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Abstract Inhibitor of nuclear factor kappa B kinase subunit beta (IKK-b), a specific regulator of

nuclear factor-jB (NF-jB), is considered a valid target to design novel drugs to treat rheumatoid

arthritis, glomerulonephritis and various cancers. In this study, in order to design and then identify

promising compounds targeting IKK-b, a series of reported IKK-b inhibitors were used to develop

3D-QSAR models. Docking-based and minimization-based poses were generated for model con-

struction. CoMSIA model #8 based on docking poses was selected due to its satisfactory internal

and external validation results and the sufficient information delivery capability. After a contour

map analysis, 41 new designs were depicted based on a graphical design scheme and 25 of them were

assessed as eligible for screening. Compound 21MX007 has aroused our attention for its both

competitive QSAR-prediction and docking-scoring result. Detailed docking interactions of

21MX007-protein complex were investigated via a deep analysis of docking results and a compar-

ative molecular dynamics simulation. Strong interactions and an extra hydrogen bond which echoes

the H-bond requirements of substituent acquired from the design scheme were observed. From MD

analysis, 21MX007-protein system was tested. The system was proved to have good stability in

terms of a downward trend of RMSD and Rg values and a continuous and stable H-bond
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interaction and a lower average binding free energy. Thus, compound 21MX007 was successfully

identified as a promising IKK-b inhibitor.

� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nuclear factor-jB (NF-jB) is a multipotent transcription factor

(Rahman and Mcfadden, 2011; Cildir et al., 2016). It plays an impor-

tant role in immune regulation, inflammatory response and cell

growth. NF-jB signaling pathway is closely related to various acute

or chronic inflammatory diseases like rheumatoid arthritis (RA) and

glomerulonephritis. Its abnormal expression has also been widely

reported in various forms of cancer (Baeuerle and Henkel, 1994;

Sankar et al., 1998). In non-stimulated cells, NF-jB forms multi-

subunit complex with IjB-a, a member of the inhibitor of NF-jB
(IjB) family. IjB inhibits the activity of homologous or heterodimer

complexes of NF-jB, and enables the complexes sequestered in the

cytoplasm (Liu et al., 2011).

IjB kinase (IKK) is an upstream molecule of NF-jB, plays a

key part in the activation of NF-jB signaling pathway. IKK com-

prises three subunits: IKK-a, IKK-b and IKK-c (Lauria et al.,

2011). IKK-a and IKK-b are catalytic subtypes, while IKK-c are

regulatory subtype. Inflammatory stimulation triggers the structural

mutation of Ser177 and Ser181 of IKK-b, leading to the activation

of this kinase. Activated IKK-b mediates the phosphorylation of

the two adjacent serine residues of IjB (Ser32/Ser36) and triggers

the ubiquitination and subsequent proteasomal degradation of

IjB, leading to the release and activation of NF-jB. Due to the

nucleus migration of released NF-jB, The NF-jB signaling path-

way is activated. This pivotal role makes the inhibition of IKK-b
a promising way to the treatment of inflammatory diseases or can-

cers. (Hacker and Karin, 2006; Scheidereit, 2006; Schmid and

Birbach, 2008).

In recent years, IKK-b has become a hot target for drug

research. Studies have shown positive results of IKK-b inhibitors

in many animal models of inflammation (Fang et al., 2020;

Mbalaviele et al., 2009). However, there is still room for further

modification and improvement of IKK-b inhibitors due to the

non-specific toxicity and poor drug selectivity which have limited

their lasting effectiveness and wider use (Paola et al., 2014; Weber

et al., 2000; Durando et al., 2017). Therefore, further design and

modification of compounds targeting IKK-b have considerable

scientific significance.

Quantitative structure-activity relationship (QSAR) is an impor-

tant method for studying molecular structures with activities via intro-

ducing three-dimensional structure information of molecules for

quantitative structure-activity relationship research. As a precursor

for synthetic drugs studies, QSAR method has been widely used on

account of its high efficiency and accuracy (Tong et al., 2021; Hao

et al., 2018; Tong et al., 2021). In the present research, a docking-

based QSAR study based on a series of IKK-b inhibitors followed

by rational molecular designs and MD simulation was taken. Wish

to identify certain compounds that carry potentials for further

investigation.

2. Materials and methods

2.1. Computer configuration and software

All our works were performed on a Dell workstation with

Intel (R) Core (TM) i7-8700 CPU @ 3.20-GHz and 8 GB
of RAM with softwares of ChemDraw TM Professional
15.0 (www.cambridgesoft.com), Discovery Studio 4.5.0
(www.accelrys.com), Schrödinger Suites 2017e4 (www.schro-
dinger.com) and Sybyl X-2.1 (www.tripossoftware.com).

2.2. Molecular depiction and clustering

IKK-b inhibitors for docking-based QSAR study were
extracted from two reports (Christopher et al., 2007; Miller

et al., 2011). A total of 32 compounds were selected. Chem-
Draw 15.0 was used to depict two-dimensional (2D) structure
of each molecule Fig. 1. Then three-dimensional (3D) graphics

were acquired after Input each structure information into Dis-
covery Studio 4.5.0.

As a rational molecular partition contributes the generation
of a more representative training set and test set with sufficient

structural diversity and good span of biological activity (Wang
et al., 2020), fingerprint-based clustering was carried out for
bring out a constructive training set and an eligible test set.

Three molecular fingerprint algorithms in Discovery Studio
4.5.0 were used for molecular clustering: Model definition lan-
guage public keys (MDL), functional class fingerprint 6

(FCFP) and extended-connectivity fingerprint 6 (ECFP)
(Sprous, 2009). Dataset was set to divide into six subsets.
One molecule was selected from each subset for test set. Mole-

cule selection for test set follows such principles: (i) There is a
certain activity gradient. (ii) Exclude the lowest and the highest
activity. (iii) There is structural diverse.

2.3. Docking based QSAR

2.3.1. Selection of docking scenario

In order to obtain the docking results with optimal accuracy, a
selection of docking scenario was implemented. We have five
available molecular docking protocols: LibDock and

CDOCKER from Discovery Studio, Glide SP and Glide XP
from Schrödinger Suites, and surflex-dock Gemx from Sybyl.
Crystal structures of IKK-b were acquired from RCSB Protein
Data Bank (www.rcsb.org). Every protocol-structure combi-

nation (docking scenario) was evaluated via a re-docking oper-
ation: docking the crystal ligand back into the original site and
calculating the root-mean-square deviation (RMSD) value

with the original pose in the same spatial coordinate system
(Peng et al., 2018; Huang et al., (4)(2017)).

2.3.2. Validation of selected docking scenario

A decoy set test was implemented to validate the capacity of
the chosen docking scenario. Five high-activity and five low-
activity compounds were randomly selected for this validation.

The chosen scenario executes each docking. Score sorting is the
judgment criteria (Zhou et al., 2015).

2.3.3. Generation of molecular poses and molecular alignment

Weather the molecular poses maximizes the information
between ligands and the receptor should be a critical factor
in the success or failure of a modeling (Cheng and Xiao,

http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1 Reported IKK-b inhibitors and their experimental pIC50 values.
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2015). Docking poses were thus adopted for the construction
of QSAR models. When comparison with QSAR models using

receptor independent alignment or with approaches that do
not need molecular alignment, using docking-based molecular
poses to establish QSAR models may reward us more nature-

mapping results (Chen et al., 2013; Yu et al., 2013). The
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selected docking scenario was used to execute the detailed
docking operation for generation of docking-based molecular
poses.

A good molecular alignment determines if a sufficiently
robust model can be acquired. In order to mostly convey the
structural features of common skeleton, aminobenzamide part

was used as common skeleton for alignment. The top-activity
of Molecule 29 was used as alignment reference. ‘‘Align
Database” in Sybyl X-2.1 executed the alignment (Kawabata

and Nakamura, 2014).
As competitors, other two groups of molecular poses were

generated using minimization algorithms of Smart Minimizer
and Powell in Discovery Studio. Identical alignment procedure

was implemented on the competitors.

2.3.4. Descriptor fields calculation

Sybyl X-2.1 was used to calculate CoMFA and CoMSIA
descriptor fields. For CoMFA calculation, cutoffs were set at
30.0 kcal/mol. For CoMSIA calculation, the attenuation fac-
tor was set at 0.3. pIC50 values were merged in the spreadsheet

after a one-to-one correspondence of the activity data into a
text document file (Yoo et al., 2007).

2.3.5. Partial least squares analysis

A calculation scheme of a two stage PLS analysis was used for
model statistical evaluation. The first stage was a leave-one-out
(LOO) cross-validation analysis. Optimum number of compo-

nents (N) and the squared cross-validation coefficient (q2) are
the most important parameters can we get at this stage. In
stage two, according to the acquired N value, a no-

validation analysis was carried out to generate the statistical
parameters of r squared (r2), Fisher’s values, and standard
error of estimate (SEE). The regression fitting of created

QSAR models are assessed by a comprehensive analysis of
these statistical parameters (Nagarajan et al., 2017; Tong
et al., 2017).

2.3.6. External validation

Whether a QSAR can predict is vital. It means that a strict
external validation must be focused (Gramatica, 2007). In

the present research, two external validation algorithms were
carried out based on activity prediction of test set.

Predictive r2 (r2pred) is one of the most common used indica-
tors that reflects prediction feasibility of the QSARmodels. The

calculation for r2pred is based on Eq. (1) (Oprea et al., 1994).

r2pred ¼ 1�
P ðYobsðtestÞ � YpredðtestÞÞ2
P ðYobsðtestÞ �YtrainingÞ2

ð1Þ

The value of Q2
(F2) was used as a secondary validation for

we have considered that the activity span may influence the

computed result. The subtrahend of the denominator of this
formula changes from the average activity of the training set
to the average activity of the test set. This change means the

QSAR model shall have sufficient predict boundary to ensure
an acceptable Q2

(F2) value. The calculation for predictive Q2
(F2)

follows Eq. (2) (Roy and Mitra, (6)(2011)450–474.).

Q2
ðF2Þ ¼ 1�

P
YobsðtestÞ � YpredðtestÞ
� �2

P
Yobs testð Þ �Ytest

� �2 ð2Þ
2.4. Molecule design

Collect all the valuable clues we can get from the graphical
contour maps which were extracted from the created QSAR
models and our earlier analysis of the superimposed docking

poses of all reported IKK-b inhibitors, a molecular design
scheme was summarized. According to this design scheme,
dozens of query compounds was depicted. An identical dock-
ing procedure was implemented on each designed compound,

those failed to have consistency of binding orientation with
the reported IKK-b inhibitors were excluded to ensure the reli-
ability and comparability of our further screening. Docking

pose of each eligible query compound was delivered to further
study (Kakarla et al., 2016; Jing et al., 2017).

2.5. Molecule screening

QSAR model was used to predict all eligible query compounds
after an identical molecular alignment procedure was imple-

mented. The predicted activity was the screening indicator.
Molecular docking was implemented on each query com-
pound, Docking scoring and interaction-energy value were
used as another criterion for screening. Our screening principle

for potential molecules is that both QSAR-prediction and
docking-scoring result are highly competitive (Wang et al.,
2019).

2.6. Result rationality analysis

Detailed docking analysis was implemented on screened

promising molecules to unveiling their detail interactions with
IKK-b protein to visualize if there is a reasonable relation
between structure change and activity promotion. Interaction

view function in Discovery Studio was used to display
receptor-ligand interactions. Screened promising molecules
were then placed into graphical contour maps to validate its
design rationality via an overlapping analysis.

2.7. Molecular dynamics simulation

A comparative molecular dynamics simulation study was car-

ried out using Amber18 package (Romelia et al., 2013). The
force field of ff14SB was used for protein and the general
AMBER force field (GAFF) was used for ligands (Maier

et al., 2015). Complex of screened potential molecule with tar-
get protein was the research object while molecule29-protein
complex and solo protein were contrasts. Complex was firstly
loaded into the TLEAP module for adding hydrogen atoms,

antagonizing ions and neutralizing protein charge. The system
was then placed into a TIP3P water box for setting periodic
boundary conditions. Topology and coordinate data were

saved. The following molecular dynamics simulation workflow
includes four steps: energy optimization, heating, equilibration
and production dynamics simulation. The first step was energy

optimization with coordinate restriction of heavy atoms. 5000
steps of conjugate gradient optimization and 5000 steps of the
deepest descent optimization was implemented on water mole-

cules and ions. Then energy optimization with all restrictions
released, system was optimized by 5000 steps of conjugate gra-
dient and 5000 steps of deepest descent as well. The minimized



Table 1 Serial numbers of compounds for each cluster using different fingerprints as analytical precepts.

Cluster number Serial number of compound

MDL FCFP ECEP

1 02,15*,29,30 02,05,15* 03,04,05,06,08,10,13,14,15*

2 26,27*,28 26,27,28,29,30* 25,26*

3 01,11,12,16,17,19*,20,21,24 01,12,13,16,17,18*,24,25 27,28,29,30*,31,32

4 22,23,31,32* 19*,20,21,22,23 16,17,18*,19,20,21,22,23,24

5 03,04,05,06,07,08,09,10,13,14*,18 06,07,08,09,10,11,14* 01,02*,12

6 25* 03,04,31,32* 07,09*,11

*Test-set compounds; FCFP, functional class fingerprint; ECFP, extended-connectivity fingerprint; and MDL, model definition language.
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system was then placed in an NVT ensemble for heating from
0 K to 300 K in 50 ps. 50 ps NPT ensemble simulation was per-

formed to equilibrate the system after heating. 100 ns produc-
tion dynamics simulation under NPT ensemble was then
performed with the temperature stayed at 300 K and the pres-

sure at 1 atmosphere. The time step was 2 fs. One frame of tra-
jectory was held every 20 ps. CPPTRAJ module was carried
out for data analysis while MMPBSA.py module was used

to calculate the combined free energy (Hu et al., 2018; Uba
et al., 2020).

2.8. Prediction of pharmacokinetics and drug-like properties

Pharmacokinetics properties of the selected compounds were
estimated using the Qikprop module in Schrödinger suits. Of
which, physically significant descriptors and pharmaceutically

relevant properties were estimated uses its attached QSAR
models (Ioakimidis et al., 2010; Grover et al., 2014). Besides,
Lipinski and Veber rulers were used to test the drug-like prop-

erties of screened compounds (Veber et al., 2002; Lipinski
et al., 2001).
Fig. 2 Superposition graphic of the best docking po
3. Results

3.1. Clustering analysis

Fingerprint-based clustering offered three different partitions.

According to the molecule selection principle, three test set was
then built. The grouping results of the training set and test set
are shown in Table 1.
3.2. Docking based QSAR

3.2.1. Selection of docking scenario

Docking scenarios were assessed via calculation of RMSD val-
ues and the superposition graphic of the best docking pose and
the initial pose is shown in Fig. 2. With the obvious good over-

lay and the lowest RMSD value of 0.3856, docking protocol of
CDOCKER combined with crystal structure of PDB code
4KIK was chosen for our entire study because this docking

scenario was most likely to reproduce the natural binding
modes of the ligands. In order to keep the evaluation
se and the initial pose of original ligand of 4KIK.



Table 2 Decoy-set validation result using the CDOCKER-

INTERACTION-ENERGY” as the metric.

Compound

number

Reported

pIC50

CDOCKER-

INTERACTION-

ENERGY

Grouping

03 6.7 �50.5109 Active

29 7.9 �50.3599 Active

31 7.6 �49.9353 Active

04 7.0 �49.9242 Active

13 6.6 �49.2912 Active

05 5.8 �48.4493 Inactive

01 5.8 �47.4131 Inactive

11 4.8 �46.9120 Inactive

28 6.3 �43.9831 Inactive

12 5.4 �43.1040 Inactive
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conditions consistent, the following parameters were main-

tained in subsequent studies: Chain A of the 4KIK protein
was used for docking. A site sphere with radius of 14 Å was
created around the original ligand as the binding site and then
being set as docking receptor. The ligands were docked into

the binding site defined as ‘‘flexible”.

3.2.2. Validation of selected docking scenario

Decoy-set validation result was shown in Table 2. The selected
docking scenario have successfully discriminated the active
and inactive when using ‘‘CDOCKER-INTERACTION-EN
Fig. 3 (A) Superimposition of all docking poses, (B) Steric relation o

poses of compounds with the original ligand of 4KIK, (D) Alignment
ERGY” value as the metric, demonstrates that the chosen
docking protocol and crystal structure pairing is reliable for
docking studies.

3.2.3. Generation of molecular poses and molecular alignment

As expected, all compounds embedded into the cavity with a
nearly identical conformational orientation. Fig. 3A: Amide

and the nitrogen atom are almost perfectly overlapped. Shared
skeleton parts were embedded into cavity while their terminals
were gathering at an H-bond active region. Such similar con-

formational orientation indicates that docking-based molecu-
lar poses could provide rational and reliable alignment and
H-bond interactions which are happening at the terminal

may influence the receptor-ligand binding, Fig. 3B. The super-
position graphic of docking poses of compounds with the orig-
inal ligand of 4KIK is shown in Fig. 3C: a consistency of

binding orientation and similar interaction potency was
observed, indicating the reliability and rationality of using
docking poses of the inhibitors for QSAR modeling base on
protein crystal of 4KIK. Using aminobenzamide part as com-

mon skeleton, all molecule poses were well aligned, no unac-
ceptable terminal furcation was observed. Fig. 3D. Same as
docking-based poses, the two groups of minimization-based

poses were well aligned.

3.2.4. QSAR model selection

Using CoMSIA algorithm, each database can theoretically cre-

ate 27 models by random matching of 5 descriptor fields.
f H-bond surface with docking poses, (C) Superposition of docking

of training set molecules acquired from docking poses.
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Along with all CoMFA models, 252 candidate models were
generated from 9 databases. All CoMFA models and 3 CoM-
SIA models with best statistical data from each database are

shown in Table 3
As our most concern for model selection was its predictive

ability, investigation of external validation results was priori-

tized. As expected, model #8 derived from docking-based
Table 3 Statistical values of created CoMFA models and three bes

Model no. Model name Leave one out cross-

validation

Non-cross-val

N q
2

r
2

SEE

Docking_MDL

1 CoMFA 5 0.502 0.967 0.321

2 CoMSIA_SHA 6 0.488 0.957 0.298

3 CoMSIA_SDA 7 0.492 0.955 0.342

4 CoMSIA_SHDA 8 0.479 0.946 0.302

Docking_FCFP

5 CoMFA 7 0.546 0.980 0.212

6 CoMSIA_SDA 8 0.612 0.991 0.112

7 CoMSIA_SHA 8 0.580 0.989 0.157

8 CoMSIA_SHDA 8 0.662 0.997 0.051

Docking_ECEP

9 CoMFA 6 0.515 0.978 0.221

10 CoMSIA_SDA 8 0.598 0.995 0.123

11 CoMSIA_HDA 9 0.577 0.984 0.228

12 CoMSIA_SHDA 9 0.643 0.995 0.065

Smart Minimizer_MDL

13 CoMFA 5 0.599 0.980 0.124

14 CoMSIA_SEA 7 0.532 0.975 0.202

15 CoMSIA_SEHA 7 0.498 0.964 0.232

16 CoMSIA_SEAD 8 0.469 0.952 0.315

Smart Minimizer_FCFP

17 CoMFA 6 0.575 0.975 0.274

18 CoMSIA_SHA 7 0.585 0.986 0.165

19 CoMSIA_SEA 7 0.558 0.980 0.216

20 CoMSIA_SEH 8 0.512 0.977 0.289

Smart Minimizer_ECEP

21 CoMFA 5 0.605 0.998 0.092

22 CoMSIA_SEA 7 0.557 0.978 0.246

23 CoMSIA_SHDA 9 0.566 0.986 0.202

24 CoMSIA_HEA 8 0.502 0.962 0.298

Powell_MDL

25 CoMFA 5 0.555 0.981 0.202

26 CoMSIA_SEH 8 0.570 0.988 0.162

27 CoMSIA_SEA 8 0.567 0.971 0.186

28 CoMSIA_SHA 7 0.521 0.966 0.251

Powell_FCFP

29 CoMFA 6 0.618 0.994 0.075

30 CoMSIA_SEA 8 0.582 0.993 0.145

31 CoMSIA_SDA 8 0.580 0.988 0.164

32 CoMSIA_SHDA 9 0.552 0.964 0.219

Powell_ECEP

33 CoMFA 5 0.587 0.984 0.146

34 CoMSIA_SHA 8 0.579 0.978 0.299

35 CoMSIA_SDA 7 0.524 0.965 0.273

36 CoMSIA_SEH 6 0.527 0.945 0.372

S, steric; E, electrostatic; H, hydrophobic; D, hydrogen bond donor; A, h

number of components; r2, non-cross-validated correlation coefficient; SE

fingerprint; ECFP, extended-connectivity fingerprint; MDL, model defini
poses has an optimal external validation outcome in terms of
r2pred of 0.650 and Q2

(F2) of 0.617, It demonstrates that model
#8 carries the best prediction reliability compared to other

models.
Internal validation tests the construction rationality of cre-

ated models. The statistical values of model #8 were r2 of

0.997, q2 of 0.662, F value of 683.295 and a low SEE value
t statistical CoMSIA models from each database.

idation External

validation

Field contribution

F r
2
pred Q

2
(F2) S E H D A

224.642 0.521 0.497 0.785 0.215

186.835 0.477 0.456 0.451 0.242 0.307

208.646 0.511 0.480 0.388 0.270 0.342

188.952 0.485 0.491 0.251 0.189 0.235 0.325

452.314 0.545 0.521 0.812 0.188

512.523 0.588 0.590 0.333 0.354 0.313

462.524 0.567 0.556 0.354 0.212 0.434

683.295 0.650 0.617 0.126 0.220 0.290 0.364

225.561 0.502 0.478 0.764 0.236

488.648 0.591 0.578 0.284 0.241 0.475

345.812 0.555 0.521 0.297 0.330 0.373

589.342 0.621 0.586 0.142 0.242 0.301 0.315

345.412 0.600 0.553 0.674 0.326

155.231 0.516 0.508 0.356 0.391 0.253

128.546 0.482 0.478 0.221 0.254 0.204 0.321

127.863 0.424 0.452 0.257 0.261 0.224 0.258

161.642 0.564 0.583 0.642 0.358

222.557 0.592 0.572 0.344 0.352 0.304

214.851 0.516 0.498 0.431 0.282 0.287

186.742 0.486 0.481 0.452 0.341 0.207

456.146 0.610 0.600 0.662 0.338

156.631 0.581 0.568 0.351 0.287 0.362

221.758 0.590 0.595 0.245 0.278 0.145 0.332

89.675 0.521 0.489 0.252 0.356 0.392

172.452 0.523 0.518 0.611 0.389

284.592 0.553 0.498 0.375 0.321 0.304

84.672 0.509 0.511 0.428 0.224 0.230

121.797 0.528 0.487 0.399 0.284 0.317

479.314 0.598 0.554 0.668 0.332

187.791 0.565 0.562 0.377 0.289 0.334

177.682 0.567 0.575 0.400 0 0.281 0.319

74.721 0.521 0.509 0.365 0.186 0.256 0.193

187.227 0.599 0.589 0.562 0.438

111.562 0.546 0.462 0.363 0.315 0.322

155.033 0.476 0.451 0.322 0.361 0.317

81.784 0.429 0.468 0.416 0.220 0.364

ydrogen bond acceptor; q2, cross-validated correlation coefficient; N,

E, standard error estimate; F, Fisher’s values; FCFP, functional class

tion language.



Table 4 Comparison of the reported and predicted activities

using model #8.

Compound Reported pIC50 Predicted pIC50 Residual

01 5.8 5.787 �0.013

02 6.2 6.178 �0.022

03 6.7 6.703 0.003

04 7 7.014 0.014

05 5.8 5.805 0.005

06 5.8 5.829 0.029

07 5.1 5.122 0.022

08 6.6 6.579 �0.021

09 5.1 5.095 �0.005

10 5.4 5.38 �0.02

11 4.8 4.775 �0.025

12 5.4 5.452 0.052

13 6.6 6.591 �0.009

14* 6.8 6.443 �0.357

15* 6.4 5.921 �0.479

16 5.8 5.944 0.144

17 5.8 5.763 �0.037

18* 6.3 5.874 �0.426

19* 5.2 5.663 0.463

20 6.1 6.09 �0.010

21 6.5 6.4 �0.100

22 5.6 5.612 0.012

23 5.9 5.881 �0.019

24 5.3 5.284 �0.016

25 5.8 5.839 0.039

26 6.3 6.279 �0.021

27 6.8 6.792 �0.008

28 6.3 6.268 �0.032

29 7.9 7.923 0.023

30* 7.7 6.987 �0.713

31 7.6 7.614 0.014

32* 6.4 6.218 �0.182
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of 0.051. Although the results are not optimal in some values
(for example, r2 of Model #21 is slightly better), the overall
prominence and coordination tells that model #8 is rationally

constructed and is sufficient robust for further studies. More-
over, because model #8 is built by 4 descriptor fields, its suffi-
cient information delivery capability is beneficial for further

contour maps analysis.
All reported inhibitors were predicted using model #8.

Comparison of the reported and predicted activities is shown

in Table 4 and Fig. 4. No observation of obviously exceptional
separation points demonstrates the reliable prediction ability
of model #8.

3.2.5. Contour maps analysis

A deep analysis on graphical contour maps was carried out to
inspire us clues for molecular structural modification. Mole-

cule 29 was used as reference for analysis.
Steric contour maps: Favorable and undesirable interaction

regions that relate to molecular steric features are displayed in
forms of green and yellow modules In Fig. 5A. The branch that

link to pyrrole is wrapped in green modules, indicates that
appropriate steric modification is acceptable on this part.
However, the outer layer of the green region is adjacent to yel-

low modules. It tells that the modification degree on this
branch must be limited, excessive structural expansion will
bring negative effects.

Hydrophobic contour maps: Fig. 5B displays hydrophobic
contour maps which white modules denote hydrophilic-
favored while yellow modules represent hydrophobic-favored

regions. Nitrogen atom and carbon atom of C2 and C3 on
piperidine is covered by hydrophilic-favored modules while
carbon atom of C1 is designated to hydrophobic-favored
regions. The graphic information tells that any substitution

on piperidine part should be placed with proper hydrophobic
features on certain site.

Hydrogen bond donor contour maps: Fig. 5C displays

Hydrogen bond donor contour maps, cyan modules denote
Hydrogen bond donor favored regions and the purple denotes
the unfavorable. Nitrogen atom, carbon atom of C1 on piper-

idine and the terminal of this active branch are designated to
cyan areas. It indicates that any substituent groups with H-
bond donor features being placed at these regions may bring
positive effects. C2 position on piperidine is designated to an

unfavorable module, it means H-bond donor substitution on
this site should be avoid.

Hydrogen bond acceptor contour maps: Fig. 5D displays

Hydrogen bond acceptor contour maps. Dimethyl sulfone,
nitrogen atom and carbon atom of C1 on piperidine are desig-
nated to a purple module (H-bond acceptor favored region), it

shows that bring H-bond acceptors to these sites benefits the
molecule activity. Branch terminal, C3 and C5 on benzene
are designated to H-bond acceptor unfavorable region, such

graphic information well echoes the analysis results of H-
bond donor contour maps.

3.3. Molecule design

After a comprehensive analysis of graphical contour maps and
superimposed docking results, a molecular design scheme was
generated and shows in Fig. 6:1. The terminal of the active

branch shall provide H-bond donor features, 2. Excessive
steric expansion on both side of the active branch shall be
avoid, 3. Any substituent group on C1 of piperidine shall carry
hydrophilic characters. 4. Retain dimethyl sulfone is rational

because H-bond acceptor character is needed at this point.
Based on such design scheme, 41 query compounds were
depicted using ChemDraw 15.0. An identical docking proce-

dure as the compounds for QSAR modeling was then imple-
mented on each query compound. 16 of the compounds were
assessed as ineligible as they failed to have a consistency of

binding orientation with the reported inhibitors. Thus, dock-
ing poses of the remaining 25 eligible query compounds were
sent to further screening.

3.4. Molecule screening

The two combined molecule screening procedure was imple-
mented on the 25 eligible query compounds, Our selection cri-

teria is that the predicted activity higher than 7.5 and docking
scoring lower than �50.00 of CDOCKER-INTERACTION-
ENERGY. Compounds of 21MX004, 21MX007, 21MX016

and 21MX030 were predicted to have an activity higher than
7.5. Compounds of 21MX007, 21MX011, 21MX012,
21MX013 and 21MX039 were scoring lower than �50.00 of

CDOCKER-INTERACTION-ENERGY. Query compound
21MX007 (predicted activity of 7.667, CDOCKER-



Fig. 4 Plots of reported activities versus predicted activities of compounds in the training set and test set based on model #8.

Fig. 5 Contour maps in combination with Molecule 29: (A) steric contour maps of model #8; (B) hydrophobic contour maps of model

#8; (C) Hydrogen bond donor contour maps of model #8; (D) Hydrogen bond acceptor contour maps of model #8.

Identify promising IKK-b inhibitors: A docking-based 3D-QSAR study 9



Fig. 6 Molecule design scheme.
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INTERACTION-ENERGY value of �56.7153) was the only
candidate with both competitive QSAR-prediction and
docking-scoring result and naturally aroused our attention,

Table 5 and Fig. 7.

3.5. Result rationality analysis

Detailed docking interactions of 21MX007-protein and

molecule29-protein are shown in Fig. 8. Similar interactions
with ASP166, GLU61 and MET96 were observed from both
ligands. Due to the docking pose change caused by terminal

structure difference, an overall preferable hydrophobic interac-
tion between 21MX007 and protein is observed: Richer
hydrophobic interaction formed by benzene part and stronger

hydrophobic interaction happened on benzoheterocycle in
terms of shorter bond length of the sulfur-aromatic interaction
and the prime hydrophobic interaction between ligand and
VAL29, Fig. 8A and B. Moreover, 21MX007 has formed an

H-bond between secondary nitrogen-atom on triatomic ring
with residue of ASP103. Such extra interaction may answers
the result of favorable predicted activity and a higher docking
Table 5 QSAR-prediction and docking-scoring result of ten

best predicted query compounds, sorted by predicted pIC50.

Query

Compounds

Predicted

pIC50

CDOCKER-INTERACTION-

ENERGY value

21MX016 7.701 �48.2113

21MX007 7.667 �56.7153

21MX004 7.616 �48.7572

21MX030 7.537 �51.4314

21MX021 7.443 �45.9682

21MX022 7.316 �47.4529

21MX038 7.176 �50.0122

21MX009 7.079 �49.6021

21MX011 6.988 �55.6451

21MX013 6.905 �55.8692
scoring. This H-bond forming information perfectly echoes the
hydrogen bond requirements of substituent acquired from the
design scheme, Fig. 8C and D. Fig. 8G shows the steric relation

between 21MX007 and the hydrophobicity surface of the
binding pocket: The modification part of triatomic ring is
wrapped by blue surfaces, indicating that the hydrophilic
modification is rational. Fig. 8H shows the steric relation

between 21MX007 and the H-bond surface. As expected,
H-bond donating secondary nitrogen-atom on triatomic ring
well meets the H-bond accepter surface (in green), tells the

H-bond donating modification at the terminal of the molecule
is rational.

Compound 21MX007 was placed into graphical contour

maps to analysis its design rationality. Fig. 9. displays the
Overlapping graphics of Compound 21MX007 with each con-
tour map. Shows in Fig. 9A, the active branch of Compound
21MX007 has successfully avoided the steric-unfavorable

areas. In Fig. 9B, hydrophilic nitrogen atom on piperidine
immerses in white modules, which may benefits the activity.
In the H-bond field (Fig. 9. C and D), modifications on the

active branch well meet both the H-bond donor and acceptor
Fig. 7 2D structure of molecule 21MX007.



Fig. 8 Detailed interactions between receptor and ligand: (A) Hydrophobic interaction of 21MX007-protein, (B) Hydrophobic

interaction of molecule29-protein, (C) H-bond interaction of 21MX007-protein, (D) H-bond interaction of molecule29-protein, (E) 2D

interaction map of 21MX007-protein, (F) 2D interaction map of molecule29-protein, (G) Interaction map of hydrophobicity surface of

21MX007-protein, (F) Interaction map of H-bond surface of 21MX007-protein.

Identify promising IKK-b inhibitors: A docking-based 3D-QSAR study 11
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requirements: H-bond donor of secondary nitrogen atom on
triatomic ring is designated to a large cyan module while H-
bond acceptor of sulfur atom is wrapped by purple module.

Such telling correlation was even further confirmed via an
observation of an extra formed H-bond between secondary
nitrogen atom and the receptor. Both detailed docking and

contour map analysis demonstrate the design rationality of
Compound 21MX007.

3.6. Molecular dynamics simulation

3.6.1. RMSD

RMSD was used to quantify how much the complex has chan-
ged over the simulation time and was a key indicator to
describe the stability of each complex. RMSD curves of all
complexes are shown in Fig. 10. 21MX007 complex fluctuated

in the early stage. After a clear oscillation at 60 ns, the complex
structure tends to be stable, indicating that the ligand-protein
interaction does suppressed significant structural changes in

the complex with the extension of time. However, such ten-
dency to stable was no observed on the molecule29 complex.
21MX007 complex has a deviation in RMSD within a range

between 2.5 Å and 4.2 Å at the stabilization period of the tra-
jectory while the value for molecule29 complex is 3.2 Å to
4.8 Å and for solo protein is 2.5 Å to 4.4 Å at this period of
time, indicating that 21MX007 complex relatively more stable

comparison with the contrasts.
Fig. 9 Contour maps in combination with compound 21MX007. (A)

of model #8. (C) H-bond donor contour maps of model #8. (D) H-bo
3.6.2. Radius of gyration

The definition of Radius of gyration (Rg) could be described as

the root-mean-square distance of the collection of atoms from
their common center of gravity and it describes the overall
spread of a molecule and the compactness of a complex.

Radius of gyration outcomes are shown in Fig. 10.
21MX007 complex is observed a more distinct downward
trend compared to molecule29 complex and the solo protein

after the systems have reached the stabilization stage.
21MX007 complex has a deviation in Rg between 36.9 Å
and 38.1 Å while the Rg value for molecule29 complex is
37.5 Å to 38.7 Å and for solo protein is 37.1 Å to 38.1 Å. It

indicates that the bindings in the complex make the protein
more stable.

3.6.3. Hydrogen bond interactions

Hydrogen bond interactions between protein and ligand are a
crucial part of inter-molecular recognition. Numbers of hydro-
gen bonds formed during 100 ns MD simulation are shown in

Fig. 11. Because some weak hydrogen bonds could be formed
and were easily disappeared, the numbers of hydrogen bonds
for both complexes were not fixed. However, only 21MX007

complex is observed to have continuous and stable H-bond
interactions while aperiodic interruption is happened in mole-
cule29 complex. In other words, stronger H-bond interactions

were observed in 21MX007 complex compare to complex of
molecule29.
Steric contour maps of model #8. (B) Hydrophobic contour maps

nd acceptor contour maps of model #8.
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3.6.4. Binding free energy

The binding free energy (DGbind) in this study was defined as:

DGbind ¼ Gcomp � Gpro þ Glig

� �

¼ DEele þ DEvdw þ DEGB þ DEsurf

ð3Þ

where DGcomp, DGpro and DGlig represents the free energy of
the complex, protein and ligand; DEele, DEvdw, DEGB and DEsurf

refers to the electrostatic, van der Waals, implicit solvation and
the non-polar solvation energy. The implicit solvation was cal-

culated using the GB model, while the non-polar solvation
energy was calculated using the solvent accessible surface area
algorithm. The DGbind reported in this study excluded the

entropy contribution for the reason that it might introduce
additional error into the results.

The Binding free energy was calculated by using the kinetic

conformation in the range of 60�100 ns. Average of
�60.01 kcal/mol of the system indicated the good binding
Fig. 10 MD results of systems:(A) RMSD of protein-21MX007 sys

molecule29 system, (D) Rg of protein-molecule29 system, (E) RMSD
affinity of compound 21MX007. The main contribution comes
from van der Waals potential energy and electrostatic action,
which are �55 kcal/Mol and –33 kcal/mol respectively. The

hydrogen bonding between ligand and receptor is the main
source of electrostatic interaction.

3.7. Prediction of pharmacokinetics and drug-like properties

QikProp module in Schrödinger suits was used to calculate
physically significant descriptors and pharmaceutically rele-

vant properties of compound 21MX007. The results are shown
in Table 6, each main Physico-chemical descriptor of com-
pound 21MX007 is predicted within recommended range and

an non CNS activity. Beside, compound 21MX007 has passed
both Lipinski and Veber rulers. In general, compound
21MX007 possesses acceptable pharmacokinetics and drug-
like properties.
tem, (B) Rg of protein-21MX007 system, (C) RMSD of protein-

of solo protein system, (F) Rg of solo protein system.



Fig. 11 The numbers of inter-molecular hydrogen bonds between IKK-b active site residues with (A) compound 21MX007, (B)

molecule29.

Table 6 Values of various Physico-chemical descriptors of

compound 21MX007.

Descriptors Comp21MX007 Recommended

range

SASA 701.096 300–1000

QPLogS �6.507 �6.5–0.5

Percent human oral

absorption

84.061% >80% high

<25% poor

CNS activity �2 �2 inactive

2 active

BBB partition coefficient �1.87 �3.0–1.2

AlogP 1.285 �0.4–5.6
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4. Conclusion

IKK-b has aroused much attention in recent years for it has been con-

sidered to be a valid drug target for treatment of inflammatory diseases

or cancers. In order to identify promising IKK-b inhibitors, a study

combining docking-based QSAR research, docking and molecular

dynamics simulations was executed using 32 reported IKK-b inhibitors

as data basis.

In our study, combined approaches were successfully applied to

investigate promising IKK-b inhibitors. In the 3D-QSAR study, pre-

dictive docking-based model was acquired after a strict internal-

external evaluation. A graphical design scheme was depicted via a care-

fully analysis of contour maps and 41 new molecules were designed

based on this scheme. Through activity prediction and comparison

of docking affinity, compound 21MX007 was focused for its preemi-
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nent activity and preferable docking score. Detailed interaction with

IKK-b was then investigated via a deep look of the binding mode of

compound 21MX007. Compared with control molecule, Richer

hydrophobic and an extra H-bond interactions which were consistent

with the design principles were observed from protein-21MX007 com-

plex. From MD analysis, Stabilization tendency of protein-21MX007

system in terms of RMSD and Rg values was observed. Moreover,

continuous and stable H-bond interactions and a lower average bind-

ing free energy demonstrate the good binding affinity of compound

21MX007. The pharmacokinetics prediction and drug-like properties

tests have shown the good drug-being potential of compound

21MX007. In summary, after a systematic screening and evaluation,

compound 21MX007 could be considered to be a promising IKK-b
inhibitor for further studies.
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Examining the stability of binding modes of the co-crystallized

inhibitors of human HDAC8 by molecular dynamics simulation. J.

Biomol. Struct. Dyn. 38 (6), 1751–1760. https://doi.org/10.1080/

07391102.2019.1615989.

Veber, D.F., Johnson, S.R., Cheng, H.Y., Smith, B.R., Ward, K.W.,

Kopple, K.D., 2002. Molecular properties that influence the oral

bioavailability of drug candidates. J. Med. Chem. 45 (12), 2615–

2623. https://doi.org/10.1021/jm020017n.

Wang, J.L., Li, L., Hu, M.B., Wu, B., Fan, W.X., Peng, W., Wei, D.

N., Wu, C.J., 2019. In silico drug design of inhibitor of nuclear

factor kappa b kinase subunit beta inhibitors from 2-acylamino-3-

aminothienopyridines based on quantitative structure–activity

relationships and molecular docking. Comput. Biol. Chem. 78,

297–305. https://doi.org/10.1016/j.compbiolchem.2018.12.021.

Wang, J.L., Chen, W.W., Zhong, H., Luo, Y., Zhang, L.L., He, L.,

Wu, C.J., Li, L., 2020. Identify of promising isoquinolone jnk1

inhibitors by combined application of 3d-qsar, molecular docking

and molecular dynamics simulation approaches. J. Mol. Struct.

1225 (6), 129127. https://doi.org/10.1016/j.molstruc.2020.129127.

Weber, C.K., Liptay, S., Wirth, T., Adler, G., Schmid, R.M., 2000.

Suppression of NF-kB activity by sulfasalazine is mediated by

direct inhibition of IkB kinases a and b. Gastroenterology 119 (5),

1209–1218. https://doi.org/10.1053/gast.2000.19458.

Yoo, J., Thai, K.M., Kim, D.K., Ju, Y.L., Park, H.J., 2007. 3d-qsar

studies on sildenafil analogues, selective phosphodiesterase 5

inhibitors. Bioorg. Med. Chem. Lett. 17 (15), 4271–4274. https://

doi.org/10.1016/j.bmcl.2007.05.064.

Yu, S., Wang, P., Li, Y., Liu, Y., Zhao, G., 2013. Docking-based

CoMFA and CoMSIA study of azaindole carboxylic acid deriva-

tives as promising HIV-1 integrase inhibitors. SAR QSAR Envi-

ron. Res. 24 (10), 819–839. https://doi.org/10.1080/

1062936X.2013.820792.

Zhou, N., Yuan, X., Xian, L., Wang, Y., Peng, J., Luo, X., Zheng, M.,

Chen, K., Jiang, H., 2015. Combinatorial pharmacophore-based

3d-qsar analysis and virtual screening of FGFR1 inhibitors. Int. J.

Mol. Sci. 16 (6), 13407–13426. https://doi.org/10.3390/

ijms160613407.

https://doi.org/10.1124/jpet.108.143800
https://doi.org/10.1124/jpet.108.143800
https://doi.org/10.1016/j.bmcl.2011.02.107
https://doi.org/10.1016/j.bmcl.2011.02.107
http://refhub.elsevier.com/S1878-5352(22)00102-2/h0120
http://refhub.elsevier.com/S1878-5352(22)00102-2/h0120
http://refhub.elsevier.com/S1878-5352(22)00102-2/h0120
http://refhub.elsevier.com/S1878-5352(22)00102-2/h0120
https://doi.org/10.1002/art.20960
https://doi.org/10.1007/s00044-018-2215-8
https://doi.org/10.1038/nrmicro2539
https://doi.org/10.1002/wcms.1121
https://doi.org/10.2174/138620711795767893
https://doi.org/10.1146/annurev.immunol.16.1.225
https://doi.org/10.1146/annurev.immunol.16.1.225
https://doi.org/10.1038/sj.onc.1209934
https://doi.org/10.1016/j.cytogfr.2008.01.006
https://doi.org/10.1016/j.cytogfr.2008.01.006
https://doi.org/10.1016/j.jmgm.2008.04.009
https://doi.org/10.2174/1570180814666170504160008
https://doi.org/10.1016/j.molliq.2021.116235
https://doi.org/10.1007/s11224-020-01677-8
https://doi.org/10.1007/s11224-020-01677-8
https://doi.org/10.1080/07391102.2019.1615989
https://doi.org/10.1080/07391102.2019.1615989
https://doi.org/10.1021/jm020017n
https://doi.org/10.1016/j.compbiolchem.2018.12.021
https://doi.org/10.1016/j.molstruc.2020.129127
https://doi.org/10.1053/gast.2000.19458
https://doi.org/10.1016/j.bmcl.2007.05.064
https://doi.org/10.1016/j.bmcl.2007.05.064
https://doi.org/10.1080/1062936X.2013.820792
https://doi.org/10.1080/1062936X.2013.820792
https://doi.org/10.3390/ijms160613407
https://doi.org/10.3390/ijms160613407

	Identify promising IKK-β inhibitors: �A docking-based 3D-QSAR study combining molecular design and molecular dynamics simulation
	1 Introduction
	2 Materials and methods
	2.1 Computer configuration and software
	2.2 Molecular depiction and clustering
	2.3 Docking based QSAR
	2.3.1 Selection of docking scenario
	2.3.2 Validation of selected docking scenario
	2.3.3 Generation of molecular poses and molecular alignment
	2.3.4 Descriptor fields calculation
	2.3.5 Partial least squares analysis
	2.3.6 External validation

	2.4 Molecule design
	2.5 Molecule screening
	2.6 Result rationality analysis
	2.7 Molecular dynamics simulation
	2.8 Prediction of pharmacokinetics and drug-like properties

	3 Results
	3.1 Clustering analysis
	3.2 Docking based QSAR
	3.2.1 Selection of docking scenario
	3.2.2 Validation of selected docking scenario
	3.2.3 Generation of molecular poses and molecular alignment
	3.2.4 QSAR model selection
	3.2.5 Contour maps analysis

	3.3 Molecule design
	3.4 Molecule screening
	3.5 Result rationality analysis
	3.6 Molecular dynamics simulation
	3.6.1 RMSD
	3.6.2 Radius of gyration
	3.6.3 Hydrogen bond interactions
	3.6.4 Binding free energy

	3.7 Prediction of pharmacokinetics and drug-like properties

	4 Conclusion
	Funding
	Declaration of Competing Interest
	Acknowledgement
	References


