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Abstract Good yield of some substituted styryl 40-fluorophenyl ketones were synthesized by sol-

vent free fly-ash:water catalyzed eco-friendly environmentally benign Aldol reaction. These chal-

cones were characterized by physical constants, micro analysis and spectral data. Antimicrobial

and insect antifeedant activities were measured in all chalcones. The group frequencies of all chal-

cones like carbonyl stretches mCO, C–F and the deformation modes of vinyl part of CH– out of

plane, in-plane, CH‚CH out of plane and >C‚C< out of plane (cm�1), the vinyl hydrogen and

carbons d(ppm) of Ha, Hb, Ca, Cb and CO were assigned and these frequencies were correlated with

various kinds of substituent constants. From the results of statistical analysis the influence of elec-

tronic effects of substituents on the spectral data of carbonyl group, vinyl proton and carbons of the

ketones have been explained.
ª 2011 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

Green chemistry provides good eco-friendly methods for the
synthesis of organic compounds without solvent. This method

involving the aqueous phase reaction is of very interesting due
to operative simplicity, work up easier, good yield, non-hazard-
ousness and is safer for environment. Chemists and environ-
mental scientists reported various solvent methods for organic
synthesis. The use of bases for synthesis of chalcones with sol-
vent or without solvent in chalcone chemistry is important
(Thirunarayanan et al., 2010; Guthrie and Wang, 1991; Cha-

loner et al., 1991; Schmid and Whitesides, 1991; Straub, 1995).
Literature survey reveals that there is less number of work re-
ported for synthesis of chalcones using bases in aqueous phase

aldol condensation reaction between ketones and aldehydes.
Various reagents are used for solvent free synthesis like, metals
and metal chelates (Waldemar et al., 2000; Babua and Perumal,

1997), carbonates (Zhang et al., 2003), chiral boronate ester
(Richard et al., 2006), phosphate (Pore et al., 2007), organolith-
ium (Daskiewicz et al., 1999), sodium hydroxide (Fringueli

et al., 2002), silica-sulphuric acid (Thirunarayanan, 2007a,b;
Thirunarayanan and Vanangamudi, 2006a, 2007), alumina
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(Esmaeili et al., 2005), organic ionic liquids (Ranu and Jana,
2005, 2006; Ranu et al., 2003; Ranu and Banerjee, 2005) me-
tal-nanoparticles (Raveendran et al., 2003) and potassium

hydroxide-ethanol (Straub, 1995). Kalluriya and Ray (2003)
synthesized more than 60% yield of sydenone chalcones using
grinding of aqueous sodium hydroxide-heterogeneous reaction

medium with aldehydes. Basaif et al. (2005) reported more than
60% yield of some heteroaryl chalcones obtained by the solvent
free reaction with aldehydes in cooling condition in presence of

surfactants. VenkatReddy et al. (2000) reportedmore than 70%
yield of chalcones synthesized using zinc chloride in microwave
techniques. Thirunarayanan (2008a) reported aqueous potas-
sium hydroxide used as a reagent for synthesis of some aryl chal-

cones by grinding aryl aldehydes and ketones. Gopalakrishnan
et al. (2006, 2007) have reported that fly-ash is one of the good
green catalyst for organic synthesis and they synthesized some

heterocyclic compounds by solvent free fly-ash catalyzed reac-
tion. The authors wish to report an efficient and selective meth-
od for condensation of 4-fluorophenyl methyl ketone with

various m- and p-substituted benzaldehydes under solvent free
conditions in presence of fly-ash:water catalyst to yield the
respective E-2-propen-1-ones and to study the antibacterial,

antifungal, insect antifeedant activities and the quantitative
structure property relationship from the group frequency. In
this method during the reaction of 4-fluoroacetophenone and
aldehydes, they decomposed slowly, forming the products in

good yield. Themethylene units of chalcones derived from cyclic
or acyclic ketones are found in many naturally occurring com-
pounds and they are useful for the synthesis of pyrimidine deriv-

atives (Lévai, 2004). The basic skeleton of chalcones is widely
figured in natural products and are known to havemultipronged
activity (Thirunarayanan, 2003, 2008a; Thirunarayanan et al.,

2010). Many of the chalcones are used as agrochemicals and
drugs (Mirinda et al., 2000; Monostory et al., 2003; Nowa-
kowska, 2007;Majinda et al., 2001; SitaramKumar et al., 2007).
2. Experimental

2.1. Materials and methods

All chemicals used were purchased from Sigma–Aldrich and E-
Merck chemical company. Fly-ash is collected from Thermal

Power Plant-II, Neyveli Lignite Corporation, Neyveli, Tamil
Nadu, India. Melting points of all chalcones were determined
in open glass capillaries on Mettler FP51 melting point appara-

tus and are uncorrected. Infrared spectra (KBr, 4000–400 cm�1)
were recorded on AVATAR-300 Fourier transform spectro-
photometer. The NMR spectra are recorded in INSTRUM

AV300 spectrometer operating at 300 MHz for 1H spectra
and 75.46 MHz for 13C spectra in CDCl3 solvent using TMS
as internal standard. Electron impact (EI) (70 eV) and chemical

ionization mode FAB+ mass spectra were recorded with a
JEOL JMS600H spectrometer. Microanalyses of all chalcones
were performed in Elementar Model Vario EL III Analyzer.

2.2. Synthesis of substituted styryl 4-fluorophenyl ketones
(Thirunarayanan, 2009, 2010)

Appropriate mixture of 4-fluoroacetophenone (0.01 mol) and

m- and p- substituted benzaldehydes (0.01 mol), fly-ash (1 g)
and 15 ml of water were refluxed for 4 h (Scheme 1). The com-
pletion of reaction was confirmed by TLC. The reactionmixture
was transferred into a 100 ml corning glass beaker and extracted

with 10 ml of dichloromethane. After evaporation of solvent the
pure product were obtained more than 65% by recrystallization
with ethanol–dioxane mixture and dried in vacuum desiccator.

The purity of known compounds was compared with authentic
samples of physical constants and spectral data. The character-
ization data of all chalcones are presented in Table 1 and the

spectral data are shown in Tables 2–4.

3. Results and discussion

Various m- and p-substituted benzaldehydes containing either
electron-releasing or withdrawing groups, 4-fluorophenyl
methyl ketone, and fly-ash:water were taken in a round bot-

tomed flask and subjected to aldol condensation by reflux-
ation. During the heating the reactants yield the product by
decomposition of reactants. The completion of reaction was
monitored by TLC. The driving force of the reaction is the

heat of formation while the refluxing reactants and fly-ash dur-
ing which they decompose slowly into the respective E-2-pro-
pen-1-ones. The yield of the product is more than 65%. The

advantages of this method include mild reaction condition,
good yield, slow decomposition of the reactants, environmen-
tally benign reaction, eco-friendly nature since no huge hazard-

ous catalyst or solvent is required.

3.1. Spectral study

Spectroscopic technique is a versatile tool for providing infor-

mation about the structural diagnosis of most of the organic
substrates. It also finds its frequent use in the conformational
analysis and in understanding the influence of electronic and

conformational effects on chemical shifts and coupling con-
stants. 1H and 13C NMR techniques have been extensively ap-
plied in deriving stereo chemical information about a wide

variety of systems. Vicinal coupling values have been used in
conformational analysis as it can give clue about the orientation
of the substituent. Quantitative structure activity relationship

study and quantitative property relationships study deal the pre-
diction of ground state molecular equilibration (Wang et al.,
2005; Mulliken, 1939) of organic substrates such as s-cis and s-
trans isomers a,b-unsaturated ketones (Thirunarayanan et al.,

2007) from spectral data. Their use in structure parameter cor-
relations has become popular for studying biological activities
(Rajabi et al., 2005), normal co-ordinate (Sharma et al., 2002;

Krishnakumar and Ramasamy, 2002) analysis and transition
states of reaction mechanisms (Dass, 2001). Infrared spectros-
copy is a powerful tool technique for the qualitative and quan-

titative study of natural and synthetic molecules (Griffiths and
Chalmers, 2002). In the importance of material sciences, IR
spectroscopy can provide the information about the nature,

concentration and structure of samples at the molecular levels
(Pellerin and Pelletier, 2005). Numerous works have been de-
voted to the reactivity of a,b-unsaturated carbonyl compounds
particularly, the theoretical aspects of substituent effects were

studied on long range interactions in the b-sheet structure (Hor-
váth et al., 2005) of oligopeptides. QSAR study of substituted
benzo[a] phenazines (Chen et al., 2005) cancer agents, Diels–Al-

der reactions (Dumont and Chaquin, 2006), density functional
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Scheme 1 Fly-ash:water catalyzed aldol reaction between 4-fluoroacetophenone and various substituted benzaldehydes.
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theory (Senthilkumar et al., 2006), gas phase reactivity of alkyl
allyl sulfides (Izadar and Gholami, 2006), rotational barriers

in selenomides (Kaur et al., 2006). Moraleda et al. (2006) has
been studied the quantitative structural relationships in a,b-
unsaturated carbonyl compounds between the half wave reduc-

tion potential, the frontier orbital energy and the Hammett rp
values. Dhami and Stothers (1963a,b) have extensively studied
the 1H NMR spectra of a large number of methylketones and

styrenes with a view to establish the validity of the additivity
of substituent effect in aromatic shielding first observed by
Lauterber (1961). Savin et al. (1975) studied the NMR data of
unsaturated ketones of the type RC6H4–CH‚CH–COMe3
and soughtHammett correlations for the ethylenic protons. Sol-
caniova and Toma (1980) have measured 1H and 13C NMR
spectra of substituted styrenes, styryl phenyls and they obtained

good Hammett correlations for the olefinic protons and car-
bons. Now a day’s scientists (Sung and Ananthakrishna Nadar,
2000; Thirunarayanan and Ananthakrishna Nadar, 2006a,b;

Shanthi and Kabilan, 2007) have paid more interest to correlate
the group frequencies of spectral datawithHammett substituent
constants to explain the substituent effects of organic com-
pounds. Recently Thirunarayanan (2008b) investigated elabo-

rately the single and multi-substituent effects on alpha and
beta hydrogen and carbons of some naphthyl chalcones.Within
the above view there is no information available for the study of

structure parameter correlation with the help of infrared and
NMR spectral data in literature in the past with substituted sty-
ryl 40-fluorophenyl ketones. Hence the authors have obtained

the above ketones by fly-ash:water catalyzed crossedAldol reac-
tion between 4-fluorophenyl methyl ketone and various m- and
p-substituted benzaldehydes and characterized by physical con-

stants, microanalyses and spectral data. In the present study of
this section the author evaluates the substituent effects of as-
signed group frequencies of all chalcones like carbonyl stretches
mCO, C–F and the deformation modes of vinyl part CH out of

plane, in-plane, CH‚CH and >C‚C< out of planes (cm�1),
the vinyl hydrogen and carbons d(ppm) of Ha, Hb, Ca, Cb, CO
are assigned and these frequencies are correlated with various

kinds of substituent constants.

3.1.1. Correlation of IR spectral data

The effect of substituents on the infrared carbonyl frequencies

has been reported previously in several studies (Thirunaraya-
nan and Ananthakrishna Nadar, 2006a,b; Jones et al., 1957;
Krueger, 1973; Stewart and Yates, 1958, 1960; Thirunaraya-

nan and Vanangamudi, 2006b; Thirunarayanan and Jaishan-
kar, 2003; Iida et al., 2007; Arul Kumaran et al., 2010). The
carbonyl group stretching frequency can be assumed to be
‘‘mass insensitive’’. The carbonyl group frequency has been
successfully correlated with Hammett r constants in acetophe-

nones (Brown and Okamoto, 1957), benzophenones (Fuson
et al., 1954) and benzoyl chlorides (Flett, 1948).

While seeking Hammett correlation involving group fre-

quencies, the form of the Hammett equation employed is

m ¼ qrþ mo ð1Þ

where mo is the frequency for the parent member of the series.
The series of ketones chosen in the present study possess

a,b-unsaturated carbonyl system. They are expected to exist
in s-cis and s-trans conformations are shown in Fig. 1. The
carbonyl stretching frequencies (cm�1) of s-cis and s-trans
isomers of present study are presented in Table 2. The

stretching frequencies for carbonyl absorption are assigned
based on the assignments made by Hays and Timmons
(1968). The lowest carbonyl frequency is observed in both

the conformers when strongest electron withdrawing groups
are present in phenyl ring while the highest frequency is
noted when the strongest electron attracting group present

in phenyl ring. The same trend was followed for assigned
carbonyl frequencies of s-cis and s-trans conformers. These
frequencies are separately analyzed through various Ham-

mett sigma constants using single and multi-regression anal-
ysis. The results of the statistical analysis are presented in
Table 5. In all the correlation positive q values are obtained.
This shows that the normal substituent effects operate in all

the compounds. In the case of the s-cis conformers the cor-
relation of mCO with Hammett r, r+ and rI values seems
satisfactory when H substituent is excluded. The correlation

of rR is poor. This is due to the conjugative effect on the
carbonyl group from the substituent shown in Fig. 2. The
multi-regression analysis (Swain and Lupton, 1968) answers

satisfactorily with rI and rR or F and R parameters. The
correlation equations (2) and (3) are:

mCOðs-cisÞ ðcm�1Þ¼ 1646:272ð�7:713Þþ37:641ð�1:814ÞrI

þ14:210ð�1:845ÞrR

ðR¼ 0:900; n¼ 8; P> 90%Þ ð2Þ

mCOðs-cisÞ ðcm�1Þ¼ 1637:769ð�8:107Þþ51:586ð�1:723ÞF
þ18:804ð�1:12ÞR ðR¼ 0:903;

n¼ 8; P> 90%Þ ð3Þ

The correlations observed between mCO s-trans (cm�1) and

Hammett sigma constants are presented in Table 5 and all cor-
relations fail including F and R parameters. This may mean
that the substituents are incapable of predicting substituent ef-
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fects independently on carbonyl frequencies as per the reason
stated earlier. It is well known that polar and inductive effects
(Thirunarayanan and Ananthakrishna Nadar, 2002) less pro-

nounced considerably with distance. The substituents are sep-
arated from the carbonyl group by four or more carbon atoms
in the compounds.

A comparison ofq values for two isomers in relation to a con-
stant reveals that their relative abilities to transmit electronic ef-
fects are different. The ratio of q cis/q trans is 0.762. This result is

in accordance with the hypothesis that, as the two conformers
have different approaches of degree of coplanarity and their
abilities to transmit electronic effects become different.

The assigned mC–F (cm�1) stretches (Kemp, 1987; Silver-

stein et al., 1963) are presented in Table 2. These frequencies
are correlated with various Hammett substituent constants.
The results of statistical analysis are presented in Table 5.

The correlation of C–F vibrations with r, r+ and rR constants
gave satisfactory and good result and that with other constants
rI, F and R fails. Similarly the multiparameter correlations

also fail with the above stretches.
The measured deformation modes of C–H in-plane and out

of plane and CH‚CH and >C‚C< out of plane modes in

substituted styryl 40-fluorophenyl ketones are presented in Ta-
ble 2. The statistical analysis of all observed deformation
modes with various Hammett substituent constants are pre-
sented in Table 5. In Table 2, the observed deformation modes

predict that the reactions occur normally with substituent con-
stants by the absorption trend. In the styryl moiety, with elec-
tron withdrawing groups, absorption is higher and with

electron donating groups, absorption is lower. This trend fails
in present ketones. Because ketones with nitro-group absorb at
some what less values. Therefore the correlation is reduced or

reversed. The polar effects, inductive and resonance effects of
substituents do not affect the above group absorptions. There-
fore these substituents reversed their substituent effect and un-

able to predict the reactivity on the deformation modes.
The correlations of all deformation modes of styryl 40-fluo-

rophenyl ketones have been done with all kinds Hammett sub-
stituents constants. The results of statistical analysis of these

ketones are shown in Table 5. In this series of ketones all cor-
relations are very poor including multi-regression analysis. In
this series of ketones some of the correlations produce negative

q values. This shows that the def. modes of vibrations are un-
able to predict the reactivity through their substituent effects.
This is due to the reversal of substituent effect and the conju-

gative structure affects the effect of substituents on the absorp-
tions in all ketones shown in Fig. 2. The ratio of q between –
CH in-plane def. and –CH out of plane def. is �0.60. This value
shows that the correlations of all kinds of –CH absorptions

with substituent constants are not obeyed.

3.2. NMR spectral correlation

3.2.1. 1H NMR spectra

The 1H NMR spectra of nine chalcones under investigation are

recorded in deuterochloroform solutions employing tetrameth-
ylsilane (TMS) as internal standard. The signals of the ethyl-
enic protons were assigned. They were calculated as AB or

AA0 BB0 systems, respectively. The chemical shifts of Ha are
at higher field than those of Hb in this series of ketones. The
ethylenic protons give an AB pattern and the b-proton doublet



Table 2 Infrared spectral data (m, cm�1) of substituted styryl 40-fluorophenyl ketones.

Entry X Ar–F Ar–H CO (s-

cis)

CO (s-

trans)

CHop

vinyl

CHip

vinyl

CH‚CHop

vinyl

Substituent in

styryl part

3 H 1098.35 3028.27 1662.88 1608.98 764.86 1153.30 1032.81 –

4 p-Br 1094.36 2993.26 1665.36 1619.34 772.98 1153.27 1028.31 –

5 m-Cl 1082.64 2923.82 1667.04 1603.99 780.65 1156.87 1020.67 –

6 p-Cl 1088.29 3065.51 1661.53 1607.00 784.22 1157.63 1021.08 –

7 p-

N(CH3)2

1073.75 2923.82 1662.14 1601.03 732.65 1157.46 1010.70 3332.55 (–

N(CH3)2)

8 p-OCH3 981.06 2988.03 1659.91 1604.54 742.54 1149.49 1021.75 1231.78 (C–O–C)

9 p-CH3 1030.05 3031.04 1659.16 1606.34 739.86 1152.36 1096.61 2852.81 (CH3)

10 o-NO2 1014.95 3054.93 1667.87 1626.15 750.06 1127.94 1072.50 1510.32 (–NO2)

11 m-NO2 1004.85 2998.24 1669.83 1625.25 744.92 1159.75 1020.09 1525.25 (–NO2)

Table 3 1H NMR spectral data (d, ppm) of substituted styryl 40-fluorophenyl ketones.

Entry X 40-F Ph ring (m, 4H) Ha (d, 1H) Hb (d, 1H) Styryl Ph ring (m, 4H) Substituent in styryl part

3 H 8.022–8.079 7.493 (J= 15.6 Hz) 7.829 (J = 15.6 Hz) 7.125–7.414 –

4 p-Br 7.960–8.231 7.563 (J= 16.4 Hz) 7.823 (J = 16.4 Hz) 7.201–7.528 –

5 m-Cl 8.025–7.076 7.513 (J= 16.5 Hz) 7.746 (J = 16.5 Hz) 7.138–7.393 –

6 p-Cl 8.026–8.072 7.498 (J= 15.6 Hz) 7.780 (J = 15.6 Hz) 7.146–7.258 –

7 p-N(CH3)2 8.032–8.049 7.356 (J= 15.8 Hz) 7.765 (J = 15.8 Hz) 6.867–7.247 2.023 (s, 6H, N(CH3)2)

8 p-OCH3 8.036–8.054 7.394 (J= 15.3 Hz) 7.801 (J = 15.3 Hz) 7.119–7.246 3.873 (s, 3H, (OCH3))

9 p-CH3 8.023–8.075 7.490 (J= 15.6 Hz) 7.825 (J = 15.6 Hz) 7.137–7.259 2.390 (s, 3H, (CH3))

10 o-NO2 8.080–8.164 7.590 (J= 15.7 Hz) 7.731 (J = 15.7 Hz) 7.268–7.318 –

11 p-NO2 8.063–8.500 7.646 (J= 15.9 Hz) 7.853 (J = 15.9 Hz) 7.248–7.617 –

Table 4 13C NMR spectral data (d, ppm) of substituted styryl 40-fluorophenyl ketones.

Entry X CO Ca Cb C1 C2 C3 C4 C5

3 H 188.73 121.46 144.99 134.68 128.74 130.62 128.44 130.62

4 p-Br 188.76 121.54 144.74 134.62 128.53 131.64 122.65 131.64

5 m-Cl 188.24 122.46 143.35 136.65 126.57 134.45 127.16 130.71

6 p-Cl 188.45 121.85 143.48 133.02 129.24 129.57 134.30 129.57

7 p-N(CH3)2 188.85 119.32 145.30 123.11 127.58 115.46 148.51 115.46

8 p-OCH3 188.80 119.12 144.87 130.24 129.41 114.38 161.70 114.38

9 p-CH3 188.85 120.45 145.11 131.96 128.48 129.69 141.20 129.48

10 o-NO2 188.92 125.03 148.47 130.41 140.43 125.03 129.24 133.55

11 m-NO2 187.89 122.25 141.84 136.45 124.03 148.66 122.23 130.05

C6 C10 C20 C30 C40 C50 C60 Substituent in styryl part

3 H 128.74 134.47 134.43 115.85 167.23 115.85 134.43 –

4 p-Br 128.74 133.68 131.49 116.92 168.93 119.92 131.49 –

5 m-Cl 122.71 134.73 131.56 115.75 167.32 115.85 131.56 –

6 p-Cl 129.24 136.52 131.18 115.92 167.32 115.92 131.18 –

7 p-N(CH3)2 127.58 134.74 131.00 115.75 167.35 115.75 131.00 45.63 (N(CH3)2)

8 p-OCH3 129.41 134.71 130.98 115.75 167.09 115.75 130.98 55.37 (OCH3)

9 p-CH3 128.48 134.67 131.06 115.79 167.17 115.79 131.06 21.51 (CH3)

10 o-NO2 126.95 133.59 131.37 116.03 168.02 116.03 131.37 –

11 p-NO2 131.28 133.84 131.15 116.08 167.53 116.08 131.15 –
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in most cases is well separated from the signals of the aromatic
protons. The assigned chemical shifts of the ethylenic protons

are presented in Table 3.
In nuclear magnetic resonance spectra, the proton or the

13C chemical shifts (d) depend on the electronic environment
of the nuclei concerned. These shifts can be correlated with

reactivity parameters. Thus the Hammett equation may be
used in the form as
log d ¼ log d0 þ qr ð4Þ

where d0 is the chemical shift in the corresponding parent
compound.

The assigned Ha and Hb proton chemical shifts (ppm) are
correlated with various Hammett sigma constants. The results
of statistical analysis are presented in Table 5. All the at-

tempted correlation involving substituent parameters gave
only positive q value. This shows that the normal substituent
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effect operates in all chalcones. The Ha proton chemical shifts
satisfactorily correlate with Hammett substituent constants.
The rI constants produce the correlation excluding the meth-

oxy substituent in styryl part. The correlations of Hb proton
chemical shifts with Hammett r and rI constants are satisfac-
tory excluding nitro substituents in styryl part and with the

other constants fail.
From Table 5 the r values show that the substituents pre-

dicting the reactivity on Ha and Hb are not equal in all ketones.
This is in contrast to the findings of Solcaniova and Toma

(1980). In fact the extent of transmission of electrical effect is
almost same from the substituents to Ha and Hb in the present
investigation. It has been the observation of Solcaniova et al.

(1976) that the chemical shifts of the b-protons do not corre-
late with any type of substituent parameters. But in the present
investigation the chemical shifts of both protons correlate sat-

isfactorily with Hammett sigma constants.
Application of Swain–Lupton (Swain and Lupton, 1968)

treatment to the relative chemical shifts of Ha and Hb with F

and R values is successful with either resonance, inductive or
F and R parameter generates the multi-regression equations
(5)–(8):

dHa ðppmÞ ¼ 7:440ð�0:043Þ þ 0:195ð�0:011ÞrI

þ 0:472ð�0:010ÞrR

ðR ¼ 0:900; n ¼ 8; P > 90%Þ ð5Þ

dHa ðppmÞ ¼ 7:518ð�0:022Þ þ 0:091ð�0:040ÞF
þ 0:207ð�0:011ÞR

ðR ¼ 0:963; n ¼ 8; P > 95%Þ ð6Þ
dHb
ðppmÞ ¼ 7:816ð�0:024Þ þ 0:073ð�0:005ÞrI

þ 0:730ð�0:010ÞrR

ðR ¼ 0:901; n ¼ 8; P > 90%Þ ð7Þ

dHb
ðppmÞ ¼ 7:829ð�0:033Þ þ 0:816ð�0:071ÞF

þ 0:496ð�0:043ÞR
ðR ¼ 0:900; n ¼ 8; P > 90%Þ ð8Þ
3.2.2. 13C NMR spectra

Physical organic chemists and scientists (Annapoorna et al.,

2002; Dhami and Stothers, 1963a,b; Thirunarayanan,
2007a,b) have made an extensive study of 13C NMR spectra
for a large number of different ketones and styrenes. They
found a linear correlation of the chemical shifts of Cb carbons

with Hammett r constants in styrenes. Attempts to correlate
the Ca chemical shifts with any kind of r constants fail in their
systems. An attempt is made in the present investigation to

determine substituent effects on vinyl Ca, Cb and carbonyl car-
bon chemical shifts of the 40-fluorophenyl chalcones to what
extent. The 13C chemical shifts of vinyl Ca, Cb and carbonyl

carbons of all ketones are given in Table 4.
The chemical shifts (ppm) observed for the carbonyl car-

bons are correlated with Hammett constants and the results
of statistical analysis are presented in Table 5. All correlations

gave negative slopes with fair degree of r values. This negative
slope shows that the substituent effect reverses on the carbonyl
carbon absorptions in all ketones. The correlation of r, r+ and

rI constants with dC‚O (ppm) are satisfactory excluding some
substituents such as nitro and methoxy groups and when they
are included, the correlation fails. Poor correlation was ob-

tained with rR constants. This is due to the reason stated ear-
lier that the conjugation exists between the substituent and the
carbonyl group shown in Fig. 2.

In view of the inability of some of the r constants to pro-
duce individually satisfactory correlations, it was thought
worthwhile to seek multiple correlations involving either rI
and rR constants or Swain–Lupton (Swain and Lupton,

1968) F and R parameters produce Eqs. (9) and (10):

d
C@O ðppmÞ ¼ 188:834ð�0:216Þ þ 0:746ð�0:050ÞrI

þ 0:129ð�0:060ÞrR

ðR ¼ 0:900; n ¼ 8; P > 90%Þ ð9Þ

d
C@O ðppmÞ ¼ 188:750ð�0:272Þ � 0:623ð�0:058ÞF

þ 0:193ð�0:039ÞR
ðR ¼ 0:900; n ¼ 8; P > 90%Þ ð10Þ

The 13C chemical shift (ppm) values of vinyl carbons of all
ketones are correlated with various Hammett substituent con-
stants. The results of statistical analysis of substituent effects

on carbonyl carbons are shown in Table 5. Satisfactory corre-
lations obtained with Ca carbon chemical shifts and produce
positive q values with r and r+ constants. This implies that

the normal substituent effect operates in all constants with
Ca carbons in all ketones. The negative q values in rI and rR
constants imply that the substituent effects are reversed in

these constants and give poor correlation. This is due to the
fact that the resonance and inductive effects are not operating
considerably for prediction of reactivity through the conjuga-

tive structure of all chalcones in Fig. 2. The Swain–Lupton
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(Swain and Lupton, 1968) parameters correlation also fails

within these carbon chemical shifts. The individual correla-
tions of Cb carbon chemical shifts with Hammett r, r+ and
rI constants produce satisfactory correlation excluding p-
CH3 substituent and fail with rR constants. All correlations

gave negative q values. The negative q values imply that the
substituent effect is reversed within these constants. The degree
of transmission of substituent effect is found to be high in Ca

chemical shifts than Cb carbon chemical shifts. Uniformly rI
and rR parameters or F and R values adequately explain sub-
stituent effects in all cases as evidenced from the correlation

equations (11) and (12) are
Table 5 Results of statistical analysis of group frequencies of subs

constants r, r+, rI, and rR.

Frequency Constants r q I s n

mC–F (cm�1) r 0.910 3.840 1016.57 0.15 8

r+ 0.992 6.245 1021.65 0.11 8

rI 0.683 3.867 1048.41 0.12 9

rR 0.900 6.434 1628.73 1.60 8

mCO(s-cis) (cm
�1) r 0.900 8.940 1657.70 0.15 7

r+ 0.900 12.465 1659.04 0.16 7

rI 0.900 32.817 1648.41 0.12 7

rR 0.713 14.444 1658.73 1.60 8

mCO(s-trans) (cm
�1) r 0.769 11.723 1607.37 5.41 9

r+ 0.684 6.456 1609.46 6.13 9

rI 0.817 16.462 1603.60 6.71 9

rR 0.846 10.887 1609.29 7.17 9

dHa (ppm) r 0.930 0.171 7.479 0.03 8

r+ 0.936 0.106 7.511 0.03 8

rI 0.900 0.211 7.433 0.71 8

rR 0.983 0.113 7.505 0.09 7

dHb (ppm) r 0.900 0.692 7.792 0.35 7

r+ 0.673 0.015 7.701 0.46 9

rI 0.910 0.458 7.805 0.31 7

rR 0.726 0.490 7.790 0.48 9

dCO (ppm) r 0.903 �0.381 188.64 0.33 7

r+ 0.900 �0.230 188.57 0.33 6

rI 0.902 �0.700 188.81 0.32 7

rR 0.781 �0.132 188.58 1.43 9

dCa (ppm) r 0.905 0.053 120.37 0.23 8

r+ 0.900 0.400 120.42 0.23 9

rI 0.805 �0.736 120.61 0.71 9

rR 0.175 �1.330 120.32 1.25 8

dCb (ppm) r 0.911 �2.589 143.47 1.40 7

r+ 0.906 �1.540 143.00 1.45 7

rI 0.900 �3.280 144.19 1.73 7

rR 0.613 �0.878 143.36 2.35 9

r=Correlation coefficient; q = slope; I= intercept; s = standard devia
dCa ðppmÞ ¼ 144:153ð�1:110Þ � 3:182ð�2:650ÞrI

� 0:288ð�2:650ÞrR

ðR ¼ 0:900; n ¼ 8; P > 90%Þ ð11Þ

dCb
ðppmÞ ¼ 143:148ð�1:168Þ � 1:918ð�2:438ÞF

� 2:774ð�1:708ÞR
ðR ¼ 0:918; n ¼ 8; P > 90%Þ ð12Þ
3.3. Microbial activities

Chalcones possess a wide range of biological activities such as
antibacterial (Sivakumar et al., 2007), antifungal (Lahtcher

et al., 2008), antiviral (Trivedi et al., 2007), antifeedant (Thir-
unarayanan, 2008a; Thirunarayanan et al., 2010) anticancer
(Modzelewska et al., 2006), antimalarial (Dominguez et al.,

2005), anti-tuberculosis (Lin et al., 2002), antiAIDS (Deng
et al., 2007) and antioxidant (Werber et al., 2005) activities.
These multipronged activities present in different chalcones

are intended to examine their above activities against respec-
tituted styryl 40-fluorophenyl ketones with Hammett substituent

Correlated derivatives

p-Br, m-Cl, p-Cl, p-N(CH3)2, p-OCH3, p-CH3, o-NO2, m-NO2

p-Br, m-Cl, p-Cl, p-N(CH3)2, p-OCH3, p-CH3, o-NO2, m-NO2

H, p-Br, m-Cl, p-Cl, p-N(CH3)2, p-OCH3, p-CH3, o-NO2, m-NO2

H, m-Cl, p-Cl, p-N(CH3)2, p-OCH3, p-CH3, o-NO2, m-NO2

m-Cl, p-Cl, p-N(CH3)2, p-OCH3, p-CH3, o-NO2, m-NO2

m-Cl, p-Cl, p-N(CH3)2, p-OCH3, p-CH3, o-NO2, m-NO2

m-Cl, p-Cl, p-N(CH3)2, p-OCH3, p-CH3, o-NO2, m-NO2

H, m-Cl, p-Cl, p-N(CH3)2, p-OCH3, p-CH3, o-NO2, m-NO2

H, m-Br, m-Cl, p-Cl, p-N(CH3)2, p-OCH3, p-CH3, o-NO2, m-NO2

H, m-Br, m-Cl, p-Cl, p-N(CH3)2, p-OCH3, p-CH3, o-NO2, m-NO2

H, m-Br, m-Cl, p-Cl, p-N(CH3)2, p-OCH3, p-CH3, o-NO2, m-NO2

H, m-Br, m-Cl, p-Cl, p-N(CH3)2, p-OCH3, p-CH3, o-NO2, m-NO2

H, m-Cl, p-Cl, p-N(CH3)2, p-OCH3, p-CH3, o-NO2, m-NO2

H, m-Cl, p-Cl, p-N(CH3)2, p-OCH3, p-CH3, o-NO2, m-NO2

H, m-Cl, p-Cl, p-N(CH3)2, p-OCH3, p-CH3, o-NO2, m-NO2

H, m-Cl, p-Cl, p-N(CH3)2, p-CH3, o-NO2, m-NO2

H, m-Cl, p-Cl, p-N(CH3)2, p-OCH3, p-CH3, m-NO2

H, m-Br, m-Cl, p-Cl, p-N(CH3)2, p-OCH3, p-CH3, o-NO2, m-NO2

H, m-Cl, p-Cl, p-N(CH3)2, p-OCH3, p-CH3, o-NO2

H, m-Br, m-Cl, p-Cl, p-N(CH3)2, p-OCH3, p-CH3, o-NO2, m-NO2

H, m-Cl, p-Cl, p-N(CH3)2, p-OCH3, p-CH3, m-NO2

H, m-Cl, p-Cl, p-OCH3, p-CH3, m-NO2

H, m-Cl, p-Cl, p-N(CH3)2, p-OCH3, p-CH3, m-NO2

H, p-Br, m-Cl, p-Cl, p-N(CH3)2, p-OCH3, p-CH3, o-NO2, m-NO2

H, m-Cl, p-Cl, p-N(CH3)2, p-OCH3, p-CH3, o-NO2, m-NO2

H, p-Br, m-Cl, p-Cl, p-N(CH3)2, p-OCH3, p-CH3, o-NO2, m-NO2

H, p-Br, m-Cl, p-Cl, p-N(CH3)2, p-OCH3, p-CH3, o-NO2, m-NO2

H, m-Cl, p-Cl, p-N(CH3)2, p-OCH3, p-CH3, o-NO2, m-NO2

H, m-Cl, p-Cl, p-N(CH3)2, p-OCH3, o-NO2, m-NO2

H, m-Cl, p-Cl, p-N(CH3)2, p-OCH3, o-NO2, m-NO2

H, m-Cl, p-Cl, p-N(CH3)2, p-OCH3, o-NO2, m-NO2

H, p-Br, m-Cl, p-Cl, p-N(CH3)2, p-OCH3, p-CH3, o-NO2, m-NO2

tion; n= number of substituents.



Table 6 Antibacterial activity of substituted styryl 40-fluorophenyl ketones.

Entry X E. coli S. aureus Pseudomonas Klebsiella P. vulgaris Entrococcus faecalis

3 H ± + ± ± ± ––

4 p-Br ++ ++ + ++ + ++

5 m-Cl + + + + + ––

6 p-Cl + + + + + ––

7 p-N(CH3)2 ++ ++ ++ + + ––

8 p-OCH3 + + + + + ++

9 p-CH3 ± + ± ± ± ––

10 o-NO2 + + + + + ––

11 p-NO2 + + + + + ––

Disc size: 6.35 mm; duration: 24–45 h; standard: ampicillin (30–33 mm) and streptomycin (20–25 mm); control: methanol; ––: no activities; ±:

active (8–12 mm); +: moderately active (13–19 mm); ++: active (20–24 mm).

Table 7 Antifungal activities of substituted styryl 40-fluorophenyl ketones.

Entry X Disc diffusion technique (250 lg/ml) Drug dilution method (50 lg/ml)

Candida albicans Penicillin Aspergillus niger

3 H –– –– ––

4 p-Br ++ ++ ++

5 m-Cl –– ± +

6 p-Cl ± –– ––

7 p-N(CH3)2 ± ++ ++

8 p-OCH3 ++ ++ +

9 p-CH3 + + ––

10 o-NO2 –– –– ––

11 p-NO2 –– –– ––

Standard: griseofulvin and gentamycin; duration: 72 h; control: methanol; medium: potato dextrose agar; ++: no fungal colony; +: one fungal

colony; ±: two–three fungal colonies; ––: heavy fungal colony.

Table 8 Antifeedant activity of substituted styryl 40-fluorophenyl ketones.

Entry X 4–6 pm 6–8 pm 8–10 pm 10–12 pm 12–6 am 6–8 am 8 am–12 Nn 12 Nn–2 pm 2–4 pm Total leaf disc

consumed in 24 h

3 H 1 1 0.5 0.5 0.5 1 1 1 1 8

4 p-Br 0.5 0.25 0.25 0.5 0.5 0.5 1 1 0.5 0.5

5 m-Cl 0.5 0.5 0.25 1 0.5 0.5 0.25 0.25 0.25 0.4

6 p-Cl 0.25 0.25 0.25 0 0 0.25 0 0 0 0.1

7 p-N(CH3)2 1 2 2 1 0 0 1 1 1 9

8 p-OCH3 1 0.5 0.5 1 1 0 1 1 1 9

9 p-CH3 0.5 0.5 0.5 2 2 1 1 1 1 9

10 o-NO2 2 3 3 1 1 1 0.5 1 0 12

11 p-NO2 1 2 2 2 1 0.5 0.5 1 0 10

Number of leaf discs consumed by the insect (values are mean + SE of five).
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tive microbes-bacteria’s, fungi and insect antifeedant activities
against caster semilooper.

3.3.1. Antibacterial activity

The antibacterial activities of all prepared chalcones were eval-
uated against two gram positive pathogenic strains Staphylo-

coccus aureus, Entrocccus faecalis while Escherichia coli,
Klebsiella species, Psuedomonas and Proteus vulgaris were the
gram negative strains. The disc diffusion technique was fol-

lowed using the Kirby–Bauer (Bauer et al., 1996) method, at
a concentration of 250 lg/ml with ampicillin and streptomycin
taken as the standard drugs. The measured antibacterial activ-
ities of all chalcones are presented in Table 6. Against E. coli,
two compounds 4 and 7 show maximum zone inhibition with

greater than 20 mm while 3, 5, 6, 8, 9, 10 and 11. The chalcones
4 and 7 were active against Staphylococcus, showing maximum
inhibition. The other chalcones show less effectiveness against

S. aureus. Three chalcone derivatives 3, 7 and 8 are more active
against Pseudomona at greater than 20 mm zone inhibition and
the other derivatives inhibit the growth of bacterial between 12

and 19 mm zone inhibitions. The chalcones 4, 7 and 8 are
effective against Klebsiella in 20–24 mm zone inhibition while
the other ketones show a moderate activity. The chalcones 3,
4, 7 and 9 are active when they are screened against P. vulgaris



Table 9 Antifeedant activity of compound 6 (2E)-1-(40-fluorophenyl)-3-(-p-chlorophenyl)-2-propen-1-one at four different concen-

trations – number of leaf discs consumed by the insect (values are mean + SE of five).

ppm 4–6 pm 6–8 pm 8–10 pm 10–12 pm 12 am–6 am 6–8 am 8 am–12 Nn 12 Nn–2 pm 2–4 pm Total leaf disc consumed in 24 h

50 0.5 0.5 0 0 0 0 0 0 0 0.1

100 0 0.25 0.25 0 0 0 0 0 0 0.05

150 0 0 0 0 0 0 0 0 0 0
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and the other compounds are less effective. The chalcones 4

and 8 shows moderate activities against E. faecalis when then

are screened with 13–19 mm zone inhibition.

3.3.2. Antifungal activity

Measurement of antifungal activities of all chalcones were done

usingCandida albicans as the fungal strain and the disc diffusion
technique was followed for the antifungal activity while the two
other stains Penicillium species and Aspergillus niger, the dilu-

tion method was adopted. The drugs dilution was 50 lg/ml.
Grisseofulvin is taken as the standard drug. The observed anti-
fungal activities of all chalcones are presented in Table 7. The

antifungal activities of all chalcones against C. albicans, the
two compounds 4 and 8 are effective at 20 mm as the zone inhi-
bition with 250 lg/disc while chalcones 7 and 8 are active at 13–
19 mm zone inhibition and the ketones 3 and 5 are the least ac-

tive in 8–12 mm zone inhibitions. Against Penicillum species,
compound 4 is visible while development of the fungal colony
and 2–3 colonies was recorded for the compounds 8. The chal-

cones inhibition against A. niger was less in two compounds 4
and 7 being highly active followed by 8. Presence of a methoxy,
methyl, dimethyl and bromo substituents are responsible for

antimicrobial activities of chalcones.

3.3.3. Insect antifeedant activity

The multipronged activities present in different chalcones are

intended to examine their insect antifeedant activities against
caster semilooper. The larvae’s of Achoea janata L. were reared
as described on the leaves of caster Riclmus cammunls in the

laboratory at the temperature range of 26 ± 1 �C and a rela-
tive humidity of 75–85%. The leaf-disc bioassay method (Thir-
unarayanan, 2008a) was used against the 4th instar larvae to

measure the antifeedant activity. The 4th instar larvae were se-
lected for testing because the larvae at this stage feed very
voraciously.

3.3.3.1. Measurement of insect antifeedant activity of chalcones.
Leaf discs of a diameter of 1.85 cm were punched from caster
leaves with the petioles intact. All ketones were dissolved in

acetone at a concentration of 200 ppm dipped for 5 min. The
leaf discs were air-dried and placed in 1 l beaker containing lit-
tle water in order to facilitate translocation of water. Therefore

the leaf discs remain fresh throughout the duration of the rest,
4th instar larvae of the test insect, which had been preserved on
the leaf discs of all chalcones and allowed to feed on them for
24 h. The area of the leaf disc consumptions was measured by

Dethlers (Dethler, 1947) method. The observed antifeedant
activity of chalcones was presented in Table 8.

The results of the antifeedant activity of 2-propen-1-ones

presented in Table 8 reveal that the compounds 4–6 are found
to reflect remarkable antifeedant among all other chalcones.
This test is performed with the insects which ate only two-leaf
disc soaked under the solution of this compound. Compounds
4, 5 also show enough antifeedant activity but lesser than 6.

Further compound 6 was subjected to measure the antifeedant
activity at different 50, 100, 150 ppm concentrations and the
observation reveals that as the concentrations decreased, and

the activity also decreased. It is observed from the results in
Table 9 and that the ketone 6 (2E)-1-(40-fluorephenyl)-3-(3-
chlorophenyl)-2-propen-1-one shows an appreciable antifee-

dant activity at 200 ppm concentration.
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