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Abstract Wood waste is employed as the feedstock for production of high-quality pyrolysis prod-

ucts such as bio-oil, bio-gas and biochar by microwave pyrolysis using ZnCl2 and Fe(NO3)3 as addi-

tive at 400–800 �C. Pyrolysis temperature influences the yield of the pyrolysis products, which

indicates that the yield of bio-gas increases and the yield of biochar decreases as pyrolysis temper-

ature increases. The yield of the bio-oil is little influenced by pyrolysis temperature, which is

restrained in the existence of ZnCl2 and Fe(NO3)3. ZnCl2 increases the furfural content in bio-

oil. While Fe(NO3)3 promotes H2 production during pyrolysis process. The maximum heating value

of bio-gas produced at 800 �C is 12.26 MJ/Nm3. The added ZnCl2 and Fe(NO3)3 increase the yield

of the biochar, which also promote the formation of pore structure of biochar. The ZnCl2 and Fe

(NO3)3 are converted into ZnO and Fe3O4 onto biochar after pyrolysis, which could be used as the

absorbent and photocatalyst for methyl orange removal.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Large-scale utilization of fossil fuel has already caused environmental

problems and deteriorated air quality due to production a variety of

toxic substances such as NxOx, SO3 and PM2.5 (Ge et al., 2020;
Yang et al., 2021). Besides, the toxic substances have posed severe risks

to the human health (Zhang et al., 2021). Biomass belongs to the

renewable energy, which can be converted into the fuels and valuable

chemicals (Cherubini and Ulgiati, 2010). Therefore, biomass can gen-

erally replace the fossil fuel to reduce the environment pollution and

ensure stable energy supply by the densifcation, anaerobic digestion,
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gasifcation, and baling combustion (Ouyang et al., 2019). Moreover,

biomass has the advantages of the abundant resources, carbon neutral-

ity and low cost of use (Li et al., 2019). Conversion biomass into

energy and valuable product has attracted the attentions of many

scholars (Robinson et al., 2015). Pyrolysis can convert biomass into

three kinds of pyrolysis products such as bio-oil, biochar and bio-gas

to recover chemical substance and calorific values of biomass feedstock

at elevated temperatures under non-oxidizing conditions among many

alternatives (Cheng et al., 2022). Besides, pyrolysis is more favorable

for large-scale applications (Foong et al., 2020).

Microwave heat is the promising heating method due to the advan-

tages of selective heating, non-contact material heating and energy sav-

ing (Tang et al., 2020; Cao et al., 2020). Microwave heat can promote

the generation of high-quality liquid and gas fuel (Chen et al., 2016).

Microwave heat can prevent the secondary reactions such as retrogres-

sive and condensation reactions in the biomass pyrolysis process

(Cheng et al., 2022). Besides, biomass with high moisture can con-

tribute to improving its microwave adsorption capacity, which realizes

the rapid heating of biomass during pyrolysis process (Cheng et al.,

2017; Cheng et al., 2021). Microwave heat has promising application

potential in both pilot scale and industrial scale for processing various

of biomass (Abdelsayed et al., 2018). The empty oil palm can produce

bio-oil with 74% of phenolic compounds by pyrolysis using microwave

heat (Prashanth et al., 2020). Gautam et al. pointed out that bio-oil

produced from macroalgae has little oxygen containing compound

when microwave heat processes the macroalgae (Gautam et al.,

2019). Based on the above analysis, microwave heat is the promising

heating method for biomass pyrolysis.

Bio-oil obtained from microwave pyrolysis has high quality (Shi

et al., 2013). However, it still has poor physicochemical properties such

as large content of the oxygen, moisture and acid, and low content of

valuable components (Reddy et al., 2019). These poor physicochemical

properties of bio-oil make it difficult to produce fuels or chemicals as

an intermediate product (Durak and Genel, 2020). Many researchers

have tried different methods to improve the physicochemical proper-

ties of bio-oil (Cheng et al., 2022). Rolin et al. studied the influence

of several inorganic salt additives on the catalytic pyrolysis of biomass

(Rolin et al., 1983). The results show that adding additives can improve

the quality of bio-oil. Besides, it can selectively enhance the specific

reactions such as hydrocarbons and anhydrosugars to produce the

desirable components. Since then, catalytic pyrolysis biomass technol-

ogy has received extensive attention and various of additives for bio-

mass catalytic pyrolysis have been developed. Pang et al. used ZnCl2
as the additive to investigate its influence on microwave pyrolysis of

pine powder. The analysis result indicates that ZnCl2 can significantly

reduce the pyrolysis temperature and simplify the resultant bio-oil

composition (Pang et al., 2023). Lu et al. (2011) reported that the con-

tent of furfural and levoglucosenone in the bio-oil increases when ZnCl2
is used as the additive in the biomass pyrolysis process (Lu et al., 2011).

Stefanidis et al. reported that ZnCl2 can increase the furfural content of

bio-oil in microwave pyrolysis cellulose process (Stefanidis et al., 2011).

Wang et al. (2019) used the Fe(NO3)3 as additive in the microwave-

assisted pyrolysis, which indicates that Fe(NO3)3 can decrease the acidity,

viscosity and water content in bio-oil (Nma et al., 2022). Song et al. (Song

et al., 2000) pointed out that some major components in the bio-oil are

concentrated in upper/bottom phases low density and water content

using Fe(NO3)3 as the additive, respectively (Song et al., 2000). Xia

et al. (2023) reported that the addition of Fe(NO3)3 improves the physic-

ochemical properties of the bio-oil (Xia et al., 2023). Therefore, adding

additives of the Fe(NO3)3 and ZnCl2 can improve the quality of bio-oil

in biomass catalytic pyrolysis process.

Wood is used for shelter forests against wind and fixing sand, com-

mercial plantation, landscape engineering, and agricultural protection

forest. -A large amount of wood wastes (WS) are produced from the

wood process, such as sawdust, wood cuttings, and sapwood. It needs

to find an efficient method to utilize the WS, which can also provide

the utilization method for other similar wastes. In this work, WS is

employed as the raw material for production of valuable products by
microwave heat-assisted catalytic pyrolysis using Fe(NO3)3 and ZnCl2
as the additive under different pyrolysis temperature. Fe(NO3)3 and

ZnCl2 are added in pyrolysis process, which also improve the dielectric

properties of WS in the microwave field. The influence of the Fe(NO3)3
and ZnCl2 on the physicochemical properties of the pyrolysis products

is analyzed and investigated. Besides, the physicochemical properties

of the pyrolysis products produced from different pyrolysis tempera-

ture are investigated and analyzed. Fe(NO3)3 and ZnCl2 can be con-

verted into the Fe3O4 and ZnO onto biochar to form valuable

biochar-based magnetic adsorbent-photocatalyst after pyrolysis, which

can be used in dye wastewater removal.

2. Experimental section

2.1. Materials

WS is obtained from the Jiangsu province, China, which is

grinded and dried for pyrolysis. Ferric nitrate and zinc chloride
are purchased from Tianjin Kemiou Chemical Reagent Co.,
LTD and Tianjin Zhiyuan Chemical Reagent Co. LTD,
respectively. Methyl orange (MO) is purchased from Tianjin

kemio Chemical Reagent Co., Ltd.

2.2. Methods

In a typical experiment, WS is mixed with Fe(NO3)3 and ZnCl2
in the aqueous solution, which is stirred for 24 h. 20 g dried sim-
ple (WS/Fe/Zn) is put in the multimode microwave oven with

pyrolysis temperature of 400–800 �C. The pyrolysis gas is col-
lected from microwave oven, which is condensed by condenser
pipe. The liquid is bio-oil in condenser pipe after condensation.

Pyrolysis gas that is non-condensable is bio-gas, which is col-
lected using the gas collection bag. The residue is biochar in
microwave oven after pyrolysis. The yields of the bio-oil and bio-
char are measured based on their actual weight. The yield of the

bio-gas is calculated according to mass balance.

2.3. Characterization

The bio-gas is analyzed by gas chromatography (GC-
Trace1310). The bio-gas is analyzed using a TG-BOND Q
packed column using a thermal conductivity detector (TCD)

and the nitrogen as the carrier gas. The chemical composition
of bio-oil is analyzed by gas chromatography/mass spectrom-
etry (GC–MS, ISQ) with a TG-5MS polar capillary column
(30 m � 0.25 mm � 0.25um). The oven sets a temperature pro-

gramming, and the initial temperature of the oven is 50 �C and
then rises up to 200 �C with the rate of 3 �C/min. Finally, it
rises up to 200–280 �C. Scanning electronmicroscopy is used

to analyze the surface microstructure of biochar. X-ray diffrac-
tion (XRD) analysis is performed using an X-ray diffractome-
ter with a Cu Ka X-ray source under a voltage of 40 kV and a

current of 40 mA, Japan (D/max-3B, Japan) (Hou et al., 2022).
The pore structure parameters of the biochars are measured by
an automatic adsorption apparatus (Autosorb-1-C, USA)

using N2 as the adsorbate at 77 K (Zeng et al., 2022).

2.4. Adsorption experiments

The adsorption experiments are conducted in erlenmeyer

flasks. 100 mL MO solution is mixed with 0.1 g biochar with
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different concentrations in volumetric flask, which is heated at
30 �C until adsorption equilibrium. The residual amount of
MO is tested using the UV–Vis spectrophotometer. The

adsorption amount (qe) of MO on biochar in the adsorption
isotherm is calculated as follows:

qe ¼
V Co � Ceð Þ

M
ð1Þ

where Co is the initial MO concentration and Ce is the equilib-
rium MO concentration. M is the quality of biochar. V is vol-
ume of solution. The adsorption isotherm models of

adsorption process are presented in Table S1.

2.5. Photocatalytic experiment

The biochar is mixed with MO solution in dark condition to
eliminate its adsorption effect. The concentrations of the
MO are 80–120 mg/L, respectively. The liquid–solid ratio of

MO is 8, respectively. After, the suspension is put in the pho-
tocatalytic reactor and irradiated by UV light. The mixed solu-
tion is placed in a photocatalytic reactor with a magnetic
stirring speed of 300 r/ min. A 250 W Hg lamp with a wave-

length range of 200–400 nm is used as the UV light source.
Small amounts of mixed solution are removed from photocat-
alytic reactor at regular intervals. The photocatalytic reaction

time is 120 min. The photocatalytic degradation efficiency of
MO is calculated based on the following equation.

g ¼ Co � Ct

Co

100% ð2Þ

The g is MO degradation percentage of biochar.

3. Results and discussions

3.1. Heating curves of WS/Fe/Zn

The heating curves of the WS/Fe/Zn are shown in Fig. 1. As
Fig. 1 shown, WS/Fe/Zn takes 9 min to reach 800 �C when
the microwave power is 1000 W. When the microwave power

increases to 2000 W, the heating time is reduced to 5 min to
reach 800 �C. This result indicates that high microwave power
Fig. 1 The heating curves of WS/Fe/Zn.
can significantly reduce the heating time. The microwave
power of 1500 W is used as the example to analyze the heating
process of WS/Fe/Zn. Fig. 1 shows that the heating rate of

WS/Fe/Zn is relatively slow at low temperature. The reason
is that the organic volatile in WS/Fe/Zn has relatively low
dielectric property. Besides, the absorbed microwave energy

is primarily used to remove the moisture and preheat WS/
Fe/Zn. Hemicellulose and cellulose begin to slowly decompose
into bio-oil, bio-gas and preliminary biochar skeleton as heat-

ing time increases. The hemicellulose and cellulose in WS/Fe/
Zn are rapidly decomposed or depolymerised producing low
molecular weight volatiles at high pyrolysis temperature. The
lignin of WS/Fe/Zn begins to decompose after 400 �C due to

the formation of biochar. Biochar has good dielectric proper-
ties, which can rapidly adsorb the microwave energy for pyrol-
ysis. Besides, ferric nitrate and zinc chloride are composed into

the corresponding oxides, which contribute to WS/Fe/Zn
pyrolysis in the microwave field. Therefore, the heating rate
rapidly increases in the late heating period. WS/Fe/Zn has

large heating rate at 1500 W. Therefore, 1500 W is selected
for subsequent microwave pyrolysis experiment.

3.2. Distribution of pyrolysis products in existence of additive

Pyrolysis temperature plays an important role in the biomass
pyrolysis process (Xie et al., 2014; Wang et al., 2016). Fig. 2
shows the distribution of pyrolysis products. As Fig. 2 shown,

the yield of bio-oil increases at 400–600 �C. The bio-oil has the
maximum yield of the 10.48% at 600 �C. However, the yield of
the bio-oil decreases after 600 �C. It can be explained that high

temperature favors to form bio-gas rather than bio-oil by sec-
ondary reactions, and the carbonization of volatiles for bio-
char would also decrease the yield of the bio-oil (Hou et al.,

2022). The yield of the biochar decreases as pyrolysis temper-
ature increases. It can be explained that the lignin in the WS/
Fe/Zn is rarely decomposed at low pyrolysis temperature (Li

et al., 2022). The yield of the bio-gas increases at 400–
Fig. 2 Yield of pyrolysis product at different pyrolysis

temperature.
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800 �C. Bio-gas has the maximum yield at 800 �C, which is
69.05%. This result implies that microwave-assisted pyrolysis
is the appropriate method to produce the bio-gas from organic

waste (Ren et al., 2022). The reason is that high pyrolysis tem-
perature contributes to converting volatile component into
bio-gas (Kan et al., 2020). Besides, bio-char will be converted

into bio-gas at high pyrolysis temperature. Xia et al.(2023)
pointed out that Fe(NO3)3 promotes the polymerization and
carbonization of the solid phase, accompanied by the release

of small molecule gases as pyrolysis temperature increases,
resulted in high yield of the bio-gas (Xia et al., 2023). WS/
Fe/Zn pyrolysis without adding Fe(NO3)3 and ZnCl2 at 400-
800 �C is shown in Fig. S1. The yield of the bio-oil decreases

and yield of the biochar increases compared to the WS/Fe/
Zn pyrolysis without adding Fe(NO3)3 and ZnCl2. Fe(NO3)3
and ZnCl2 can contribute to the some crosslinking or aroma-

tization reactions in adjacent molecules, which are conductive
to the production of biochar (Ryu et al., 2020). Besides, Fe
(NO3)3 can promote the glycosidic bond breaking and water

removal during pyrolysis process, which accelerates the forma-
tion of solid char. ZnCl2 can improve the condensation reac-
tion between aromatic hydrocarbons and bio-oil, and then

promote the formation of macromolecules (polycyclic aro-
matic hydrocarbons) in the biochar during condensation reac-
tion (Sun et al., 2018) These chemical reactions contribute to
the generation of biochar, and restrain bio-oil generation

(Ahmadpour and Do, 1997). Branca et al. reported that ZnCl2
would catalyze the charring reactions, which contributes to
producing more biochar and less volatile product during pyrol-

ysis process (Branca et al., 2010). Oh et al. pointed out that the
generation of bio-oil is inhibited when ZnCl2 is added in the
pyrolysis process (Oh et al., 2013). The desire pyrolysis temper-

ature is chosen as 600 �C because of large bio-oil yield.

3.3. Bio-oil analysis

GC–MS is used to detect the composition of the bio-oil.
Table 1 lists the composition of the bio-oil at different pyroly-
sis temperature. The bio-oil produced at 400 �C has large con-
tent of furfural, which is 17.08% (Table 1). However, the

content of furfural is decrease as pyrolysis temperature
increases, indicating that pyrolysis temperature significantly
influences the content of furfural. It can obtain the conclusion

that high pyrolysis is not conductive to generating furfural
Table 1 Composition and relative content of bio-oil in the existenc

Item Composition 400 �C

Relative content (

1 Furfural 17.08

2 Toluene 0.84

4 Ethylbenzene –

5 Paraxylene –

6 M-xylene 0.27

7 Methyl 2-furoate 2.06

8 Methyl benzoate –

9 2,6-diisopropyl 0.76

10 Methyl hexadecanoate 1.05

11 Methyl benzoate 0.71

12 Pterin-6-carboxylic acid 0.22
(Cardoso and Ataide, 2015). The reason is that hemicellulose
has the property of thermal instability compared to cellulose
and lignin. Hemicellulose is almost completely decomposed

at low pyrolysis temperature. While, cellulose and lignin only
slightly decompose. The lots of furfural is generated at low
pyrolysis temperature. Therefore, furfural is the major pyroly-

sis product in bio-oil at low pyrolysis temperature. Lu et al.
pointed out that poplar wood impregnated with ZnCl2 pro-
duces large content of furfural at low temperature, which is

consistent with our work (Lu et al., 2011). It can be explained
that ZnCl2 can alter the competitiveness of possible furfural
formation pathways and reduce the activation energy of the
furfural generation pathways to generate furfural based on

computational and experimental results (Hu et al., 2021). Fur-
fural is one of the value-added compounds produced in cat-
alytic biomass pyrolysis process (Bai et al., 2019). Therefore,

bio-oil has commercial valuable due to fact that it has large
content of the furfural (Lu et al., 2020). Besides, bio-oil has
large content of ethylbenzene, p-xylene and m-xylene as pyrol-

ysis temperature increases. Therefore, bio-oil has potential
application in chemical intermediates (Lu et al., 2020).

3.4. Bio-gas analysis

The bio-gas component produced from different pyrolysis tem-
peratures is shown in Fig. 3a. CH4 content is increase at 400–
600 �C and then decreases at 600–800 �C. Bio-gas has the max-

imum content of the CH4, which is 10.48 %. The content of the
CO is decrease at 400–500 �C and then increase after 500–800.
It can be explained that cellulose and hemicellulose are easily

converted the decarboxylation into CO owe to poor thermal
stability at low pyrolysis temperature (Cheng et al., 2020).
The cellulose and hemicellulose is almost completely decom-

posed at 400–500 �C. The decarbonylation of lignin may gen-
erate CO during aromatic condensation at high pyrolysis
temperature. Therefore, the content of CO in biogas increases

at 500–800 �C. Bio-gas produced from 800 �C has the maxi-
mum content of CO, which is 47.09%. This analysis result
indicates that pyrolysis temperature has great influenced the
component of bio-gas.

The variation trend of bio-gas composition can be
explained by the primary pyrolysis process and secondary
pyrolysis of pyrolysis products. The generation process of

bio-gas includes two stages (Li et al., 2007; Dai et al., 2000).
e of additive at 400-800 �C.

500 �C 600 �C 700 �C 800 �C

%)

15.92 10.47 10.51 8.23

1.38 2.72 – –

14,42 18.21 9.59 13.92

28.89 23.09 17.96 30.41

14.87 43.60 9.21 10.23

3.20 1.75 2.08 3.61

– – 0.79 0.45

2.32 – – –

2.71 – – –

– – – –

0.46 0.37 0.29 0.16



Fig. 3 The component (a) and heating value (b) of bio-gas at different pyrolysis temperatures.

Fig. 4 Pore volume of the biochar at different pyrolysis

temperatures.
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Stage Ⅰ: Primary pyrolysis of biomass. This stage occurs at
low pyrolysis temperature. This stage can be explained by the
following equation (Kellogg, 2002).

Biomass ! Biocharþ Bio� oilþ bio

� gas ðCO; CO2;H2 and CH4Þ ð3Þ
Stage Ⅱ: The secondary pyrolysis and transformation of the

bio-oil and bio-gas. This stage occurs at high pyrolysis temper-
ature. The main chemical reactions of secondary pyrolysis and
conversion of bio-oil include decarboxylation, decarboxyla-
tion, dehydrogenation, cyclization, aromatization and poly-

merization (Hong et al., 2017). Besides, these chemical
reactions are generally promoted as pyrolysis temperature
increases. Besides, bio-gas will undergo the secondary cracking

and transformation, which produce lots of non-condensable
gaseous at high pyrolysis temperature (Zhang et al., 2018;
Foong et al., 2020).

Biochar reacts with CO2 to generate CO, which is the rea-
son that the yield of biochar decreases and CO content
increases at high pyrolysis temperature. CH4 also reacts with
CO2 to generate CO at high pyrolysis temperature, which leads

to the content of the CH4 decrease. The component of the bio-
gas of WS/Fe/Zn without adding Fe(NO3)3 and ZnCl2 under
different pyrolysis temperature is shown in Fig. S2. Compared

with WS/Fe/Zn pyrolysis without adding Fe(NO3)3 and ZnCl2,
Fe(NO3)3 contribute to the generation of H2 in bio-gas. H2 can
be obtained from rearrangement reactions forming a poly-

cyclic aromatic structure during the charring process but also
by secondary reactions such as tar cracking and water gas shift
reaction. Besides, the presence of Fe(NO3)3 the cracking of

some depolymerization products could occur, which con-
tributes to the production of the H2. Collard et al. reported
that bio-gas produced from cellulose mixed with Fe(NO3)3
has large content of H2, which is consistent with our work

(François-Xavier et al., 2015).The heating value of the bio-
gas generally increases as pyrolysis temperature increases
(Fig. 3b). As Fig. 3b shown, the maximum heating value of

the bio-gas is 12.26 MJ/Nm.
3.5. Biochar analysis

The range of the Brunauer-Emmett-Teller (BET) surface area
of biochars produced form 400 �C to 800 �C is 921.9–
1556.7 m2/g. This result indicates that BET surface area of
bio-char is increase before 700 �C, indicating that high pyrol-

ysis temperature is conductive to generating a large number
of pores (Zhang et al., 2018). However, BET surface area of
biochar is decrease at 800 �C due to fact that the formed pore

is ruined at 800 �C (Zhong et al., 2020). The pore volume of
biochar at 400–800 �C is shown in Fig. 4. As Fig. 4 shown,
the pore volume of the biochar also increases at 400–700 �C
and then decreases after 700 �C. The biochar produced from
700 �C has the largest pore volume, which is 0.98 mL/g. This
analysis result is consistent with BET surface area analysis.



Fig. 5 XRD spectra of biochar produced from 700 �C.
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The above analysis results indicate that the pore volume and
surface area of biochar are significantly influenced by pyrolysis
temperature. Biochar can be used in wastewater treatment owe

to well-developed pore structure. The biochar produced form
700 �C is used as the candidate for further analysis and char-
acterization owe to large surface area and pore volume.

The XRD spectra of biochar produced from 700 �C is

shown in Fig. 5. As Fig. 5 shown, the biochar has ZnO and
Fe3O4 characteristic peaks. The characteristic peaks of the
ZnO and Fe3O4 are similar with the reported by the Qin

et al. (Qin et al., 2017) when they prepared Fe3O4@SiO2@-
ZnO for photocatalytic 4-nitrophenol (Qin et al., 2017).
Fig. 6 SEM (a) and EDS
XRD analysis indicates that Fe(NO3)3 and ZnCl2 are con-
verted into the Fe3O4 and ZnO in the pyrolysis process, respec-
tively. The high intensity of the ZnO peaks indicates that ZnO

has well crystalline. Therefore, biochar could be employed as
the photocatalyst for dyes removal due to the existence of
ZnO. Fe3O4 peaks can be indexed to the diffraction pattern

of (220), (311) and (400) planes. The biohcar can be quickly
recycled from aqueous solution after use under extra magnetic
field owe to the existence of Fe3O4.

Fig. 6 shows the SEM and EDS images of biochar. Fig. 6a
shows that biochar has developed pore structure. The surface
of the biochar is existence of a great number of pores, which
indicates that ZnCl2 contributes to the formation of the pore

during pyrolysis process. Yun et al. (Yun et al., 2022) pointed
out that ZnCl2 is the activation agent, which can promote to
the formation of pore structure during activated carbon prepa-

ration process (Yun et al., 2022). As Fig. 6b shown, the surface
of biochar has granular substance. The EDS images indicate
that the granular substance has Fe, Zn and O elements. How-

ever, it does not have the Cl and N elements, indicating that
the Fe(NO3)3 and ZnCl2 occur decomposition reaction to
remove the Cl and N elements. Fe(NO3)3 and ZnCl2 form

Fe3O4 and ZnO after decomposition reaction. This analysis
result is consistent with XRD analysis.

3.6. The application of biochar in wastewater treatment

The biochar has ZnO/Fe3O4 and large BET surface area,
which is employed as the adsorbent and photocatalyst for
(b) images of biochar.



Table 2 The adsorption isotherm parameters of the MO

adsorption on biochar.

Isotherms Parameters Calculation results

Langmuir Q0 (mg/g) 512.29

KL (L/mg) 20.44

R2 0.9978

Freundlich 1/n 0.0876

KF ((mg/g).(L/mg)1/n) 478.16

R2 0.8928

Fig. 7 MO adsorption data fitting the Langmuir model.
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organic dye removal from wastewater. MO is used to investi-

gate the adsorption/photocatalytic degradation performance
of biochar. MO adsorption behavior on biochar is investigated
by two kinds of adsorption isotherms (Abd El-Monaem et al.,
2022). The parameters of adsorption isotherms are shown in

Table S1. The corresponded calculation results are shown in
Table 2; which is obtained from MO adsorption data fitting
Fig. 8 Adsorption and photodegradation process of the biochar (a) a

(b).
adsorption isotherm models. As Table 2 shown, Langmuir iso-
therm model can be used to describe MO adsorption behavior
on biochar with larger R2 value (Omer et al., 2022). This result

indicates that MO adsorption performance on biochar can be
exactly predicted by the Langmuir isotherm model (Omer
et al., 2022). MO adsorption capacity of biochar is

512.29 mg/g calculated from Langmuir isotherm model.
Fig. 7 presents MO adsorption data fitting Langmuir model.

The photocatalytic degradation performance of the biochar

is also investigated. Photodegradation experiments are con-
ducted out in the dark condition before UV irridation, which
is used to eleminate the adsorption capacity of the biochar
due to its large BET surface area. The adsorption and pho-

todegradation process of biochar are shown in Fig. 8a. As
Fig. 8a shown, biochar has certain of MO removal due to large
BET surface area without UV irradiation at different concen-

trations. MO removal ranges from 46.73% to 66.70%, which is
consistent with the adsorption experiment. MO photodegrada-
tion removals are increase as irradiation time increases at 80–

120 mg/L. The removals of MO are 80.51–98.60% at 80–
120 mg/L under UV light irradiation. The analysis results
show that biochar has good MO photodegradation removal.

The main peak intensity of MO also gradually decreases as
irradiation time increases (Fig. 8b). This phenomenon indi-
cates that MO structure is destroyed. Therefore, biochar is
the promising photocatalyst for dye removal based on above

analysis.

4. Conclusion

The influence of pyrolysis temperature on the physicochemical prop-

erty of the pyrolysis products such as biochar, bio-oil and bio-gas is

investigated at the 400–800 �C. High pyrolysis temperature promotes

to produce bio-gas with the maximum yield of the 69.05% at

800 �C. The pyrolysis temperature significantly influences the compo-

sition and heating value of the bio-gas. Besides, the maximum heating

value of the bio-gas is 12.26 MJ/Nm. However, bio-oil yield is little

influenced by pyrolysis temperature. GC–MS analysis indicates that

bio-oil mainly has furfural, ethylbenzene, p-xylene and m-xylene,
nd UV– visible absorption spectra of biochar at the irriadtion time
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which has potential application in chemical industries. The existence of

ZnCl2 contributes to the generation of the furfural. While, the presen-

tence of the of Fe(NO3)3 contributes to the generation of the H2. The

BET surface area of biochar is influenced by pyrolysis temperature.

The Fe(NO3)3 and ZnCl2 are composed into Fe3O4 and ZnO in the

pyrolysis process. Therefore, biochar can be used as the absorbent

and photocatalyst for MO removal from wastewater.
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