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Abstract The presented research applied the modified Halloysite nanoclay to boost the adsorp-

tion efficacy of heavy metals from the water. To improve As (III) adsorption effectiveness from

water, the study assessed the characteristics of the prepared materials and improved the experi-

mental conditions. The study was optimized the experimental condition with a dosage of 1 g/

L, contact time of 90 min, the solution pH of 8, and the initial concentration of 5 ppm of As

(III). The optimization was performed in distilled water and later the experiments were conducted

in the real polluted water. The modified Halloysite nanoclay’s physical characteristics were inves-

tigated using techniques like X-ray diffraction, scanning and transmission electron microscopy,

Fourier transform infrared spectroscopy, and surface area analysis. The experimental result shows

the adsorption efficiency of 82.4 % of As (III) at the optimized condition during the usage of

modified Halloysite nanoclay. To create a suitable mathematical model for a better description

of the interactions between pollutants and solid adsorbents, it is helpful to analyze the process
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kinetically. The removal process of As (III) was studied kinetically and the observation shows the

pseudo-second order kinetics.

� 2023 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Environmental poisoning of water sources around the world is causing

increasing worry, as are the health implications on humans (Wen et al,

2019). Inappropriate use has harmed and degraded nearly all natural

water supplies, putting the world’s population at risk of severe drink-

ing water shortages. In addition, the water ecosystem and geological

cycles have been affected as a result of this. According to a WHO

report, nearly 600 million people globally, especially in developing

countries, lack access to safe drinking water (WHO, 2006). The mas-

sive discharge and leaching of heavy metals has contaminated the

aquatic environment in recent decades (Du et al, 2014). As a result

of their high persistence, detrimental effects on the neurological sys-

tem, and even concern resulting from their accumulation at certain

levels, heavy metal poisoning of the environment has recently drawn

increased attention (Ciopec et al, 2013). The presence of arsenic (As)

in water intended for human consumption and wastewater poses a seri-

ous threat to human health and the environment (Costa, 2019). It has

long been known that arsenic is a human carcinogen that causes a vari-

ety of malignancies, including skin, lung, bladder, liver, and prostate

cancers (Costa, 2019; Asere et al, 2019). Arsenic distribution in various

water beds around the world causes a slew of environmental and soci-

etal issues. Because of arsenic’s severe toxicity, the US Environmental

Protection Agency (US EPA) reduced the arsenic drinking water stan-

dard from 0.05 mg/L to 0.01 mg/L in 2006. The maximum allowable

amount of As in drinking water has been set at 0.01 mg/L by the

World Health Organization (WHO). Arsenic is found in natural waters

primarily as an inorganic species in two forms: arsenite As (III) and

arsenate As (V). As (III) is more common in groundwater than As

(II) (V). As (III) is more toxic to humans than As (V) and is more sen-

sitive to mobilization (Han et al, 2007). The most of the treatment pro-

cedures are more effective for high initial arsenic concentrations

(typically greater than 100 mg/L), but they leave residual arsenic con-

centrations that exceed the water quality standards required in most

countries (Mohan et al, 2007). Hence, the scientific community is still

working on new technologies to remove residues of arsenic from drink-

ing water, wastewater, and industrial effluents in order to attain safe

limits (Negrea et al, 2014).

Several types of processes, including coagulation and precipitation,

electrodialysis, membrane separation, photocatalysis and chemical

catalysis, bioremediation, adsorption, disinfection, and hybrid pro-

cesses, have been tested for the separation of various pollutants from

water, including microbial contaminants (Sharma and Bhattacharya,

2017). Adsorption is the most eco-friendly, cost-effective, and straight-

forward of all of these techniques. Many publications (Asere et al.,

2019; Chakraborty et al., 2022; Manna et al., 2018; Peechattukudy

and Dhoble, 2017; Rodriguez- Narvaez et al., 2017; Yagub et al.,

2014; Rahman et al, 2021; Rahman and Raheem, 2022) have well

demonstrated the efficacy of various adsorbents for pollutant separa-

tion. Furthermore, nanoparticles have been tested for other domestic

utilities as well as for the removal of arsenic from tainted water to

make it potable. The increased characteristics of functionalized nano-

materials (Chalasani and Vasudevan, 2012) brought about by their

synergistic and cooperative effects make them appealing. Arsenic has

recently been removed from contaminated water using acetate func-

tionalized zinc oxide nanoparticles (Singh et al, 2013). A new hybrid

polyacrylamide chromium oxide (PACO) for the adsorption of arsenic

from water was also recently introduced by Rahman and Haseen

(2014). The development of a new adsorbent with qualities and charac-

teristics that suggest a high adsorption capacity for metal ions is
required based on the profits of adsorption. As a result, raw materials

such as drinking water treatment sludge and clay should be studied for

synthesis of effective adsorbents for the removal of As. Although

activated carbon has been the most widely used for pollutant adsorp-

tion, it is still pricey when compared to other low-cost adsorbents

(Babel and Kurniawan, 2003) like clay minerals. Because of their inex-

pensive cost, natural abundance, and environmental friendliness, clay

minerals have also been frequently used as adsorbents. Clays are up

to 20 times less expensive than activated carbon (Bhattacharyya and

Gupta, 2008). Clays also have a moderate specific surface area and a

high cation exchange capacity (Bhattacharyya and Gupta, 2008;

Long et al, 2013). Nanoclays (NC) are a type of nano-absorbent sub-

stance that can be used to remove a wide range of pollutants. Nan-

oclays are a new type of adsorbents made up of nano-dimensionally

coated mineral silicates that are low-cost, non-hazardous, long-

lasting, and have a high surface reactivity (Abdel-Fadeel et al, 2022).

Nanoclays, such as Halloysite Nanoclay, have recently been investi-

gated as a possible adsorbent for the removal of heavy metals and

organic dyes from various aquatic environments (Aljohani et al,

2021; Aigbe et al, 2022; Novikau and Lujaniene, 2022). Even though

numerous studies has been reported for the removal arsenic from the

water, the usage of the low cost and ecofriendly materials were limited

due to the restricted removal efficiency. This makes more novelty on

the material used in the present study. The present study aims to

remove As (III) compounds from the polluted water using modified

Halloysite nanoclay. The study was evaluated the characterization of

the prepared materials and optimized the experimental conditions to

achieve the better adsorption efficiency. Furthermore, the modified

nanoclay showed better adsorption properties and superior ability to

remove the As (III) from the water bodies.

2. Materials and methods

2.1. Characterization

The morphology of the HS and MHS nanoclay was examined

using a JEOL JEM-1230 transmission electron microscope
(TEM). An X-pert pro diffractometer from Philips was used
to obtain X-ray diffraction (XRD) patterns. The automatic

gas sorption system A NOVA 3200e was used to measure
the specific surface area (Quantachrome, Boynton Beach,
FL, USA).

2.2. Adsorption experiment

The adsorption experiment has carried out in a water samples
collected from the polluted water located at Al-Arbaeen

lagoon. Al-Arbaeen lagoon is situated on the Red Sea shore-
line in Jeddah. With two loops spanning nearly NAS and a
network of contacts connecting the interior basins to the open

sea, Al Arbaeen lagoon features a more intricate T-shape. El
Rayis and Moammar (1998) assert that there is a continuous
interchange of water with the open sea at the top two meters

of the surface layer. On rare occasions, bottom water will
regenerate in rough and stormy conditions (Orif et al, 2017).

To determine the As (III) adsorption capability on Hal-
loysite nanoclay (HS) and 8-hydroxyquinoline-modified HS

http://creativecommons.org/licenses/by-nc-nd/4.0/
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nanoclay, arsenic adsorption studies were carried out (MHS).
In 50 mL centrifuge tubes with 20 mL of an As (III) solution
and a predetermined volume of HS or MHS, several experi-

ments were conducted. 0.1 M HCl or 0.1 M NaOH were used
to change the pH of the mixture. On a shaker spinning at
350 rpm, all the solutions were mechanically stirred. The initial

As (III) solution’s pH was not changed during the adsorption
kinetics and adsorbent dose studies in order to represent a sys-
tem with no outside influences, and it was fixed to be at a pH

of 3. Each experiment was carried out at room temperature.
To ascertain the equilibrium contact duration and maximum
adsorption capacity, kinetic studies were carried out at inter-
vals ranging from 0 to 150 min. Through testing several adsor-

bent dosages between 0.25 and 1.25g, the most effective
adsorbent dosage was found. At pH levels ranging from 3 to
9, experiments studying how pH affects adsorption capacity

were carried out. After the pH studies, initial As (III) concen-
tration trials were conducted with As (III) initial concentra-
tions ranging from 0.25 mg/L to 10 mg/L at a pH of 8 Then

the resultant solution is filtered using the filter paper and the
filtrate were tested using ICP-AES.

The adsorption capacity, qt, at a specific time t and the per-

cent removal of arsenite were calculated based on the following
equations:

q
t¼ðC0�CtÞ�V

C0

ð1Þ

PercentageofRemoval ¼ ðC0�CtÞ=C0 � 100 ð2Þ
where C0 (mg/L), and Ct (mg/L) are respectively the initial and
equilibrium As (III) concentrations, V (L) is the volume of the
solution, and W (g) is the weight of the adsorbents HS or

MHS.

2.3. Determination of point of zero charge

This study used the salt addition method to estimate the point

of zero charge (PZC) of the adsorbent (Bakatula et al. 2018;
Rahman and Varshney, 2021). For this, 25 mL of 0.1 M
NaNO3 in different pH (3–10) solutions were taken in volu-

metric flasks, and 0.2 g of prepared adsorbent was then added.
By adding 0.1 M HCl or NaOH solutions, the pH of the liq-
uids was regulated. After 24 h, the pH (pHf) of the solutions

was assessed. Plotting the initial pH (pHi) readings against
the DpH (pHi - pHf) values were used to calculate the PZC.

3. Results and discussion

3.1. Characterization

The Fig. 1 shows the TEM characterization of the MHS nan-
oclay. It is evident that the MHS was made up of a hollow

tube-like structure. The TEM image presented in Fig. 1
revealed that the modified HS nanoclay have diameters of
40–60 nm, lumens in the range of 10–15 nm, and lengths within
the range of 100–900 nm. The images also show the cross

aggregates between the nanotubes brought on by static electric
charges. It is evident from the surface morphology that it is a
lamellar material made up of various arrays of cleaved sheets

(Thommes, 2010; Zhu et al, 2016). An increase in the contact
area and active sites for the adsorption of heavy metals from
effluents was eventually achieved with the aid of the modifica-
tion of HS nanoclay, which favors the creation of many cavi-
ties and a rather loose surface (Zhang and Wang, 2015). The

EDX pattern of MHS nanoclay is shown in the Fig. 2 and
the atomic % of each element is listed in the Table 1. It can
be seen that the EDX of MHS show the presence of aluminum,

silicon, carbon, nitrogen and oxygen. It is very clear from the
Fig. 2 that synthesized sample are free from other elemental
impurities. The reflection peaks at diffraction angles of

2 = 11.8�, 19.84�, 24.53�, 35.01�, 36.68�, and 38.05�, which
correspond to the reflection planes (001), (110), (002),
(122), (200), and (131), are explained by the XRD pattern
of MHS nanoclay in Fig. 3 (Senoussi et al, 2016). The modified

halloysite nanoclay was found to have a basic spacing (001) of
7.49 (2 = 11.81�).

By using FTIR analysis, the surface functional groups of

MHS nanoclay were described. The Fig. 4 shows the FTIR
spectra of the pristine and modified HS nanoclay. Both spectra
had the characteristic peaks of the HS nanoclay at

3696 cm � 1, 3629 cm � 1, and 1654 cm � 1 and are assigned
to the OAH stretching of the inner-surface hydroxyl groups,
the OAH stretching of inner hydroxyl groups, and deforma-

tion of water, respectively. In addition, the presence of the
strong –OH absorption band at 3,433 cm-1 was more pro-
nounce for the modified HS nanoclay due to the presence of
8-HQ at the nanoclay. Also, a band was observed at

1,730 cm-1 for the modified HS nanoclay may be attributed
to conjugated C‚O stretching vibrations due to the presence
of 8-HQ at the nanoclay surface. Also, the bands appears at

1763 cm � 1 to 1458 cm � 1, 1384 cm � 1, 814 cm � 1, and
671 cm � 1 correspond to the characteristic quinoline stretch-
ing vibrations (Weerasuriya et al, 2017; Shao et al, 2011; Kosa

et al, 2012). Also the vibrations in the ranges 1384 cm � 1 to
1465 cm � 1 and 1095 cm � 1 to 1280 cm � 1 correspond to
the aromatic amine resonance frequencies for CAN bond and

CAO stretching frequencies, respectively (Weerasuriya et al,
2017; Shao et al, 2011; Kosa et al, 2012). According to
Fig. 5, which categorizes the N2 adsorption/desorption iso-
therms for MHS as type III isotherms, the specific surface

(BET) is 72.5 m2/g. The smaller mesopores and higher surface
area of HS permitted capillary condensation.
3.2. Effect of dosage

Fig. 6 for HS and MHS at various loadings illustrates the
impact of the adsorbent dosage on the removal of As (III).

Fig. 6 shows that 1 g/L of the modified HS dosage is enough
to allow for the quantitative adsorption of As (III). With
increasing modified HS dosage, more As (III) is eliminated.
There are more active sites available for adsorption due to

the rise in the percentage caused by the increase in the amount
of existing solid phase (Kavil et al, 2018; Abdel-Fadeel et al,
2022). It is obvious that adsorption onto MHS is caused by

the 8-hydroxyquinoline species, which offer complementary
adsorption sites for As (III) species, because adsorption on
HS is far less significant than that on MHS. The greater adsor-

bent surface and more available metal ion adsorption sites are
the likely causes of the increase in adsorption with adsorbent
dosage (Maleki et al, 2015). The overlapping or aggregation

of adsorption sites, which lengthens the diffusion path and



Fig. 1 TEM characterization of the MHS nanoclay.

Fig. 2 The EDX pattern of MHS.

Table 1 The weight and atomic % of elements in MHS.

Element Weight % Atomic %

C 27.56 36.50

O 52.92 52.61

Al 10 5.89

Si 8.27 4.68

N 1.25 0.31
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reduces the overall adsorbent surface area that is available to

the metal ions, may be to blame if the adsorption capacity
reduced beyond the limit of adsorbent dosage (Crini et al,
2008). In the present study the equilibrium was reached with

a dosage of 1 g/L.

3.3. Effect of contact time

Equilibrium between the adsorbent and the solution’s solute
must be attained for adsorption to be fully effective. Therefore,
a specific amount of time is needed for the equilibrium’s con-
tacts in order to guarantee that adsorption is attained. The

contact time is the length of time needed to reach equilibrium.
Numerous writers have investigated how contact time affects
adsorption. Their findings demonstrated that the rate of metal

ion adsorption rises over time, reaching an optimal value at
which point no further metal ion removal occurs (Azouaou
et al, 2010; Martinez et al, 2006; Montazer-Rahmati et al,

2011). The Fig. 7 shows the effect of contact time on the
adsorption of As (III) using HS and MHS nanoclay. The pre-
sent study achieved an adsorption efficiency of 83.6 % with the

MHS nanoclay over the contact time of 150 min. During this
experiment the parameters like pH, the dosage of adsorbent
and the temperature were kept constant. The adsorption up
to 90 min were quite fast and afterwards it was showing a

slight elevation in the adsorption for both HS and MHS nan-
oclays. The maximal adsorption capacity attained by the



Fig. 3 XRD pattern of MHS nanoclay.
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adsorbent under the operating conditions is reflected in the
quantity of metal ions adsorbed at the time of contact.
Adsorption is observed to be nearly constant beyond the equi-

librium time, which is explained by the availability of empty
surface sites during the initial stages of adsorption and the dif-
ficulty of filling the empty sites after equilibrium has been

reached due to the repellent forces between the heavy metal
molecules on the HS/MHS and bulk solution (Alley, 2007).
The similar observations were noted in elsewhere (Selomulya

et al, 1999; Attia et al, 2010; Brahmaiah et al, 2015).

3.4. Effect of pH

In the process of heavy metal adsorption, the pH level of the
metal solution is crucial. It makes a significant adsorption
capacity contribution. The aqueous solution’s behavior and
the surface attachment locations are both impacted by pH

(Ushakumari and Madhu, 2013). The adsorbent surface
charge has an impact on pH. The pH affects the surface
charge, ionization potential, and distribution of metal ions in

the adsorbent (Park et al, 2010). The 8-hydroxyquinoline (8-
HQ), also known as 8-quinolinol or oxine, is a well-known
monoprotic, bidentate chelating agent. It is a compound that

contains an oxygen donor atom and a nitrogen donor atom
that can both bind to metal atoms. When the pH of an adsor-
bent surface is reduced, the H + ions that are present in high

numbers neutralize the negatively charged surface, reducing
the barrier to diffusion and increasing the rate of adsorption.
The effect of solution pH on this study is shown in the
Fig. 8. The study was done in a range of pH between 3 and

9. In comparison to acidic medium, overall heavy metal
removal values in alkali solutions were significantly greater.
Fig. 8 illustrates this phenomenon, showing that metal ion

adsorption is minimal in the acidic zone (pH = 3), increases
with rising pH, and reaches its highest value at pH 8. These
findings suggest that the ability of the material to adsorb metal

ions was lowered by protonation of more basic pyridine-type
nitrogen in the quinoline rings. The high concentration of
hydroxyl ions (HO) in the solution may be the cause of the
decrease in metal ion absorption at pH levels higher than 8

(Ghaemy et al, 2015). Lowering the positive charges of amino
groups reduces the pH values, which enhances adsorption
behavior (Maleki et al, 2015). In line with prior arsenite
adsorption experiments (Yuh-Shan, 2004; Ho and Mckay,
1998; Weber and Morris, 1963), the current investigation

found that As (III) adsorption increased with increasing pH
up to pH 9. At a pH less than 8, attraction and repulsion
are ineffective against neutral H3AsO3 because the adsorption

process may be regulated by H3AsO3 surface complexation
that causes deprotonation or dissociation (Bhowmick et al,
2014). Adsorption occurs most frequently in the neighborhood

of pH 8. Moreover, the point of zero charge of the adsorbent
was found to be 8 (Fig. 9). The balancing effect of the As (III)
solution at high pH caused the reaction mixture’s pH to rise

above 8, which likely caused a decrease in adsorption and
the onset of precipitation/coagulation (Tandon et al, 2013).

3.5. Effect of initial concentration

The initial concentration of the solution affects the rate of
adsorption. Adsorption experiments from the past have
demonstrated that at lower concentrations, the rate of adsorp-

tion increases (Shaban et al, 2019; Alfarawati et al, 2020; Kavil
et al, 2020). The deposit of metal at the interface between the
solid and liquid phases is the broad definition of the mass

transfer process known as metal adsorption. In order to inves-
tigate this, the initial metal concentration was varied between
0.25, 1, 3, 5, 7, and 10 ppm of As (III). The effect of initial con-

centration for the adsorption of As (III) in the present study is
shown in the Fig. 10. It is clearly observed that the lower con-
centration was adsorbed quickly compared to the higher level
of As (III). This is due to the fact that most metal ions

remained unadsorbed when the concentration was high due
to saturation of the adsorption sites (Azouaou et al, 2010).
Because there was more adsorbent surface area available at

lower concentrations, the rate of adsorption increased
(Kumar et al, 2010).
3.6. Adsorption kinetics

Adsorption rate predictions offer crucial details about adsorp-
tion mechanisms. The experimental data at different adsorp-
tion durations corresponding to the changes in adsorption



Fig. 4 FTIR spectrum of the pristine and modified HS nanoclay.
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capacity were fitted using the pseudo-first-order model to

assess the adsorption mechanism onto MHS. The following
equations was used to determine the pseudo-first-order model,

dqt
dt

¼ k2 qe � qtð Þ2

t

qt
¼ 1

k2q2t
þ t

qe

Where qe (mg/g) is the quantity of As (III) adsorbed at
equilibrium, qt (mg/g) is the amount of As (III) adsorbed at

a specific time t (min), and k2 (g/mg min-1) is the pseudo-
second-order reaction rate. The terms k2 and qe can be calcu-
lated from the intercept and slope of the (t/qt) vs t plot,

respectively.
In order to create the proper adsorbent materials for envi-

ronmental remediation, it is helpful to investigate the process

kinetically in order to develop an adequate mathematical
model for a better description of the interactions between pol-
lutants and solid adsorbents. The experimental removal capa-

bilities, or the quantity of metal ions adsorbed from the
desalination outfall sample by MHS nanoclay (qt), are shown
to vary with interaction time in Fig. 11. The adsorption/re-
moval of As (III) by MHS nanoclay was discovered to reach

equilibrium within 90 min, and further extending the contact
period had little effect on the removal capabilities. The Lager-
gren pseudo-first-order (PFO) kinetic model was used to kinet-

ically analyze the adsorption experiment results displayed in
Fig. 12. The current data demonstrate the superior values of
the PSO kinetic models’ regression coefficients when compared

to the PFO kinetic models, demonstrating the suitability of the
PSO kinetic model for explaining the removal of As (III). The
pattern is shown in the Fig. 13. The adsorption process was

also partially modeled by the Elovich model, as shown in
Fig. 13, which also shows that the adsorption sites were hetero-
geneous and that a variety of activation energies occurred dur-
ing the adsorption process. Given that this model had the

highest R2, a comparison of the R2 values clearly demonstrates



Fig. 5 BET surface area of Modified Halloysite nanoclay at 77 K.

Fig. 6 The effect of HS and MHS dosage on the removal of As (III) at pH 8; Initial concentration 5 ppm; Contact time 90 min.
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that the adsorption kinetics followed this model (Rahman and
Haseen, 2014; Rahman et al, 2021). The MHS was found to fit

well for the entire adsorption period, as evidenced by the very
high correlation coefficient, as shown in the pseudo-second-
order model fit in Fig. 13. Fig. 130s calculated equilibrium

capacity was not showing much variations to that determined
by experimental investigation (Table 2).

3.7. Isotherm studies

The isotherm study shows the efficiency of the interaction
between the biosorbent and adsorbate as well as how metal
ions can be dispersed across the liquid and solid phases at
different equilibrium concentrations (Maleki et al, 2015). The
experimental data have been described using a variety of iso-

therm models, including Langmuir and Freundlich, to improve
the design of the sorption system for the removal of metal ions
from solutions.

In the Langmuir model, a single layer of adsorbed solute at
a constant temperature is assumed together with homogeneous
sorption energy. The most often used isotherm in the Lang-

muir model, the monolayer sorption isotherm, is expressed
as follows (McRae et al, 2008):

q
e¼ Ce�Q0�KL

1þKLCe

� �



Fig. 7 The effect of contact time on the adsorption of As (III) using HS and MHS nanoclay at pH 8;; Initial concentration 5 ppm;

Dosage 1 g/L.

Fig. 8 The effect of solution pH on the adsorption of As (III) using HS and MHS nanoclay at Initial concentration 5 ppm; Dosage 1 g/

L; Contact time 90 min.
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Where qe, Ce, Q0, and KL stand for, respectively, the quan-
tity of solute adsorbed at equilibrium (mg/g), the concentra-

tion of adsorbate at equilibrium (mg/L), the maximal
adsorption capacity (mg/g), and the Langmuir constant (L/
mg). The Langmuir equation’s linear form is

Ce

qe
¼ 1

KLQe

þ Ce

Q0
A linear plot of Ce/qe against Ce was created to examine the
Langmuir isotherm model’s applicability for the metals

adsorption onto MHS. The higher R2 values demonstrated
the Langmuir isotherm’s suitability for arsenic adsorption
upon MHS (Turk et al, 2020). The values of Q0, KL, and R2

(correlation coefficient) are displayed in Table3.



Fig. 9 Determination of point of zero charge of the adsorbent.

Fig. 10 The effect of initial concentration for the adsorption of As (III) at pH 8; Dosage 1 g/L; Contact time 90 min.
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The Freundlich isotherm is employed in the adsorption pro-
cess on heterogeneous surfaces (Akin et al.2012). These sources

provide the Freundlich isotherm equation:

logQe ¼ logKF þ 1

n
logCe

Where n is the adsorption intensity and KF is the Fre-

undlich constant (Turk, 2017). The slope and intercept of the
logQe against logCe linear plot are 1/n and logKF, respectively.
From linear graphs, the Freundlich isotherm parameters in

Table 3 were derived. In these models, the correlation coeffi-
cient (R2) was 0.98. According to Chetia et al. (2012), the
KF and n values for As (III) adsorption on MHS were deter-

mined to be 94.75 and 1.33, respectively (if 1/n is less than 1,
adsorption is appropriate). Arsenic adsorption on MHS is
better suited by the Freundlich model, which has a higher cor-
relation coefficient (R2 [0.98]), however the difference between

the R2 Langmuir adsorption is very low.

3.8. Thermodynamic studies

The actual indicators for the practical application of an
adsorption process are thermodynamic parameters like the
Gibbs energy (DG), enthalpy (DH), and entropy (DS). Using
the following equations [30, 37], the thermodynamic parame-

ters were calculated:

DG ¼ DH� TDS

Kc ¼ qe
Ce



Fig. 11 The quantity of metal ions adsorbed from the desalination outfall sample by MHS nanoclay (qt).

Fig. 12 The Lagergren pseudo-first-order (PFO) kinetic model.
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lnKc ¼ DS
R

� DH
RT

Where Kc, qe, Ce, R, and T are the equilibrium constants,
the equilibrium quantity of metal adsorbed on the adsorbent

(mol/g), the equilibrium concentration of metal in the solution
(mol/L), the gas constant (8.314 J/mol K), and the absolute
temperature (K), respectively. The values of DH and DS can
be inferred from the slopes and intercepts of the graph of lnKc

vs 1/T. Table 4 contains the calculated thermodynamic param-
eters. The endothermic reaction and enhanced randomization
at the solid/solution interface during the adsorption of arsenic

ontoMHS are suggested by the positive DH and DS values. The
adsorption process is implied to be spontaneous by the negative
DG values. Additionally, the fact that DG values drop as tem-

perature rises suggests that adsorption is more spontaneous at
higher temperatures (Maleki et al, 2015). Additionally, MHS
adsorbents’ DG� values above �20 kJ/mol, indicating that

chemisorption was the mechanism (Horsfall Jr et al. 2006).



Fig. 13 The Pseudo Second Order (PSO) kinetic model (Elovich model) List of Tables.

Table 2 Pseudo-second-order isotherm parameters.

Material qe experimental (mg/g) qe calculated (mg/g) k2 (g/mg min) R2 R2 (From pseudo-first-order)

MHS 4.12 3.55 6.07 0.91 0.82

Table 3 Linearized isotherm coefficients of arsenic adsorption by MHS.

Metal Langmuir Freundlich

Q0 KL R2 KF n R2

Arsenic 8.67 11.09 0.96 94.75 1.33 0.98

Table 4 Thermodynamic parameters of arsenic removal by MHS.

Metal DH DS R2 DG

T (K)

298 308 318 328

Arsenic 106.19 1.19 0.98 –222.46 –233.91 �245.36 �256.80
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3.9. Comparison with other adsorbents

Due to variations in experimental circumstances and meth-
ods, it is challenging to make a direct and precise comparison
between the prepared adsorbent and other studies in the

literature. Table 5 compares the adsorption capacity of the
developed MHS with that of other modified clay adsorbents
and adsorbents with related chemical characteristics. As can

be shown, compared to certain other less expensive adsor-
bents including granular ferric hydroxide, fungal biomass,
and iron oxide coated sand, the MHS adsorbent material

exhibits superior removal efficiency. Some of the described
clays, such iron- and manganese-pillared MMT, had much
lower Langmuir adsorption capabilities. The current material

exhibits a comparatively higher adsorption rate and performs
best at a pH that is somewhat alkaline, which is characteristic
of waters that have been contaminated with arsenic (Almasri

et al, 2018).



Table 5 Comparison of adsorption capacity for As (III) with other adsorbents.

Adsorbent Adsorption

capacity (mg/g)

Langmuir monolayer

adsorption capacity (mg/g)

Initial

concentration

(mg/L)

Equilibrium

time (h)

pH Reference

Iron pillared MMT – 0.0175 0.2–2.0 2 6 (Mishra and

Mahto, 2016)

Manganese pillared MMT 0.0258 0.2–2.0 2 6 (Mishra and

Mahto, 2016)

Al/Fe modified MMT 2.94 8.25 10 20 9 (Ramesh et al,

2007)

Iron oxide hydroxide

nanoparticles

0.475 1.31 0.3 3 7.28 (Raul et al, 2014)

Biomass of the fungus A. Niger

coated with iron oxide

0.075 0.1 12 6–7 (Pokhrel and

Viraraghavan,

2006)

Granular ferric hydroxide 0.0475 0.1 6 7.6 Thirunavukk-arasu

et al, 2003

Iron oxide coated sand 0.0183 0.325 5 7.4 Thirunavukk-arasu

et al, 2001

Ferrihydrite 0.285 0.325 5 7.4 Thirunavukk-arasu

et al, 2001

Hydroxyiron modified MMT 0.191 3.85 1 2 6 Almasri et al, 2018

MHS 4.12 8.67 5 1.5 8 Present study
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4. Conclusion

The study was successfully implemented the application of modified

Halloysite nanoclay for the effective adsorption of As (III) from the

polluted water. The MHS nanoclay’s physical characterization

revealed that it was composed of a hollow tube-like structure. The

alteration of HS nanoclay, which encourages the production of many

cavities and a rather loose surface, finally led to an increase in the con-

tact area and active sites for the adsorption of As (III) from effluents.

The optimization experiments revealed the dosage of 1 g/l, pH of 8,

contact time of 90 min and the initial concentration of As (III) produce

the better adsorption efficiency. In the optimized condition, the current

experiment produced and efficiency of 82.4 %. The outcomes showed

that the pseudo-second-order model was the most suitable for the

adsorption of As (III) from the polluted water due the theoretical

and experimental sorption capacities were in excellent agreement.

The Freundlich model, which has a stronger correlation coefficient

(0.98), is better suited to describe arsenic adsorption on MHS;

nonetheless, the difference between the R2 Langmuir adsorption

(0.96) is relatively small. The present study light on the extension of

the work with the doping of nanosized semiconductor with the pre-

pared HS nanoclay to make better degradation of various organic

and inorganic contaminants from contaminated water by means of

photocatalysis.
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