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A B S T R A C T   

Tumor stands as one of the principal contributors to global mortality. As research into tumor treatments ad
vances, tumor inhibitors emerge as pivotal milestones in tumor therapy. Among these inhibitors, Anaplastic 
Lymphoma Kinase (ALK), a receptor tyrosine kinase, is critical owing to its close association with tumor cell 
proliferation and growth, which renders it a critical therapeutic target. This work systematically explores the 
relationship between the chemical structures of 36 piperidine carboxamide derivatives and their efficacy in 
inhibiting Karpas-299 tumor cell activity by employing a rigorous 3D-QSAR modeling approach. A robust 
Topomer CoMFA model was generated and was meticulously validated through ANN neural network analysis (q2 

= 0.597, r2 = 0.939, F = 84.401, N = 4, SEE = 0.268). Based on the model, 60 new compounds with desirable 
inhibitory activities were successfully designed. Combined with Lipinski’s rule and ADMET criteria alongside 
molecular docking and dynamics simulations, a lead compound with high inhibitory activity and good drug- 
likeness was selected. Further computational analyses, encompassing free energy landscape and binding free 
energy calculations, provided compelling evidence of the stable binding conformation of the lead compound and 
the superior affinity with the target protein at the active site, underscoring its potential therapeutic utility. In 
summary, this investigation offers valuable insights and methodological guidance for advancing tumor therapy 
and underscores the promise of piperidine carboxamide derivatives as prospective ALK inhibitors.   

1. Introduction 

ALK (Anaplastic Lymphoma Kinase) a receptor tyrosine kinase, plays 
a pivotal role in embryonic and neural development (Haratake et al., 
2021; Mizuta et al., 2021; Cooper et al., 2022). However, mutations, 
rearrangements or aberrant activation of the ALK gene frequently 
induce hyperactivation of the ALK protein (Schneider et al., 2023; 
Rothenstein and Chooback, 2018; Iannantuono et al., 2022), thereby 
exacerbating cellular pathogenesis and degeneration. In tumor cells, the 
aberrantly active ALK protein participates in cellular proliferation, 
growth and metabolic processes through signaling pathways including 
RAS-MAPK (Hrustanovic and Bivona, 2015), PI3K-AKT and JAK-STAT 
(Guan et al., 2023; Jang et al., 2017; Dong et al., 2016), resulting in 

uncontrolled tumor cell growth and dissemination. Therefore, the in
hibition of ALK protein and its associated signaling pathways has 
emerged as a critical therapeutic strategy across various types of tumor 
therapy. 

With the widespread adoption of various ALK inhibitors such as 
Crizotinib (Du et al., 2018), Alectinib and Lorlatinib (Mizuta et al., 2021; 
van Erp et al., 2017; Tucker et al., 2017), there is growing interest in 
organic synthetic compounds as potential ALK inhibitors. Among these, 
piperidine carboxamide derivatives characterized by a piperidine ring 
and a carboxamide group, exhibit diverse biological activities owing to 
their unique chemical structures (Park et al., 2021; Eşme et al., 2024; 
Stylianakis et al., 2023). Bryan et al successfully synthesized a range of 
piperidine carboxamide derivatives (Bryan et al., 2012); that 
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demonstrate significant anti-tumor activity in the Karpas-299 cell 
model, which indicates that they have good potential as ALK inhibitors. 
Despite the preliminary validation of the anti-tumor activity of these 
compounds, the anti-tumor mechanisms remain elusive. Hence, there is 
a pressing need to comprehensively elucidate their mechanisms of ac
tion to unlock further potential as ALK inhibitors and broaden their 
applications in tumor therapy. 

As illustrated in Scheme 1, a 3D-QSAR model was constructed uti
lizing the Topomer CoMFA method to gain insight into the relationship 
between piperidine carboxamide derivatives chemical structures and 
inhibition of tumor cell activity, in order to identify key features of ALK 
inhibitors. The accuracy and robustness of the model were ensured 
through internal and external validation, as well as verification using an 
artificial neural network model. Based on this model, 60 novel com
pounds with desirable inhibitory activity were successfully designed 
through adjustment and optimization of substituent fragments. 
Combining Lipinski’s rule with computational drug design techniques 
including ADMET evaluation, molecular docking and molecular elec
trostatic potential, one lead compound (Compound N55) that exhibits 
high inhibitory activity and favorable drug-like properties was identi
fied. Molecular dynamics simulations, free energy landscapes and 
binding free energies were performed on compound N55 to elucidate 
potential ligand conformations and interaction patterns at the active 
site. This work aims to provide avenues for the development of future 
ALK inhibitors and the development of novel anti-tumor drugs. 

2. Materials and methods 

2.1. The compound structure and inhibitory activity 

The test results for compounds and anti-tumor cell (Karpas-299 cells) 

activity can be found in Table S1. 

2.2. Preprocessing of compound structures and dataset partitioning 
refinement 

Prior to dataset partitioning, compound conformations within the 
dataset were optimized using the MMFF94 force field in Chem 3D (Plett 
et al., 2024; Lee et al., 2024). Subsequently, 27 compounds were 
randomly allocated to the training set (75 %), while 9 compounds were 
designated for the testing set (25 %). To ensure balanced model pre
diction performance, both sets encompassed samples with high, medium 
and low activity levels, distributed approximately equally across various 
ranges of biological activity. 

2.3. Topomer CoMFA 

Topomer CoMFA (Topomer Comparative Molecular Field Analysis) 
is a method dedicated to exploring how internal molecular conforma
tional changes influence biological activity (Sepehri et al., 2021; 
Kovatcheva et al., 2005). By modeling the three-dimensional field ef
fects of Topomers, it quantifies the impact of structural variances on 
biological activity, thereby elucidating the intricate relationship be
tween conformational changes and biological responses (Abdizadeh 
et al., 2020). This method furnishes a more sophisticated and compre
hensive approach to predicting biological activity, thereby enhancing 
the precision and depth of compound design strategies. 

2.4. Partial least squares regression and external model validation 

Partial least squares (PLS) are a multivariate statistical method 
commonly employed in handling datasets comprising multiple 

Scheme 1. Compounds design and screening process.  
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independent and response variables (Beyaztas and Shang, 2020; Abdi
zadeh et al., 2021). In this study, PLS regression was utilized to construct 
QSAR models by optimizing the relationship between descriptors 
derived from the Topomer CoMFA model and activity values, thereby 
facilitating accurate predictions of activity levels within the dataset. 
Furthermore, to ensure the reliability of the model, various parameters 
including the cross-validated correlation coefficient q2, optimal number 
of components (ONC), non-cross-validated correlation coefficient r2, 
standard error of estimation SEE and F-test values were computed to 
validate the accuracy and robustness of the model results (Golbraikh 
et al., 2014; Dörgő et al., 2020; Xie and Feng, X.a., Li, L., Chen, X. , 
2022), as depicted by equations (1) and (2). 

q2 = 1 −

∑∞
i=1(ŷ − yi)

2

∑∞
i=1(yi − y)2 (1)  

r2 =
[
∑

(yi − yi)(ŷi − ŷ) ]2
∑

(yi − yi)
2
×
∑

(ŷi − ŷ)2 (2)  

where ŷi and yi represent predicted activity values and experimental 
activity values, respectively; y and ŷ represent experimental values and 
predicted average activity values of the training set, respectively. 

An ideal QSAR model should exhibit strong performance not only 
during internal validation but also when subjected to external valida
tion, ensuring the reliability of its predictive capabilities. Employing an 
independent test dataset for external validation is crucial to establish the 
credibility of the model. The external validation parameter for assessing 
the model’s predictive ability, denoted as r2

pred, is defined by formula (3). 

r2
pred =

(
SD − PRESS

SD

)

(3) 

SD represents the sum of squared deviations between the inhibitory 
activity of compounds in the test set and the average inhibitory activity 
of compounds in the training set, while PRESS represents the sum of 
squared deviations between the predicted activity and the experimental 
activity of compounds in the test set. 

The calculation of other relevant validation parameters follows the 
method introduced by Golbraikh-Tropsha and Roy (Liu et al., 2023; 
Yang et al., 2023). The formulas for k, kʹ,R2

0,R 2́
0 , r2

m, and Δr2
m are as 

shown in equations (4)-(9). 

k =

∑
(yi × ŷi)
∑

(ŷi)
2 (4)  

kʹ =
∑

(yi × ŷi)
∑

(yi)
2 (5)  

R2
0 = 1 −

∑
(yi − k × ŷi)

2

∑
(yi − yi)

2 (6)  

R 2́
0 = 1 −

∑
(ŷi − kʹ × yi)

2

∑
(ŷi − ŷ)2 (7)  

r2
m = R2

(

1 −

⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒R2 − R2

0

⃒
⃒

√ )

(8)  

Δr2
m =

⃒
⃒r2

m − r 2́
m

⃒
⃒ (9) 

Additionally, the performance of the model was further assessed 
utilizing root mean square error (RMSE), mean absolute error (MAE) and 
concordance correlation coefficient (CCC). The pertinent validation 
parameters are delineated by equations (10) through (12). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − ŷi)

2

n

√
√
√
√
√

(10)  

MAE =

∑n
i=1|yi − ŷi|

n
(11)  

CCC =
2
∑n

i=1(yi − y)(ŷi − ŷ)
∑n

i=1(yi − y)2
+
∑n

i=1(ŷi − ŷ)2
+ n(y − ŷ)2 (12)  

2.5. Application domain and Y randomization test 

The assessment of the application domain (AD) for QSAR models is a 
critical step in ensuring their reliability, especially when dealing with 
structurally similar compounds, where the model’s applicability needs 
to be rigorously evaluated. In this context, AD is defined using the 
leverage method in conjunction with standardized techniques to guar
antee the accuracy of model predictions (Tandon et al., 2019), as 
depicted by formula (13). 

hi = xT
i
(
XTX

)− 1xi (13) 

hi represents the leverage value for the i-th compound, xi signifies the 
standardized molecular descriptor vector for compound i, and X de
notes the entire domain matrix. 

Leverage value is a statistical metric frequently employed to evaluate 
the influence of individual samples on a model, particularly in the realm 
of quantitative structure–activity relationship (QSAR) modeling (Dörgő 
et al., 2020). Elevated leverage values suggest that these samples exhibit 
distinctive or outlier characteristics in elucidating the structure–activity 
relationship of compounds, potentially exerting a substantial impact on 
model construction and prediction. By contrasting leverage values 
against a predefined threshold, the stability of the model within this 
domain and the trustworthiness of the predictions can be appraised. The 
calculation formula for the threshold is delineated in equation (14). 

h* = 3pʹ/n (14) 

In this equation, pʹ represents the descriptor value plus one, and n 
represents the number of samples in the training set. 

Moreover, to enhance the model’s robustness and mitigate the risk of 
fortuitous correlations, a Y-randomization test was performed to sub
stantiate the non-random nature of the model’s outcomes. 

2.6. Artificial neural network model 

Artificial neural network (ANN) is a non-linear modeling approach 
consisting of input, hidden, and output layers (Yang and Zhao, 2023; 
Herzog et al., 2020; Sherfey et al., 2018). In QSAR research, it models 
the structural features of compounds in the dataset to effectively capture 
the relationship between molecular structure and biological activity. 
This study verifies the accuracy of activity prediction of compounds 
generated by the Topomer CoMFA model using a feedforward neural 
network model (Sherfey et al., 2018). By iteratively testing different 
numbers of hidden layer neurons, we aimed to find the optimal pre
dictive performance to ensure the reliability of the Topomer CoMFA 
model results. The built-in function “newff” in MATLAB was utilized as 
the activation function for the hidden and output layers and the dataset 
was trained using the scaled conjugate gradient algorithm (Yekeen et al., 
2023). Furthermore, the fragment contribution of R1 and R2, experi
mental pIC50 values, and Topomer CoMFA model-predicted pIC50 values 
were designated as input layer nodes, while the validation pIC50 values 
were designated as output layer nodes. 

The number of nodes in the hidden layer plays a critical role in 
maintaining the model’s balance. Excessive nodes can lead to over
fitting, while insufficient nodes can compromise the model’s robustness 
and generalization capability. Based on Kolmogorov’s theorem and the 
complexity of this model (Chernov, 2020), a single hidden layer neural 
network is sufficient to map the overall model relationship. Therefore, 
the structure of the hidden layer is set to 1. Furthermore, through iter
ative adjustments of the number of hidden layer neurons and the 
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iteration count during training, the model undergoes continual refine
ment and optimization, thus ensuring the robustness of the final model. 

2.7. Molecular design and activity prediction 

In the Topomer Search module of SYBYL 2.0, compounds’ physico
chemical properties are utilized to screen R1 and R2 fragments in the 
Zinc15 database (bioactive subset) based on similarity. High-activity 
contributing fragments are selected and combined theoretically to 
obtain new compounds with high inhibitory activity. During this pro
cess, the molecular fragments of the new compounds must meet the 
criteria of a topological distance close to 185 (Tong et al., 2021), and the 
contribution value of the R group should be close to or greater than the 
corresponding contribution value of the R group in the Topomer CoMFA 
model. In addition, the Topomer CoMFA model was used to forecast the 
activity of newly formulated compounds for assessing the rationality of 
the design outcomes. 

2.8. ADMET prediction 

As a commonly employed tool in pharmaceutical research, the 
assessment of a candidate compound’s absorption, distribution, meta
bolism, excretion, and toxicity (ADMET) properties serves to ascertain 
its potential pharmaceutical value and safety (Dong et al., 2018). This 
approach markedly diminishes experimental costs and time, thereby 
offering guidance for the optimization and refinement of subsequent 
compounds. In this study, the ADMET Lab online server was employed 
to predict the ADMET properties of the newly designed compounds 
(Ferreira and Andricopulo, 2019). 

2.9. Molecular docking 

Molecular docking, serving as a computational approach for simu
lating and predicting the binding interactions and affinity between small 
molecules and target proteins, plays a pivotal role in drug design and 
discovery (Hou et al., 2013; Johnson and Snow, 2016; Krause et al., 
2023). This method adeptly elucidates the interactions between drugs 
and target proteins, thereby forecasting the mode and intensity of drug- 
protein binding. In this research, the receptor protein is human 
anaplastic lymphoma kinase, a protein closely associated with embry
onic development and neuronal differentiation, with PDB ID: 4DCE 
(Bryan et al., 2012). Autodock Vina was selected as the docking tool, and 
the root-mean-square deviation (RMSD) between the docking results of 
homologous ligands and re-docked ligands was used to ensure the reli
ability of the docking method. 

Initially, gradient optimization and the Lamarckian genetic algo
rithm were applied to globally search for conformations of the ligands 
and receptors (Neumann et al., 2024; Cuadra et al., 2016), obtaining 
their lowest energy conformations which underwent energy minimiza
tion. Concurrently, redundant water molecules were eliminated. The 
Powell method was employed for ligand and protein optimization, with 
the ligand force field set as Tripos, a non-bonded cutoff value of 9.0, and 
a dielectric constant of 2 (Wang et al., 2023). The protein force field was 
set as Kollman, with a non-bonded cutoff value of 9.0 and a dielectric 
constant of 4 (Kawamoto et al., 2022; Xu et al., 2024). The dimensions of 
the protein’s active site box were as follows: X = 70, Y = 70, Z = 70, with 
a grid spacing of 0.375 Å. The center coordinates were x = 6.93, y =
12.70, z = 37.15. Finally, hydrogen bonds and hydrophobic interactions 
at the ligand and protein active sites were visualized using Discovery 
Studio Visualizer 2019. 

2.10. Molecular electrostatic potential 

To delve deeper into the intra-molecular interactions and predict 
their involvement and reactivity in chemical reactions, a computational 
analysis on the molecular electrostatic potential (MEP) of the compound 

was conducted (Zhao et al., 2023). Density functional theory (DFT) was 
utilized for structure optimization and frequency calculations of the 
compound at the B3LYP/6-31G(d) level. The absence of imaginary fre
quencies in the optimized structures indicates the attainment of ener
getically stable conformations (Fedorov et al., 2019). All computations 
were performed using the Gaussian 16 program. 

2.11. Molecular dynamics simulation 

Molecular dynamics simulation is a computational technique 
specialized in modeling the interactions among biomolecules. Its pri
mary objective is to simulate the binding process and dynamic behaviors 
of biomolecules, aiming to gain deeper insights into their interaction 
mechanisms (Jeyaram et al., 2019). Through this simulation approach, 
intricate details of biomolecular interactions, including dynamic 
behavior during binding and the stability of binding sites, can be 
elucidated, contributing to a more comprehensive understanding of 
biomolecular interactions. 

MD simulations were performed using the Gromacs software, with 
the CHARMM36-Jul2021 force field, for a protein–ligand complex 
(Abraham et al., 2015; Aho et al., 2022). Initially, the system was placed 
under periodic boundary conditions (PBC) within a 12-faced box 
composed of a water model (Tip3p) (Hammoudi et al., 2020). The sys
tem’s charge was neutralized by adding an appropriate number of Na+

and Cl- ions. Subsequently, atomic interactions were computed using the 
Lorentz-Berthelot rule and the particle mesh Ewald (PME) method (Vora 
et al., 2020), and energy minimization was conducted using the steepest 
descent and conjugate gradient algorithms over 50,000 steps. Following 
energy minimization, the system underwent equilibration in the 
isochoric-isothermal (NVT) and isobaric-isothermal (NPT) ensembles 
for 200 ps each (Ogawa et al., 2023). The simulation environment was 
set at constant temperature (300 K) and pressure (1 atm) (Yousef et al., 
2022). Individual simulations for each complex were carried out for 100 
ns, with a time step of 2 fs (Tong et al., 2021). After completion of the 
simulations, trajectory analysis was performed using tools available in 
the Gromacs suite. Various parameters were computed, including prin
cipal component analysis (PCA), root mean square deviation (RMSD), 
root mean square fluctuation (RMSF), radius of gyration (Rg), solvent- 
accessible surface area (SASA), number of hydrogen bonds, dictionary 
of secondary structure of proteins (DSSP) and free energy landscape, 
among others. 

2.12. Binding free energy and amino acid decomposition binding free 
energy 

The binding free energy serves as a pivotal parameter in evaluating 
the strength of intermolecular interactions and the stability of com
plexes (Sheng et al., 2021), especially in assessing the stability of ligand- 
receptor binding (Sun et al., 2024). Conversely, amino acid decompo
sition binding free energy refers to the energy released or absorbed when 
each amino acid residue interacts with the ligand (Ebrahimi and Hénin, 
2022). Through the computation of individual amino acid residues’ 
energy contributions, their respective roles and significance during the 
binding process can be elucidated, facilitating the identification of 
pivotal residues that play critical roles in protein–ligand interactions 
(Zhou et al., 2023). Binding free energy (MMGBSA) was calculated ac
cording to the following formulas (15)-(17): 

ΔGgas = ΔEvdW + ΔEele (15)  

ΔGsolv = ΔEpolar + ΔEnonpolar (16)  

ΔGMMGBSA = ΔGgas + ΔGsolv (17) 

Here, ΔEvdW, ΔEele, ΔEpolar, ΔEnonpolar, ΔGgas, ΔGsolv and ΔGMMGBSA 
represents van der Waals forces, electrostatic energy, polar solvation 
energy, nonpolar solvation energy, meteorological chemical energy, 
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solvation energy and total energy (Ebrahimi and Hénin, 2022). 

3. Results and discussion 

3.1. Topomer CoMFA model results 

The accuracy of the Topomer CoMFA model heavily relies on the 
methodology used to fragment the molecules in the training set. In this 
research, the most potent compound 24 was selected as the template 
molecule and it was fragmented based on the skeleton illustrated in 

Fig. 1. The contributions of the resulting fragments varied, which in
dicates diverse impacts on the inhibitory activity of the compounds. The 
statistical parameters of the model for the optimal fragmentation 
method are summarized in Table 1, with q2 = 0.597, r2 = 0.939, F =
84.401, N = 4, and SEE = 0.268. 

3.2. The internal and external validation results of the Topomer CoMFA 
model 

The model’s strong internal predictive capability is evident from its 
q2 value. However, to ensure the model’s robustness, an independent 
test set was utilized for external validation of the Topomer CoMFA 

Fig. 1. The optimal fragmentation method of the Topomer CoMFA model.  

Table 1 
The internal and external validation parameters of the Topomer CoMFA model.  

PLS statistic Criterion Topomer CoMFA 

q2 q2 > 0.5 0.597 
r2 r2 > 0.6 0.939 
F  84.401 
SEE  0.2680 
N  4 
r2

pred r2
pred > 0.6 0.6422 

R2 (R2- R0
2) / R2 < 0.1 0.7721 

R0
2 (R2- R0

2) / R2 < 0.1 0.6980 
R’02 (R2- R0

2) / R2 < 0.1 0.6180 
k 0.85 ≤ k ≤ 1.15 0.9995 
k’ 0.85 ≤ k’ ≤ 1.15 1.0017 
rm 

2 rm 
2 > 0.5 0.5618 

Δ rm 
2 Δ rm 

2 < 0.2 0.0928 
RMSE Close to 0 0.351 
MAE  0.305 
CCC CCC > 0.8 0.817  

Fig. 2. The applicability domain detection of the Topomer CoMFA model.  

Table 2 
Y Randomization test results.  

Model Topomer CoMFA 

q2 r2 

Original  0.597  0.939 
1  − 0.526  0.089 
2  − 0.122  0.190 
3  − 0.171  0.107 
4  − 0.050  0.191 
5  − 0.191  0.094 
6  − 0.311  0.112 
7  − 0.322  0.091 
8  − 0.177  0.086 
9  − 0.075  0.142 
10  − 0.182  0.097  

Table 3 
Activity prediction set and R group contribution for the best Topomer CoMFA 
model.  

NO pIC50 Topomer CoMFA Fragment contribution 

Pred Error R1 R2 

1  6.76  6.32  0.44  1.78  0.21 
2  4.60  4.58  0.02  0.03  0.21 
3  5.63  5.41  0.22  0.86  0.21 
4  4.60  4.49  0.11  − 0.05  0.21 
5*  5.70  5.55  0.15  1.01  0.21 
6  5.20  5.19  0.01  0.65  0.21 
7  5.99  6.08  − 0.09  1.54  0.21 
8*  5.51  5.21  0.30  0.65  0.21 
9  6.04  5.81  0.23  1.26  0.21 
10  4.60  4.93  − 0.33  0.39  0.21 
11  5.76  5.77  − 0.01  1.23  0.21 
12*  5.83  5.54  0.29  0.99  0.21 
13  6.49  6.61  − 0.12  2.06  0.21 
14*  6.08  5.83  0.25  1.78  − 0.38 
15  6.44  6.51  − 0.07  1.78  0.40 
16*  6.45  5.86  0.59  1.78  − 0.35 
17  5.17  5.04  0.13  1.78  − 0.35 
18*  5.53  5.89  − 0.36  1.78  − 0.19 
19  5.59  5.76  − 0.17  1.78  − 0.35 
20  5.70  5.76  − 0.06  1.78  − 0.35 
21  6.47  6.24  0.23  1.78  0.13 
22*  7.08  6.84  0.24  1.78  0.73 
23  7.80  7.70  0.10  1.78  1.59 
24  8.00  7.98  0.02  1.78  1.87 
25*  6.23  6.52  − 0.29  1.78  0.45 
26  7.10  7.18  − 0.08  1.78  1.07 
27  7.02  6.80  0.22  1.78  0.70 
28*  7.15  6.68  0.47  1.78  0.57 
29  5.53  5.48  0.05  1.78  − 0.63 
30  7.22  7.07  0.15  1.78  0.96 
31  5.77  5.77  0.00  1.78  − 0.33 
32  7.72  7.79  − 0.07  1.78  1.69 
33  6.86  7.07  − 0.21  1.78  0.96 
34  6.72  6.69  0.03  1.78  0.58 
35  7.51  7.35  0.16  1.78  1.24 
36  5.39  6.24  − 0.85  1.78  0.21  

* test set. 
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model. The results of the corresponding evaluation parameters are 
detailed in Table 1. 

3.3. The applicability domain and Y-randomization test results 

The results of the model’s applicability domain are shown in Fig. 2. It 
can be observed that the leverage values for the majority of compounds 
fall within the specified threshold, which indicates that the established 
Topomer CoMFA model has a broad applicability domain and can be 
used to predict the biological activity of new compounds. However, it is 
worth noting that one compound in the training set displays an appli
cability domain detection exceeding the predefined threshold. Conse
quently, a thorough investigation of its characteristics and contributions 
is warranted to ensure the continued reliability of the model under 
specific conditions. 

Furthermore, the results of the Y-randomization test can be found in 
Table 2. All test outcomes demonstrate minimal q2 and r2 values, which 
indicates that the performance of the model is not merely due to chance 
correlations within the training set. 

3.4. The prediction results of the optimal Topomer CoMFA model 

Under the optimal Topomer CoMFA model, the inhibitory activity of 
compounds in the dataset was predicted. The prediction results and the 
contribution values of R-group fragments are presented in Table 3. The 
results demonstrate that the predicted pIC50 values for all compounds 
are within a reasonable range, along with the associated linear errors 
and fitting relationships, as depicted in Fig. 3. 

3.5. The validation results of the artificial neural network model 

In MATLAB, a neural network was employed to train the predictive 
results of the Topomer CoMFA model, aiming to bolster its reliability. 
The training process adhered to the outlined procedure in Fig. 4 (a). 
Furthermore, to ascertain the optimal training circles, the early stopping 
technique was implemented to monitor the validation set error. Training 
was promptly terminated once consecutive rounds indicated no further 
reduction in validation set error, thereby preempting overfitting and 
conserving computational resources. Ultimately, the optimal training 
circle was determined to be 2, with a corresponding validation set error 
of 0.016. The outcomes of the optimal training circles are delineated in 

Fig. 3. The prediction errors of the results (a); The linear regression fitting of the predicted results (b).  

Fig. 4. The neural network training model process (a); The optimal training circles (b).  
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Fig. 4 (b). 
In this neural network model, that leverages multiple error metrics 

analysis, 75 % of the dataset was allocated for network training, while 
the remaining 25 % was reserved for network testing. Basic network 
parameters were set, including 1000 training epochs, a learning rate of 
0.1, a minimum training target error of 0.0001, a momentum factor of 
0.01 and a minimum performance gradient of 1 × 10-6. Under these 
specified conditions, continual adjustments were made to the artificial 
network activation functions and training functions, enabling the 

comprehensive tuning of the model to achieve optimal performance. 
The resulting model equation was determined to be Y = 0.66X + 0.066, 
with a minimum root mean square error of 0.1763, a minimum mean 
absolute percentage error of 2.8687 % and a minimum mean absolute 
error of 0.1708. Furthermore, as the mean square error decreases and 
the coefficient R approaches 1, it signifies an enhanced fit of the model 
(Rister and Rubin, 2017). The corresponding model equations are 

Fig. 5. Optimal training model (a); Optimal validation model (b); Optimal test model (c); Optimal neural network model (d).  

Fig. 6. The fitting results of the Topomer CoMFA model and ANN model.  Fig. 7. The Topomer CoMFA model contour map of compound 24; (a and b) 
steric contour map and electrostatic contour map around the R1 fragment; (c 
and d) steric contour map and electrostatic contour map around R2 fragment. 
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depicted in Fig. 5. 
Under the optimal Topomer CoMFA model and ANN model, activity 

prediction and validation of compounds in the test set were conducted. 
The specific fitting results are depicted in Fig. 6. 

3.6. Contour map analysis of the Topomer CoMFA model 

In the contour maps of the Topomer CoMFA steric field, the green 
region represents larger volume substituents contributing significantly 
to activity, while the yellow region indicates smaller volume groups 
making a high contribution to activity (Tong et al., 2023). In the elec
trostatic field contour maps, the red region signifies favorable activity 
for negatively charged groups, whereas the blue region suggests favor
able activity for positively charged groups (Zhang et al., 2019). In this 
context, compound 24 (pIC50 = 8), which shows the highest activity, 
was chosen as the template compound for specific analysis of com
pounds in the dataset. 

As depicted in Fig. 7 (a), the C-3 and C-5 positions of the R1 fragment 
are enclosed by green regions, suggesting that increasing the volume of 
substituents at these positions can enhance the compound’s inhibitory 
activity. Consequently, compounds 5, 7 and 9 bearing Cl, OMe and Et 
substitutions, respectively, at the C-3 position, exhibit significantly 
higher pIC50 values compared to compound 3 without any substitutions. 
Moreover, compound 13, featuring OMe substitutions at both the C-3 
and C-5 positions, demonstrates notably higher pIC50 value than com
pound 7, which has OMe substitution solely at the C-3 position. Notably, 
a yellow region is observed at the C-4 position, which indicates that 
increasing the volume of substituents at this position is detrimental to 
enhancing inhibitory activity. Thus, compounds 6, 8 and 10 with Cl, 
OMe and Et substitutions, respectively, at the C-4 position, exhibit 
markedly lower pIC50 values compared to compound 3 without any 
substitutions. 

In Fig. 7 (b), the C-3 and C-5 positions of the R1 fragment are sur
rounded by red regions, implying that enhancing the electronegativity 
of substituents at these positions contributes to increasing the com
pound’s inhibitory activity. Consequently, compounds 5 and 7 with Cl 
and OMe substitutions, respectively, at the C-3 position, exhibit signif
icantly higher inhibitory activity compared to compound 3 without any 
substitutions. It is noteworthy that due to the higher electronegativity of 
OMe relative to Cl, compound 7 with OMe substitution demonstrates a 
more pronounced increase in inhibitory activity compared to compound 
5. Additionally, compound 13, featuring OMe substitutions at both the 
C-3 and C-5 positions, shows a substantially higher pIC50 value than 
compound 7, which has OMe substitution only at the C-3 position. 

Moreover, a blue region adjacent to the C-4 position suggests that 
increasing the electronegativity of substituents at this position is detri
mental to enhancing compound activity. Consequently, compounds 6 
and 8 with Cl and OMe substitutions, respectively, at the C-4 position, 
exhibit markedly lower pIC50 values compared to compound 3 without 
any substitutions. 

The stereoisomer contour map of the R2 fragment, as illustrated in 
Fig. 7 (c), reveals that the C-4 position is proximate to a green region, 
indicating that augmenting the substituent volume at this position en
hances the compound’s inhibitory potential. Consequently, compounds 
22, 23 26, 28, 29, 32, 34 and 35, featuring Me, OCF3, Cl, NO2, CO2Me, 
Ph, OPh and morpholine substitutions at the C-4 position, respectively, 
display significantly higher pIC50 values than compound 15 devoid of 
any substitutions. Additionally, a yellow region is observed at the C-3 
position, suggesting that enlarging the substituent volume at this posi
tion hampers the improvement of inhibitory activity. Due to the larger 
volume of the Ph group compared to Cl, compound 33 with Ph substi
tution at the C-3 position exhibits markedly lower pIC50 value than 
compound 27 with Cl substitution. Furthermore, compound 31, 
featuring CO2Me substitution at the C-3 position, also demonstrates 
notably lower pIC50 value than compound 15 without any substitutions. 

In Fig. 7 (d), the C-4 position of the R2 fragment is encompassed by a 
red region, suggesting that enhancing the electronegativity of sub
stituents at these positions contributes to increasing the inhibitory ac
tivity of the compound. Due to the higher electronegativity of F 
compared to Cl and Me, compounds 24 and 26 with OCF3 and Cl sub
stitutions, respectively, at the C-4 position demonstrate significantly 
higher inhibitory activity than compound 22 with Me substitution. 
When the C-4 position has no substitutions, the pIC50 value is mini
mized. Additionally, a blue region is observed at the C-5 position, which 
indicates that introducing highly electronegative groups at this position 
is detrimental to enhancing compound activity. Therefore, compounds 
29 and 31 with NO2 and CO2Me substitutions at the C-5 position exhibit 
substantially lower inhibitory activity compared to compound 15 
without any substitutions. 

3.7. Molecular design and activity prediction results 

Using the Topomer CoMFA model, fragment contribution descriptor 
values were computed to selectively screen compounds within the 
ZINC15 database (bioactive subset), retaining those featuring high- 
contribution R1 and R2 fragments. These selected fragments were sub
sequently amalgamated with a common scaffold, which leads to the 
successful design of 60 novel compounds demonstrating potent 

Fig. 8. Molecular design scheme.  
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inhibitory activity. Details regarding the structures of the newly 
designed compounds and their activity predictions are presented in 
Table S2, while the schematic representation of the molecular design 
process can be found in Fig. 8. 

Additionally, the newly designed compounds were subjected to 
Lipinski’s principles of drug design to ascertain their potential as drug 
candidates (Menche, 2021; Chen et al., 2020). Leveraging the Swis
sADME online platform, an array of physicochemical properties of the 
compounds were analyzed, complemented by the activity predictions 
derived from the Topomer CoMFA model. Consequently, four com
pounds demonstrating potential pharmaceutical value were identified 
through this screening process. Detailed information regarding the 
chemical structures of these compounds and their predicted activity 
outcomes are summarized in Table 4. 

3.8. ADMET prediction results 

Based on the ADMET property predictions from Table 5, the newly 
designed compounds demonstrate favorable human intestinal absorp
tion (HIA), blood–brain barrier (BBB) permeability and volume distri
bution (VD). In terms of inhibition capacity, the compounds exhibit 
weaker inhibition of CYP2D6 compared to CYP3A4. Predictions of drug 
clearance rates indicate that, except for compound N55, the clearance 
rates of other compounds are relatively low (<5 ml min− 1 kg− 1). 
Additionally, toxicity prediction results reveal low toxicity of all com
pounds in terms of acute oral toxicity in rats (ROA), which is a positive 

characteristic for drug development. Taking all factors into consider
ation, compound N55 has been selected for further investigation to 
uncover its specific potential pharmacological value. 

3.9. Molecular docking results 

Through extraction of the homologous ligand from the receptor 
protein and subsequent re-docking using Autodock Vina, the root-mean- 
square deviation (RMSD) between the homologous ligand and the re- 
docked ligand was utilized as a metric to assess the reliability of the 
docking process. The docking results, as depicted in Fig. 9, reveal that 
the re-docked ligand closely aligns with the homologous ligand, exhib
iting an RMSD value of 1.210 Å. This signifies the robustness and 
feasibility of the docking approach employed in this investigation, and 
demonstrates the capability of the docking approach to accurately 
replicate the binding conformation between the ligand and the protein. 

In addition, molecular docking was conducted for the newly 
designed compound N55, and the results, along with the interaction 
details, are illustrated in Fig. 10. It was observed that compound N55 
forms two hydrogen bonds with the amino acid residues Ala1274 and 
Asp1163 at the active site. Additionally, it engages in multiple C/Pi 
hydrogen bonds with the amino acid residues Arg1275, Cys1288, and 
Gly1272. Furthermore, compound N55 exhibits pronounced hydro
phobic interactions with the amino acid residues Ile1170, Leu1291, 
Met1166, Met1290, Phe1271, and Pro1292. These interactions 
contribute to a firm binding of compound N55 with the target protein at 
the active site, yielding a total docking score of − 9.47 kcal mol− 1, which 
indicates remarkable binding affinity. Notably, all ligand–protein in
teractions are localized on the newly designed fragment. This provides 
further validation of the reliability of the fragment-based virtual 
screening approach. 

Table 4 
The chemical structures, fragment contribution values and activity prediction 
results of the newly designed compounds.  

NO Structures Fragment 
contribution 

pIC50 

R1 R2 Pred 

N54 2.06  1.66  8.05 

N55 2.06  1.74  8.14 

N57 2.06  1.66  8.06 

N58 2.06  1.81  8.20  

Table 5 
Prediction of ADMET characteristics for the newly designed compounds.  

NO Distribution Metabolism Excretion Toxicity 

HIV BBB VD CYP2D6 CYP3A4 CL ROA 

N54 0.006 0.005 0.801 0.691 0.976 2.627 0.372 
N55 0.008 0.013 0.970 0.601 0.968 6.053 0.350 
N57 0.007 0.006 0.869 0.447 0.961 2.400 0.265 
N58 0.008 0.013 0.913 0.630 0.976 3.591 0.223  

Fig. 9. Redocking ligand and homologous ligand congruence conformation; 
Homologous ligand (Green), re-docked ligand (blue). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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3.10. Molecular electrostatic potential results 

Computational analysis of molecular electrostatic potential (MEP) 
enables the prediction of active sites within compound molecules, and 
can elucidate interactions with receptor proteins and can unveil the 

relationship between chemical structure and pharmacological activity. 
The MEP of compound N55 was computed at the B3LYP/6-31G(d) level, 
as depicted in Fig. 11. Variations in MEP mapping around compound 
N55 signify the strength of binding to receptor active sites. Negative 
MEP regions (dark areas) are localized around carbonyl and ether bonds, 

Fig. 10. The molecular docking results of the newly designed compound N55, PDB ID: 4DCE; (a) 3D docking results; (b) 2D docking results.  

Fig. 11. The molecular electrostatic potential of compound N55; The dark regions correspond to negative electrostatic potential areas indicative of active sites for 
electrophilic reactions; The light regions denote positive electrostatic potential areas serving as active sites for nucleophilic reactions. 

Fig. 12. Results of PCA analysis, (a) The first two principal components analysis; (b) The contribution of the top 20 principal components.  
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while positive MEP regions (light areas) are observed over benzene rings 
and saturated fatty chains. These regions are indicative of active sites 
capable of interacting with receptor proteins. This conclusion is 
consistent with molecular docking results. 

3.11. Molecular dynamics simulation results 

For an in-depth investigation of the molecular docking outcomes, a 
100 ns molecular dynamics simulation was carried out on the complex 
formed by the newly designed compound N55 and the receptor protein 
(PDB ID:4DCE). Comprehensive analysis of trajectory and coordinate 
files was conducted using the built-in tools in Gromacs, to reveal the 
stability of the ligand-receptor complex. 

As shown in Fig. 12 (a), the first two principal components can only 
explain 32.76 % of the overall motion, indicating that the internal dy
namic patterns of the system are highly dispersed, with large-scale 
conformational changes being suppressed. This finding further sup
ports the notion of a high stability in the ligand–protein complex, sug
gesting a tightly bound interaction between the compound and the 
protein. Furthermore, as illustrated in Fig. 12 (b), the first 20 principal 
components (collectively representing 75.8 % of the variance) also fail 
to explain the majority (90 %) of the variance. This provides additional 
evidence that the system maintained its structural integrity throughout 
the entire simulation without undergoing significant conformational 
alterations. 

The RMSD serves as a critical metric for assessing protein structural 
changes. As depicted in Fig. 13 (a), during the initial phase of simula
tion, discernible fluctuations in RMSD among the protein, ligand and 
complex are observed. This phenomenon is attributed to the influence of 
the small ligand molecule on the conformational dynamics of amino acid 

residues surrounding the active pocket upon its binding to the protein 
receptor. Over the course of simulation, RMSD fluctuations gradually 
attenuate, which indicates convergence towards stability. Specifically, 
the average RMSD values for the protein receptor and the complex are 
0.24 Å and 0.32 Å. Moreover, the RMSD of the ligand molecule exhibits 
relative stability with fluctuations confined within 0.2 Å. Overall, RMSD 
fluctuations for the protein, ligand and complex remain in a narrow 
range. By the 70 ns mark, the system achieves a state of relative equi
librium and continued simulation leads to eventual convergence to a 
dynamically stable state. 

RMSF serves as a pivotal parameter for characterizing the dynamic 
behavior of proteins. Elevated RMSF values are indicative of regions 
within the protein structure exhibiting heightened flexibility, whereas 
diminished RMSF values suggest relative rigidity with amino acid resi
dues maintaining stable conformations (Tong et al., 2023). In Fig. 13 
(b), the RMSF profiles delineate the fluctuations between the ligand and 
receptor protein (PDB ID:4DCE). The findings elucidate that the ma
jority of amino acid residues manifest RMSF values below 0.3 nm, 
signifying the stability of the complex throughout the simulation. 
Notably, residues 1160–1188 and 1290–1300 within the binding site 
evince notably reduced RMSF values. Conversely, residues 1270–1280 
exhibit heightened RMSF values indicative of heightened fluctuations. 
Intriguingly, despite these fluctuations, molecular docking analysis re
veals the presence of hydrogen bonds. This observation underscores the 
influence of the surrounding milieu and interactions on hydrogen bond 
formation and stability. Notwithstanding dynamic structural alterations 
during simulation, certain residues may retain the capacity to engage in 
hydrogen bonding with the ligand. Ligand binding by constraining 
residue mobility can facilitate hydrogen bond formation and stabiliza
tion. Thus, elevated RMSF values primarily reflect the global flexibility 

Fig. 13. Results of a 100 ns molecular dynamics simulation, (a) RMSD of proteins, ligands and complex; (b) The RMSF values of complex; (c) The Rg values of 
complex; (d) The SASA values of complex. 
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and dynamism of the molecule. 
Rg serves as a pivotal metric for assessing the stability and 

compactness of the conformational changes in the target protein upon 
ligand binding (Zhang et al., 2019). A diminished Rg value signifies a 

tighter molecular arrangement, indicative of either a spherical or 
densely packed conformation, whereas an augmented Rg value suggests 
a more extended molecular configuration, with the protein adopting a 
looser state (Rana and Nguyen, 2023). In Fig. 13 (c), a consistent trend 
of stable curves and reduced Rg values is observed throughout the 
simulation duration, which signifies a robust binding affinity between 
the constituents of the complex. However, during the initial 20 ns, 
fluctuations in Rg values are noted, attributed to the dynamic process of 
ligand–protein interaction, which prompts alterations of the internal 
milieu of the protein. With the progression of the simulation, after 40 ns, 
Rg values stabilize, which indicates that a quasi-equilibrium state in the 
conformational landscape is reached. Notably, the ligand–protein com
plex can adapt to the novel environment and can exhibit favorable 
mutual interactions, as evidenced by an average Rg value of 2.042 ±
0.011 nm. 

The SASA of a protein, indicates the hydrophobicity of its amino acid 
residues when exposed to the solvent. Throughout the simulation pro
cess, as depicted in Fig. 13 (d), the SASA values of the ligand-receptor 
complex consistently hovered within the range of 158–165 nm2, and 
exhibit a sustained plateau indicative of structural stability within the 
protein. 

Hydrogen bonds play a pivotal role in preserving the structural sta
bility of proteins. Through an analysis of the hydrogen bond count, 
length and energy between ligand molecules and proteins, a more 
comprehensive assessment of the complex’s stability can be attained. As 
illustrated in Fig. 14, over the course of a 100 ns simulation, the average 
number of hydrogen bonds between ligand small molecules and proteins 
remains relatively constant. During pivotal stages there are constant 4–5 
hydrogen bonds. These interactions are indispensable for maintaining 
the stability of the complex. 

3.12. Secondary structure analysis 

Throughout the 100 ns duration of molecular dynamics simulation, 
the composition of the protein’s secondary structure exhibited minimal 
variation, maintaining its initial structural features with little discern
ible conformational change or transition (as depicted in Fig. 15). This 
finding shows the relative stability of the complex formed by the binding 
of the compound with the protein, which indicates an optimal binding 
affinity. Moreover, this observation serves as indirect evidence for the 
robust stability of the simulation system under the prescribed 
conditions. 

3.13. The analysis results of the free energy landscape 

The Free Energy Landscape (FEL) is a graphical representation that 
utilizes color gradients and contour lines to illustrate the intermolecular 

Fig. 14. The hydrogen bond count between the ligand and the protein.  

Fig. 15. Analysis of protein secondary structure dynamics over a 100 
ns Simulation. 

Fig. 16. The free energy landscape of the complex; (a) Free energy landscape 3D result map; (c) Results of the lowest energy conformational interaction.  
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interactions and energy distribution within a system (Ishida and Kono, 
2022). This visualization method provides an intuitive understanding of 
features such as molecular interactions, conformations and stability. In 
the FEL, regions with lower free energy (depicted in blue) typically 
correspond to thermodynamically stable conformations, whereas re
gions with higher free energy correspond to less stable conformations. 
Weak or unstable interactions between ligands and receptor proteins 
may manifest as multiple minima in the free energy landscape, resulting 
in multiple energy clusters. Conversely, in cases of strong and stable 
interactions, the free energy distribution may display predominantly a 
single conformational cluster (Wang and Servis, 2024). 

Fig. 16 (a) presents the free energy landscape of the 100 ns complex. 
The PC1 fluctuation range of the free energy basin for compound N55 
and receptor protein (PDB ID:4DCE) is from 0.20 to 0.26, while the PC2 
fluctuation range is from 2.00 to 2.03. The variation in free energy 
ranges from 0 to 13 kJ mol− 1. These results indicate that the complex 
maintains a relatively stable binding conformation throughout the 
simulation. Moreover, a single, broad blue region observed in the free 
energy landscape suggests an extended residence time of the complex, 
indicative of a robust and stable binding conformation. As shown in 
Fig. 16 (b), comparison of the extraction of the lowest energy confor
mations with molecular docking results reveals no significant differ
ences in binding modes and interaction types. 

3.14. Calculation results of binding free energy and amino acid 
decomposition binding free energy 

The calculation results are shown in Table 6, where negative values 
indicate favorable binding interactions, while positive values denote 
unfavorable interactions. Through compositional analysis, van der 

Waals forces and meteorological chemical energy predominantly influ
ence the binding process, whereas polar solvation effects contribute to a 
reduction in the binding free energy. Furthermore, the overall binding 
free energy of the complex is determined to be − 26.31 kJ mol− 1, which 
indicates that the binding is a favorable. 

Fig. 17 presents the calculated results of amino acid decomposition 
binding free energy. It is observed that residues including Lys1163, 
Met1166, Ile1170, Asp1275, Asp1276 and Pro1292 play critical roles in 
the binding process between the ligand and the protein. Specifically, 
residues Lys1163 and Asp1275 release energy and form hydrogen bonds 
upon ligand binding, which demonstrates favorable negative binding 
energies, that are essential for maintaining the stability of the complex. 

4. Conclusion 

Herein, the 3D-QSAR method was employed to systematically 
explore the relationship between the chemical structure of piperidine 
carboxamide derivatives and their inhibitory activity against Karpas- 
299 tumor cells. The results indicate that they have potential applica
tion in tumor therapy and as ALK inhibitors. Using a robust Topomer 
CoMFA model validated by ANN neural networks (q2 = 0.597, r2 =

0.939), 60 novel compounds with theoretical inhibitory activity were 
successfully designed. Through a series of computer-aided drug design 
methods including ADMET, molecular docking and molecular dynamics, 
one lead compound (compound N55) with high inhibitory activity and 
favorable drug-like properties was identified. The analysis of the free 
energy landscape, protein secondary structure and binding free energy 
calculations provide additional evidence supporting the stable binding 
conformation of the compound with the protein complex and its 
favorable binding affinity (− 26.31 kJ mol− 1), indicating its promising 
pharmacological prospects. These findings present new opportunities 
and potential for piperidine carboxamide derivatives as potential ALK 
inhibitors and in tumor therapy. 
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Table 6 
Free energy of complex binding.  

Energy Component Average (kJ/mol) SD SEM 

ΔEvdW  − 47.72  0.28  1.20 
ΔEele  − 4.71  0.56  1.18 
ΔEpolar  31.72  0.49  1.36 
ΔEnonpolar  − 5.60  0.07  0.15 
ΔGgas  − 52.43  0.63  1.53 
ΔGsolv  26.12  0.49  1.35 
ΔGMMGBSA  − 26.31  0.80  1.36 

SD, Standard deviation; SEM, Standard error of mean. 

Fig. 17. Amino acid decomposition binding free energy.  
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