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Abstract A simple highly versatile and efficient synthesis of various poly-substituted quinolines in

the Friedländer condensation of 2-aminoarylketones with carbonyl compounds and b-keto esters

using Montmorrilonite K-10, zeolite, nano-crystalline sulfated zirconia (SZ) as a catalyst in ethanol

at moderate temperature. The advantages of methods are short reaction times and milder condi-

tions, easy work-up and purification of products by non-chromatographic methods. The catalysts

can be recovered for the subsequent reactions and reused without any appreciable loss of efficiency.
ª 2011 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Quinoline is a well-known structural unit in alkaloids and their

derivatives are very important compounds that show a broad
range of biological and pharmaceutical activities such as antag-
onists (Bennacef et al., 2007), analgesic agents (Gopalsamy and
Pallai, 1997), 5HT3 (Anzini et al., 1995), NK-3 receptors (Giar-
dian et al., 1997), anti-malarial (Larsen et al., 1996; Chauhan

and Srivastava, 2001), antitumor (Myers et al., 1997; Comins
et al., 1994; Shen et al., 1993), anti-inflammatory (Roma et al.,
2000), anti-bacterial (Chen et al., 2001), anti-asthmatic (Dube

et al., 1998), anti-hypertensive (Ferrarini et al., 2000) and anti-
platelet agents, and as tyrosine kinase inhibiting agents. (Larsen
et al., 1996; Kalluraya and Sreenivasa, 1998). In addition, quin-
olines are valuable synthons used in a variety of nano-structures

and meso-structures with enhanced electronic and photonic
functions (Agarwal and Jenekhe, 1991; Zhang et al., 2000; Jene-
khe et al., 2001). Moreover, quinolines are advantageously em-

ployed in the fields of natural products (Larsen et al., 1996;
Chauhan and Srivastava, 2001), bioorganic (Saito et al., 2001),
bioorganometallic processes (He and Lippard, 2001; Nakatani

et al., 2000) and industrial organic chemistries (Jenekhe et al.,
2001). Because of their importance as substructures in a broad
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range of natural anddesignedproducts, significant effort contin-
ues to be directed into the development of new quinoline based
structures (Hoemann et al., 2000) and new methods for their

construction (Du and Curran, 2003; Lindsay et al., 2002; Dor-
mer et al., 2003). Various methods such as Skraup, Doebner
von Miller, Friedländer, Pfitzinger, Conrad-Limpach, and

Combes methods have been developed for the preparation of
quinoline derivatives (Abass, 2005; Kouznetsov et al., 2005;
Jones et al., 1996; Skraup, 1880; Friedländer, 1882; Mansake

andKulka, 1953; Arisawa et al., 2001). Among them, the Fried-
länder annulation (Marco-Contelles et al., 2009) appears to be
still one of the most simple and straightforward approaches
for the synthesis of quinolines. This method involves the acid

or base catalyzed or thermal condensation between a 2-aminoa-
ryl ketone and an other carbonyl compound possessing a reac-
tive a-methylene group followed by cyclodehydration.

Brønsted acids catalysts, such as sulfamic acid, hydrochlo-
ric acid, sulfuric acid, p-toluene sulfonic acid, PEG-supported
sulfonic acid, propylsulfonic silica, sulfonic acid-functionalized

ionic liquids, oxalic acid, dodecylphosphonic acid (DPA) and
o-benzenedisulfonimide were widely used for Friedländer
annulation (Yadav et al., 2005; Wang et al., 2006; Strekowski

et al., 2000; Zhang et al., 2009; Akbari et al., 2010; Dabiri
et al., 2007; Barbero et al., 2010). Lewis acids such as FeCl3,
ZnCl2, SnCl2, CuSO4Æ5H2O, FeSO4Æ7H2O, AuCl3, CeCl3Æ7-
H2O, Zr(NO3)4 or Zr(HSO4)4, GdCl3Æ6H2O, BiCl3, Yb(PFO)3,

Bi(OTf)3, Sc(OTf)3, Y(OTf)3, I2, NaF, TMSCl, Sulfonated cel-
lulose starch, Silica supported perchloric acid (HClO4–SiO2),
NaHSO4–SiO2, H2SO4–SiO2, Amberlyst-15 and HClO4–SiO2

have also recently been utilized for this synthesis (Das et al.,
2007; Narasimhulu et al., 2007; Zolfigol et al., 2007; Prabhakar
Reddy et al., 2008; Jia and Wang, 2006; Wang et al., 2009;

Shaabani et al., 2008).
However, most of the earlier methods are associated with

different disadvantages such as harsh reaction conditions, long

reaction times, harmful organic solvents, low yields, and diffi-
culties in the work-up procedures. The recovery of the catalyst
is also a problem. Although different methods are available for
the synthesis of quinolines, the development of an easy and

efficient method for the preparation of quinoline derivatives
is still a challenging task. Thus, the development of simple,
convenient, and environmentally benign methods for the syn-

thesis of quinolines is still required. For these reasons, the
use of solid and heterogeneous catalysts in organic reactions
in aqueous media and solvent-free conditions has drawn the

attention of chemists for the Friedländer quinoline synthesis.
In the recent years, the use of heterogeneous catalysts has

received considerable interest in organic synthesis (Corma
and Garcia, 2003). This extensive application of heterogeneous

catalysts in synthetic organic chemistry can make the synthetic
process more efficient from both the environmental and eco-
nomic point of view (Santor et al., 2004) and used-catalyst

can be easily recycled. Montmorrilonite clay, enable to func-
tion as an efficient solid acid catalyst in organic transforma-
tions with excellent product, regio- and stereo-selectivity

(Binitha and Sugunan, 2006; Joseph et al., 2005, 2006; Shanb-
hag and Halligudi, 2004; Albertazzi et al., 2005; Jagtap and
Ramaswamy, 2006; Lal et al., 2006; Reddy et al., 2004, 2005,

2007; Sharma et al., 2006).
Nowadays, more and more heterogeneous Bronsted acids,

e.g., zeolites are preferred from an economical perspective as
well as from an ecological viewpoint. Due to its high protonic
acidity and unique shape-selective behavior, HZSM-5, has
been shown to be a highly active and stable catalyst for reac-
tions (Marques and Moreira, 2003; Mavrodinova et al.,

2003; Corma and Orchilles, 2000; Ingelsten et al., 2005; Zhao
et al., 2006; Thomas, 1994; Heravi et al., 2006; Hegedus
et al., 2006). Zirconia is attracting considerable interest on ac-

count of its potential use as a catalyst support. Recent investi-
gations reveal that promoted zirconia is an exceptionally good
solid acid catalyst for various organic synthesis and transfor-

mation reactions having enormous industrial applications
(Indovina et al., 2002; Pietrogiacomi et al., 2003; Li et al.,
2003; Tsyntsarski et al., 2003; Demirci and Garin, 2002).

As a part of our continuing effort toward the development

of useful synthetic methodologies (Dabbagh et al., 2007; Najafi
Chermahini et al., 2010; 30) herein, we report the synthesis of
substituted quinolines from 2-amino acetophenone or benzo-

phenone and a-methylene carbonyl compounds in the presence
of heterogeneous solid acid catalysts including Montmorrilo-
nite K-10, zeolite, nano-crystalline sulfated zirconia (SZ) in

ethanol under reflux condition.
2. Experimental

2.1. Instruments and characterization

All reagents were purchased from Merck and Aldrich and used
without further purification. Products were characterized by
spectroscopy data (IR, FTIR, 1H NMR and 13C NMR spec-

tra), elemental analysis (CHN) and melting points. A JASCO
FT/IR-680 PLUS spectrometer was used to record IR spectra
using KBr pellets. NMR spectra were recorded on a Bruker
400 Ultrasheild NMR and DMSO-d6 was used as solvent.

Melting points reported were determined by open capillary
method using a Galen Kamp melting point apparatus and
are uncorrected. Mass Spectra were recorded on a Shimadzu

Gas Chromatograph Mass Spectrometer GCMS-QP5050A/Q
P5000 apparatus.

2.2. Catalyst preparation

2.2.1. Synthesis of ZSM-5 and HZSM-5

For synthesis of ZSM-5, hydrated aluminum sulfate and

sodium silicate solution were the sources of aluminum and
silicon, respectively. The tetrapropylammonium bromide was
used as the structure-directing template (Argauer and Landolt,

1972; Dwyer, 1984; Guth, 1992; Choudhary et al., 2002). ZSM-
5 zeolite was synthesized according to the procedure described
earlier. The solid phase obtained was filtered, washed with dis-

tilled water several times, dried at 120 �C for 12 h and then cal-
cined at 550 �C for 6 h and followed by ion exchange with
NH4NO3 solution (three times). The acid hydrogen form of

the compound is prepared by transferring the oven-dried com-
pound to a tube furnace. Heat the ammonium zeolite for 3 h to
ensure the thermal decomposition of NHþ4 ions. Over the
course of this process, zeolite should turn from white to

brown/black color (Guth, 1992; Choudhary et al., 2002).

2.2.2. Synthesis of sulfated zirconia

Amorphous hydrated zirconia synthesized by hydrolysis of
ZrCl4 with a concentrated (25%) solution of ammonia



Table 2 Effect of solvent on the reaction times and yields.

Entry Solvent Time (min) Yield (%)a

1 H2O 180 55

2 EtOH 70 90

3 MeOH 85 75

4 CH3CN 110 70

5 DCM 100 65

6 Toluene 120 60

Reaction condition: 2-Amino acetophenone or benzophenone

(2.0 mmol), a-methylene carbonyl compounds (2.0 mmol) in the

presence of catalyst (25 mg) under reflux condition in various

solvents.
a Yields after isolation of products.

A mild and highly efficient Friedländer synthesis of quinolines in the presence of heterogeneous S435
according to the procedure described earlier ( Tichit et al.,
1996). The obtained hydrous zirconia sample was dried at
120 �C for 12 h. Sulfated zirconia (SZ) was prepared by sus-

pending ZrO2 in a solution of 0.5 M H2SO4. After 90 min stir-
ring the mixture was filtered and washed with 0.05 M H2SO4.
The precipitate was dried at 120 �C and calcined for 2 h at

600 �C with subsequent cooling in either a desiccator or under
ambient conditions. (Tichit et al., 1996).

2.2.3. Synthesis of nano-crystalline sulfated zirconia

Nano-crystalline sulfated zirconia has been prepared by one
step sol–gel technique (Mishra et al., 2004; Tyagi et al., 2006).
A typical synthesis involves the addition of concentrated sulfu-

ric acid (1.02 ml) to zirconium n-propoxide precursor (30 wt%)
followed by the hydrolysis with water. After 3 h aging at room
temperature, the resulting gel was dried at 110 �C for 12 h fol-

lowed by calcination at 600 �C for 2 h.

2.3. General procedure for the synthesis of quinoline derivatives

In a 50 mL round bottomed flask 2-aminoaryl ketone

(1 mmol) and a-methylene carbonyl compound (1.2 mmol)
were thoroughly mixed in ethanol (10 mL), then catalyst
(50 mg) was added, and the solution was refluxed for appropri-

ate time (Table 2). The extent of the reaction was monitored by
TLC. After completion of the reaction, the resulting solid was
collected by filtration and dissolved in 20 mL dichloromethane

and the combined organic layer was dried over anhydrous cal-
cium chloride and filtered. Evaporation of the solvent gave a
crude product, which was purified by silica gel column chro-

matography with cyclohexane and ethyl acetate (4:1) to give
the pure product.

2.3.1. Ethyl 2-methyl-4-phenylquinoline-3-carboxylate (4a)

Mp 100–102 �C. FTIR (KBr, cm�1) mmax: 3060, 2976, 1728,
1587, 1484, 1265, 1065 cm�1. 1H NMR (400 MHz, DMSO-
d6): d 0.94 (t, 3H), 2.76 (s, 3H), 4.04 (q, 2H), 7.30–7.48 (m,

7H), 7.72 (t, 1H), 8.04 (d, 1H); MS (m/z): 291.13 (M+); Anal.
Calcd for C19H17NO2: C, 78.33; H, 5.88; N, 4.81. Found: C,
78.12; H, 5.46; N, 4.87.

2.3.2. Methyl 2-methyl-4-phenylquinoline-3-carboxylate (4b)

Mp 86–88 �C. FTIR (KBr, cm�1) mmax: 3060, 2966, 1738, 1608,
1588, 1387, 1235, 1176, 1065 cm�1. 1H NMR (400 MHz,
Table 1 Effect of catalyst type and amount of catalyst on the

synthesis of compounds.

Entry Catalyst Catalyst loading (mg) Time (min) Yield (%)a

1 K-10 10 120 79

2 25 120 83

3 50 90 81

4 ZMS-5 10 120 83

5 25 90 85

6 50 95 80

7 SZ 10 120 81

8 25 90 92

9 50 95 85

a Yields after isolation of products.
DMSO-d6): d 2.76 (t, 3H), 3.54 (s, 3H), 7.24–7.88 (m, 8H),
8.08 (d, 1H). MS (m/z): 277.11 (M+). Anal. Calcd for
C18H15NO2: C, 77.96; H, 5.44; N, 5.04. Found: C, 77.68; H,

5.26; N, 4.77.

2.3.3. 1-(2-Methyl-4-phenylquinolin-3-yl) ethanone (4c)

Mp 108–110 �C. FTIR (KBr, cm�1) mmax: 3046, 2962, 1716,

1606, 1574, 1388, 1218, 1062 cm�1; 1H NMR (400 MHz,
DMSO-d6): d 1.96 (t, 3H), 2.61 (s, 3H), 7.28–7.74 (m, 8H),
8.02 (d, 1H); MS (m/z): 261.12 (M+); Anal. Calcd for

C18H15NO: C, 82.73; H, 5.79; N, 5.36. Found: C, 82.58; H,
5.56; N, 5.11.

2.3.4. Ethyl 2,4-dimethylquinoline-3-carboxylate (4d)

Oil. FTIR (KBr, cm�1) mmax: 3066, 2946, 1726, 1611, 1584,
1212, 1072 cm�1. 1H NMR (400 MHz, DMSO-d6): d 1.44 (t,
3H), 2.61 (s, 3H), 2.70 (s, 3H), 4.44 (q, 2H), 7.52 (t, 1H),

7.67 (t, 1H), 7.94 (d, 1H), 7.97 (d, 1H). MS (m/z): 229.11
(M+); Anal. Calcd for C14H15NO2: C, 73.34; H, 6.59; N,
6.11. Found: C, 73.08; H, 6.26; N, 6.16.

2.3.5. Methyl 2,4-dimethylquinoline-3-carboxylate (4e)

Oil. FTIR (KBr, cm�1) mmax: 3065, 2954, 1729, 1614, 1581,
1382, 1228, 1063 cm�1. 1H NMR (400 MHz, DMSO-d6): d
2.60 (t, 3H), 2.65 (s, 3H), 3.72 (s, 3H), 7.36 (t, 1H), 7.63 (t,
1H), 7.92 (d, 1H), 8.01 (d, 1H). MS (m/z): 215.09 (M+). Anal.
Figure 1 The results obtained from catalyst reuse nano-crystal-

line sulfated zirconia (black bars), Zeolite (white bars) and

Montmorrilonite K-10 (dash bars) in the quinoline formation.
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Calcd for C13H13NO2: C, 72.54; H, 6.09; N, 6.51. Found: C,
72.21; H, 5.86; N, 6.34.

2.3.6. 1-(2,4-Dimethylquinolin-3-yl) ethanone (4f)

Oil. FTIR (KBr, cm�1) mmax: 3064, 2957, 1714, 1618, 1583,
1375, 1223 cm�1; 1H NMR (400 MHz, DMSO-d6): d 2.52 (t,
3H), 2.56 (s, 3H), 3.62 (s, 3H), 7.43 (t, 1H), 7.61 (t, 1H),

7.92 (d, 1H), 7.98 (d, 1H); MS (m/z): 199.10 (M+); Anal. Calcd
for C13H13NO: C, 78.34; H, 6.58; N, 7.03. Found: C, 78.06; H,
6.38; N, 6.84.

2.3.7. 9-Phenyl-2,3-dihydro-1H-cyclopenta[b]quinoline (6a)

Mp 132–134 �C. FTIR (KBr, cm�1) mmax: 3061, 2958, 1714,
1610, 1563, 1348, 1172, 1067 cm�1. 1H NMR (400 MHz,

DMSO-d6): d 2.15–2.20 (m, 2H), 2.65 (t, 2H), 3.12 (t, 2H),
7.28–7.71 (m, 8H), 8.03 (d, 1H); MS (m/z): 245.12 (M+); Anal.
Calcd for C18H15N: C, 88.13; H, 6.16; N, 5.71. Found: C,

87.84; H, 5.78; N, 5.78.

2.3.8. 9-Phenyl-2,3-dihydro-1H-cyclopenta[b]quinoline (6b)

Mp 136–138 �C. FTIR (KBr, cm�1) mmax: 3063, 2951, 1611,

1573, 1481, 1226 cm�1; 1H NMR (400 MHz, DMSO-d6): d
1.75 (m, 2H), 1.83 (m, 2H), 2.55 (t, 2H), 2.65 (t, 2H), 3.16 (t,
2H), 7.15–7.45 (m, 8H), 7.98 (d, 1H); MS (m/z): 259.14

(M+); Anal. Calcd for C19H17N: C, 88.03; H, 6.63; N, 5.40.
Found: C, 87.77; H, 6.38; N, 5.18.

2.3.9. 9-Methyl-2,3-dihydro-1H-cyclopenta[b]quinoline (6c)

Mp 58–60 �C. FTIR (KBr, cm�1) mmax: 3062, 2954, 1612, 1573,
1351, 1173 cm�1; 1H NMR (400 MHz, DMSO-d6): d 2.15–
2.22 (m, 2H), 2.56 (s, 3H), 3.03 (t, 2H), 3.25 (t, 2H), 7.43–
Scheme 1 Friedländer synth
7.97 (m, 4H); MS (m/z): 183.11 (M+); Anal. Calcd for
C13H13N: C, 85.21; H, 7.15; N, 7.64. Found: C, 84.94; H,
6.89; N, 7.32.

2.3.10. 9-Methyl-1,2,3,4-tetrahydroacridine (6d)

Mp 76–78 �C. FTIR (KBr, cm�1) mmax: 3063, 2945, 1613, 1578,
1353, 1170 cm�1; 1H NMR (400 MHz, DMSO-d6): d 1.71–

1.73 (m, 4H), 2.28 (s, 3H), 2.66 (t, 2H), 2.93 (t, 2H), 7.23–
7.87 (m, 4H); MS (m/z): 197.21 (M+); Anal. Calcd for
C14H15N: C, 85.24; H, 7.66; N, 7.10. Found: C, 84.98; H,

7.23; N, 7.02.
3. Results and discussion

In the reaction between 2-aminoaryl ketones and a-methylene
carbonyl compounds to minimize the formation of byproducts
and to achieve good yield of the desired product, the reaction

is optimized by varying the amount of catalyst (10, 25 and
50 mg), the percentage yield of the product with 10, 25 and
50 mg of SZ as a catalyst are 81%, 92% and 85%, respectively

(Table 1, entries 7–9). The same reaction when performed
without catalyst for 6 h gave no product. When the catalyst
content was increased to 50 mg, the product yield decreased
to 85% (Table 1, entry 6). Therefore, it was found that the

use of 25 mg of the catalyst was sufficient to promote the reac-
tion, and greater amounts of the catalyst did not improve the
yields.

We found that ethanol and 25 mg of zeolite catalyst and K-
10 an efficient reaction medium in terms of reaction time as
well as yield (Table 1, entries 1–6). It is noteworthy to mention

that in the absence of catalyst, no product was found even
esis of quinolines 4 and 6.
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after 12 h. These results indicate that the catalyst exhibits a
high catalytic activity in this transformation.

To optimize the reaction conditions, we first conducted the

Friedländer condensation of 2-aminobenzophenone (2a) with
ethyl acetoacetate (3a) to the desired quinoline in the presence
of a catalytic amount of catalyst in different solvents such as
Table 3 Acid-catalzed synthesis of quinoline derivativesa.

Entry Reactants Products Time (min)/yield (%)b

Montmorrilonite K-10 Z

1 2a, 3a 4a 120/70 11

2 2a, 3b 4b 120/75 95

3 2a, 3c 4c 130/75 10

4 2b, 3a 4d 130/75 95

5 2b, 3a 4e 120/75 95

6 2b, 3a 4f 120/83 90

7 2a, 5a 6a 120/75 10

8 2a, 5b 6b 120/70 11

9 2a, 5c 6c 120/75 95

10 2a, 5d 6d 120/73 10

a The products were characterized by IR, 1H NMR, 13C NMR and ma
b Isolated yields.
EtOH, MeOH, CH3CN, and toluene. (Table 2, entries 1–6).
Reaction in toluene and dichloromethane (DCM) solvent gave
low product yields even after 100 min and 120 min (Table 2,

entries 5 and 6). Although the yields were moderate in case
of methanol and acetonitrile under reflux condition (Table 2,
entries 3 and 4).
MP �C (lit.) References

eolite Nano-crystalline SZ

0/84 90/92 100–102 [100–101] Shaabani et al. (2008)

/82 90/90 86–88 [87–88] Zhang et al. (2009)

0/83 90/89 108–110 (112–113) Shaabani et al. (2008)

/81 90/88 oil (oil) Zhang et al. (2009)

/80 85/88 oil (oil) Zhang et al. (2009)

/85 80/91 oil (oil) Zhang et al. (2009)

0/81 90/90 132–134 (139–141) Shaabani et al. (2008)

0/78 90/88 136–138 (138–141) Akbari et al. (2010)

/80 90/89 58–60 (60–61) Akbari et al. (2010)

0/78 90/86 76–78 (78–79) Akbari et al. (2010)

ss spectroscopy.



Scheme 2 A plausible mechanism for the synthesis of quinolines

by catalyst.
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The best results were obtained when the reaction was car-

ried out in ethanol at reflux 85 min in the presence of catalyst
(Table 2, entry 2). Therefore, ethanol was selected as a solvent
for this reaction. Although water is a desirable solvent for

chemical reactions for reasons of cost, safety and environmen-
tal concerns, we found that using water in this reaction gave
moderate yields of products under reflux condition after long

reaction times.
After the completion of the reaction, the catalyst was sepa-

rated by centrifugation, washed with doubly distilled water
and acetone, and the centrifugate was treated with 6 M HCl

(20 mL) and while being stirred vigorously. The aqueous solu-
tion finally obtained was extracted twice with ethyl acetate; the
combined organic phase was washed with water and concen-

trated to precipitate the crude solid crystalline.
One of the most important advantages of heterogeneous

catalysis over the homogeneous counterpart is the possibility

of reusing the catalyst by simple filtration, without loss of
activity. The recovery and reusability of the catalyst was inves-
tigated in the product formation. After completion of the reac-

tion, the catalyst was separated by filtration, washed three
times with 5 mL acetone, then with doubly distilled water sev-
eral times and dried at 110 �C. Then the recovered catalyst was
used in the next run. The results of three consecutive runs

showed that the catalyst can be reused several times without
significant loss of its activity (see Fig. 1).

A possible mechanism for the synthesis of quinolines using

this method is shown in Scheme 2, based on the literature
(Arcadi et al., 2003) and the obtained results.

Considering the reaction time and yield nano-crystalline SZ

was found to be most effective. Subsequently a series of substi-
tuted quinolines were prepared following the same method
using this catalyst (Scheme 1, Table 3).

A possible mechanism for the synthesis of quinolines using
this method is shown in Scheme 2, based on the literature
(Arcadi et al., 2006) and the obtained results.
4. Conclusion

In conclusion, a one-pot, mild, efficient, and environmentally
benign protocol has been developed for the synthesis of, quin-
oline derivatives catalyzed by Montmorrilonite K-10, zeolite,
nano-crystalline SZ in high yields. Compared to previously
reported methods, Moreover, the mild reaction conditions,

easy work-up, clean reaction profiles, lower catalyst loading
and cost efficiency render this approach as an interesting alter-
native to the existing methods.
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