption capacities at equilibrium and
at time t, respectively (mg g�1), k1 is the rate constant of
pseudo first-order sorption (L min�1). Eq. (12) was integrated

with the boundary conditions of t= 0 to t = t and qt = 0 to
qt = qt and rearranged to the following linear equation:

log ðqe � qtÞ ¼ log ðqeÞ �
k1

2:303
t ð14Þ

The values of log (qe � qt) were linearly correlated with t.
The plot of log (qe � qt) versus t should give a linear relation-
ship from which k1 and predicted qe can be determined from

the slope and intercept of the plot, respectively. The variation
in rate should be proportional to the first power of concentra-
tion for strict surface sorption. However, the relationship
between initial solute concentration and rate of sorption will

not be linear when pore diffusion limits the sorption process.
It was observed that the Lagergren model fits well for the first
20 min and thereafter the data deviate from theory. Thus, the

model represents the initial stages where rapid sorption occurs
well but cannot be applied for the entire sorption process. On
the other hand, the experimental qe values do not agree with

the calculated ones, obtained from the linear plots even the
correlation coefficient R2 is relatively high (Table 5). This
shows that the sorption of Cr6+ onto DRA and CRA can
be applied but not appropriate to describe the entire process

which is not a first-order reaction.

3.8.2. Pseudo second-order kinetic model
Sorption kinetic was explained by the pseudo-second-order
model given by Ho and McKay (Ho et al., 2000) as follows:

dqt
dt
¼ k2ðqe � qtÞ

2 ð15Þ

where k2 (g mg�1 min�1) is the second-order rate constant of
sorption. Integrating Eq. (18) for the boundary conditions
q= 0 to q = qt at t= 0 to t= t is simplified as can be rear-

ranged and linearized to obtain:

t

qt

� �
¼ 1

k2q2e
þ 1

qe
ðtÞ ð16Þ
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Table 5 Comparison of the first- and second-order sorption rate constants, calculated and experimental qe values for sorption of Cr6+

with different initial concentrations onto dried red alga (DRA) and its activated carbon (CRA) concentrations.

Parameter First-order kinetic model Second-order kinetic model

Sorbent Concentration C0 of Cr concentration qe (exp.) k1 qe (calc.) R2 k2 qe (calc.) h R2

DRA

10 (g L�1) 20 1.75 0.04 1.20 0.992 0.044 1.93 0.16 0.998

50 3.68 0.03 1.31 0.955 0.049 3.82 0.72 0.997

75 5.47 0.03 1.51 0.982 0.044 5.63 1.40 0.999

100 7.47 0.02 1.49 0.952 0.042 7.55 2.42 0.999

125 9.60 0.03 2.49 0.942 0.033 9.64 3.11 0.999

CRA

3 (g L�1) 20 6.67 0.04 2.63 0.966 0.032 6.90 1.50 1.000

50 15.74 0.02 6.81 0.965 0.007 16.42 1.85 0.992

75 22.04 0.03 11.82 0.987 0.009 19.34 3.54 0.998

100 28.86 0.02 10.53 0.968 0.006 27.93 4.85 0.994

125 34.99 0.02 8.27 0.946 0.006 35.23 8.98 0.998

4 (g L�1) 20 5.00 0.05 2.30 0.974 0.043 5.21 1.16 1.000

50 12.50 0.02 6.16 0.980 0.008 13.02 1.36 0.993

75 18.06 0.03 9.50 0.965 0.006 18.94 2.10 0.993

100 23.85 0.02 10.27 0.974 0.005 24.75 3.28 0.994

125 27.20 0.02 7.96 0.954 0.008 27.93 6.02 0.998

5 (g L�1) 20 4.00 0.07 1.28 0.989 0.140 4.07 2.31 1.000

50 10.00 0.03 5.10 0.992 0.013 10.59 1.44 0.998

75 14.75 0.04 7.95 0.967 0.009 15.63 2.18 0.996

100 19.57 0.03 7.89 0.995 0.008 20.37 3.19 0.997

125 22.97 0.02 6.00 0.955 0.009 23.53 5.25 0.997

C0 (mg L–1), qe (mg g�1), k1 (min�1), k2 (g mg�1 min�1) and h (mg g�1 min�1).
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The second-order rate constants were used to calculate the ini-
tial sorption rate, given by the following Eq. (16):

h ¼ k2q
2
e ð17Þ

If the second-order kinetics is applicable, then the plot of t/qt
versus t should show a linear relationship. Values of k2 and

equilibrium sorption capacity qe were calculated from the
intercept and slope of the plots of t/qt versus t (Fig. 7). The lin-
ear plots of t/qt versus t show good agreement between exper-

imental and calculated qe values at different initial Cr6+ and
adsorbent concentrations (Table 5). The correlation coeffi-
cients for the second-order kinetic model are greater than
0.990. In the view of these results, it is believed that the

pseudo-second-order kinetic model provided good correlation
for the sorption of Cr6+ onto DRA and CRA at different ini-
tial Cr6+ and sorbent concentrations in contrast to the pseudo-

first-order model and intraparticle diffusion model.
Moreover, values for the product h (initial sorption) that

represents the rate of initial sorption, is practically increased

from 0.16 to 3.11 and 1.50 to 8.98, 1.16 to 6.02 and 1.44 to
5.25 mg g�1 min�1 with the increase in initial Cr6+ concentra-
tions from 20 to 125 mg L�1 using dried red alga (10 g L�1)
and its activated carbon (3, 4 and 5 g L�1), respectively. Also,

initial sorption rate decreased from 8.98 to 5.25 mg g�1 min
with the increase in activated carbon dose concentrations from
3 to 5 g L�1 for 125 mg L�1 of Cr6+ concentration (Table 5). It

was observed that the pseudo-second-order rate constant (k2)
decreased with the increase in initial Cr6+ concentration for
all studied doses of DRA and CRA.
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3.8.3. Elovich kinetic model
Elovich kinetic equation is another rate equation based on

the sorption capacity, which is generally expressed as
(Zeldowitsch, 1934; Chien and Clayton, 1980; Sparks, 1986):
Table 6 The parameters obtained from Elovich kinetics model an

concentrations.

Sorbent dose (C0) Cr
6+ Elovich

b a

DRA

10 (g L�1) 50 2.01 7.84

75 1.72 67.91

100 1.59 760.63

125 1.30 1650.8

CRA

3 (g L�1) 50 0.49 29.09

75 0.32 24.78

100 0.25 39.57

125 0.25 280.87

4 (g L�1) 50 0.51 8.28

75 0.35 12.17

100 0.28 21.67

125 0.33 199.99

5 (g L�1) 50 0.64 9.42

75 0.46 18.41

100 0.43 84.29

125 0.37 144.23

C0 (mg L�1), a (g mg�1), b (mg g�1 m�1), Kdif (mg g�1 min�1/2) and C (m
dqt
dt
¼ a expð�bqtÞ ð18Þ

where a is the initial sorption rate (mg g�1 min�1) and b is the

de-sorption constant (g mg�1) during any one experiment.It is
simplified by assuming abt� t and by applying the boundary
conditions qt = 0 at t = 0 and q= qt at t= t Eq. (18) is

formed as follows:

qt ¼
1

b
lnðabÞ þ 1

b
ln ðtÞ ð19Þ

If Cr6+ sorption by DRA and CRA fits the Elovich model,
a plot of qt versus ln (t) should yield a linear relationship with a
slope of (1/b) and an intercept of (1/b) · ln (ab) (Fig. 8). Thus,
the constants can be obtained from the slope and the intercept
of the straight line (Table 6). For DRA, the initial sorption
rate a increase from 7.84 to 1650.81 mg g�1 min�1 with the
increase of the initial chromium concentration from 50 to

125 mg g�1, while a increase from 29.09 to 280.87, 8.28 to
199.99 and 9.42 to 144.29 mg g�1 min with increase of initial
chromium concentration from 50 to 125 mg L�1 if adsorbed

onto 3, 4 and 5 g L�1 of CRA, respectively. Similar pattern
is mentioned above for the initial sorption rate, h, obtained
from pseudo-second-order model. The desorption constant,

b, decrease from 2.01 to 1.3 g mg�1 with the increase of initial
chromium concentration from 50 to 125 mg L�1, while b
decrease from 0.49 to 0.25, 0.50 to 0.33 and 0.64 to 0.37 g mg
�1 with the same increase in the initial chromium concentra-

tion over CRA of 3, 4 and 5 g L�1 (Table 6).

3.8.4. The intraparticle diffusion model
The intraparticle diffusion kinetic model can be applicable if
the rate limiting step is the diffusion of metal ions into the sor-
bents (Weber and Morris, 1963; Srinivasan et al., 1988). The

possibility of intra-particular diffusion is explored by using
the following equation:

qt ¼ Kdift
1=2 þ C ð20Þ
d intraparticle diffusion model using different initial chromium

Intraparticle diffusion

R2 Kdif C R2

0.981 0.19 1.91 0.991

0.990 0.23 3.41 0.971

0.989 0.15 5.82 0.979

0.992 0.17 7.82 0.979

0.948 0.79 7.31 0.981

0.953 0.98 13.22 0.990

0.996 0.98 18.11 0.986

0.989 0.76 27.11 0.976

0.991 0.60 5.98 1.000

0.993 0.79 9.54 0.983

0.998 0.86 14.57 0.963

0.992 0.71 19.61 0.956

0.989 0.26 7.27 0.960

0.985 0.15 13.03 0.957

0.980 0.57 13.48 0.960

0.999 0.32 18.29 0.993

g g�1).
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where C is the intercept and Kdif is the intra-particle diffusion

rate constant. The values of qt correlated linearly with values
of t1/2 (Fig. 9) and the rate constant Kdif directly evaluated
from the slope of the regression line.

The values of intercept C (Table 6) provide information
about the thickness of the boundary layer, the resistance to
the external mass transfer increase as the intercept increase.

R2 values given in Table 6 are more than 0.95 for both sorbents
used in this study, confirming that the rate-limiting step is
actually the intra-particle diffusion process. The intra-particle
diffusion rate constant, Kdif, was in the range of (0.15–

0.23 mg g�1 min�0.5) and (0.15–0.98 mg g�1 min�0.5) for
DRA and CRA, respectively. The linearity of the plots demon-
strated that intra-particle diffusion played a significant role in

the uptake of the chromium by sorbent. However, Fig. 9a
shows two lines at high initial chromium concentrations over
DRA, while Fig. 9b shows two lines for all studied initial chro-

mium concentrations over activated carbon, which confirms
that sorption of the chromium onto the DRA and its activated
carbon is independent of one another, as plot usually shows
two or more intersecting lines depending on the exact mecha-

nism, the first one of these lines representing surface sorption
and the second one intra-particle diffusion. The absence of
such features in the plots of DRA at initial chromium concen-

trations of 50 and 75 mg L�1 indicated that the steps were
indistinguishable from one another and that the intraparticle
diffusion is the prominent process right from the beginning

of chromium–DRA interaction. However, still there is no
sufficient indication about which of the two steps was the
rate-limiting step. Ho (2003) has shown that if the intraparticle
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diffusion is the sole rate-limiting step, it is essential for the qt
versus t1/2 plots to pass through the origin, which is not the
case in both of Fig. 9, it may be concluded that surface sorp-
tion and intraparticle diffusion were concurrently operating
during the chromium–DRA and CRA interactions. Therefore,

the intraparticle diffusivity is the slower step in the sorption
process and its effect on CRA is smaller due to porosity of
the material. Meanwhile, at low initial concentrations of Cr,

the dual mechanism is not so obvious in the case of DRA,
which may be attributed to the fact that the majority of the
sorbed quantity is in the outer surface of the material.

3.9. Applicability

With the above results in hand, our attention was turned
toward the study of the effect of salinity and real wastewater
on the capability of the DRA and CRA on removal of Cr6+

ions from solution. The above work was achieved using syn-

thetic sea water, natural sea water and real wastewater.
Fig. 10 shows that the percentage of Cr6+ removal from aque-
ous solution prepared by dissolving of the Cr6+ into distilled

water, wastewater, sea water and synthetic sea water was near
65% and 94% for DRA and CRA, respectively, which indi-
cates that the maximum sorption capacities were not affected

by the changing of the type of chromium solution. These
results indicate that the two sorbents DRA and CRA are
applicable material for removal of Cr6+ ions from different
types of aqueous solutions including wastewater.

4. Conclusion

The indigenous DRA and CRA have been identified as effec-
tive adsorbents to remove different initial concentrations of
toxic Cr6+ ions from various types of its aqueous solutions.

The sorption process is related to the pH of solution, pH 1.0
is the optimal. The sorption kinetic data can be described
by the second-order kinetic and Elovich models. Furthermore,

the equilibrium data of sorption are in good agreement
with the four linear forms of Langmuir model. The CRA
exhibited high sorption capacity under several initial chro-

mium and sorbent dose concentrations. The sorption process
was found to be controlled by the film diffusion at lower con-
centrations of the sorbate and shifted to particle diffusion at
high concentration. The proposed sorbents are efficient, envi-

ronment friendly and can reduce the huge amount of indis-
criminate effluent discharges around the small industry
concerns.
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