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Abstract The quantitative structure–activity relationship (QSAR) analyses were carried out in a

series of novel sulfonamide derivatives as the procollagen C-proteinase inhibitors for treatment

of fibrotic conditions. Sphere exclusion method was used to classify data set into categories of train

and test set at different radii ranging from 0.9 to 0.5. Multiple linear regression (MLR), principal

component regression (PCR) and partial least squares (PLS) were used as the regression methods

and stepwise, Genetic algorithm (GA), and simulated annealing (SA) were used as the feature selec-

tion methods. Three of the statistically best significant models were chosen from the results for dis-

cussion. Model 1 was obtained by MLR–SA methodology at a radius of 1.6. This model with a

coefficient of determination (r2) = 0.71 can well predict the real inhibitor activities. Cross-

validated q2 of this model, 0.64, indicates good internal predictive power of the model. External val-

idation of the model (pred_r2 = 0.85) showed that the model can well predict activity of novel PCP

inhibitors. The model 2 which developed using PLS–SW explains 72% (r2 = 0.72) of the total vari-

ance in the training set as well as it has internal (q2) and external (pred_r2) predictive ability of

�67% and �71% respectively. The last developed model by PCR–SA has a correlation coefficient

(r2) of 0.68 which can explains 68% of the variance in the observed activity values. In this case inter-

nal and external validations are 0.61 and 0.75, respectively. Alignment Independent (AI) and atomic
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valence connectivity index (chiv) have the greatest effect on the biological activities. Developed

models can be useful in designing and synthesis of effective and optimized novel PCP inhibitors

which can be used for treatment of fibrotic conditions.

ª 2015 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Collagen is the most abundant structural protein of the various

connective tissues in animals. Despite it helps to maintain the
integrity of many tissues via its interactions with cell surfaces,
excessive production of collagen leads to pathological condi-

tions (Di Lullo et al., 2002). Fibrosis is characterized by exces-
sive accumulation of extracellular matrix (ECM) proteins in
response to chronic stress and injury which cause normal
wound healing process goes awry (Williams et al., 2014).

Fibrosis can occur in many tissues within the body, such as
lungs, heart, skin, bone marrow, and soft tissue (Bestetti
et al., 2010; Chaudhuri et al., 2014; Hasselbalch, 2013;

Mathisen and Grillo, 1992; Shaffer et al., 2002). Despite
advances in medical science, fibrosis still remains a major med-
ical problem which has been estimated to play a causal role in

nearly 45% of deaths in the developed world (Wynn, 2004).
Currently, there are no adequate therapies for fibrotic condi-
tions. So, identification and design of novel drugs specifically

affecting these targets could lead to better drugs which are
needed for both systemic and topical applications.
Procollagen C-endopeptidase (procollagen C-proteinase
(PCP)) is an enzyme which cleavages of the C-terminal propep-

tide at Ala-Asp in type I and II procollagens and at Arg-Asp in
type III (Hojima et al., 1985). Cleavage of the globular C-
terminal by this endopeptidase converts soluble pro-collagens

into fully formed, insoluble, collagen fibrils. So inhibition of
PCP is an interesting target in fibrotic conditions which is
expected to disrupt fibril formation and stability, therefore,

aid in the treatment of these inflammatory conditions
(Dankwardt et al., 2002).

The quantitative structure–activity relationship (QSAR)
relates a set of physico-chemical properties or molecular

descriptors to a response-variable which could be a biological
activity of the chemicals (Hansch et al., 2001). One can obtain
a rapid and cost-effective biological activities by QSAR
without necessity of performing expensive and time consuming
laboratory experiments (Dybdahl et al., 2012). Recently, novel
inhibitors of procollagen C-proteinase (PCP) have been syn-

thesized and their structure activity relationship (SAR) has
been investigated (Bailey et al., 2008; Dankwardt et al., 2002,
2000; Delaet et al., 2003; Robinson et al., 2003; Turtle et al.,

2012), but QSAR studies have not been carried out for PCP
inhibitors. According to the above matter, we developed some
statistically significant QSAR models for sulfonamide deriva-

tives as PCP inhibitors. The obtained result may be used to
further and effective designing novel PCP inhibitors.

2. Materials and method

2.1. Data set and structure optimization

A set of 54 molecules of sulfonamide derivatives as nonpep-
tidic PCP inhibitors were used for the present QSAR study
(Turtle et al., 2012). The chemical structure and biological

activities (IC50) of these molecules are shown in the Table 1.
The molecules have high structural diversity and the activity
range is wide. So this data set is suitable for our QSAR studies.

To reduce the skewness of data set, the IC50 values were con-
verted to a logarithmic scale (pIC50 = �log (IC50)).
Subsequently pIC50 values were used as the response values

in the QSAR studies. The compounds were then subjected to
conformational analysis and energy minimization using
Montocarlo conformational search with root mean square

(RMS) gradient of 0.001 kcal/mol using a Merck Molecular
Force Field (MMFF). Montocarlo conformational search
method is similar to the random incremental pulse search
(RIPS) method that generates a new molecular conformation

by randomly perturbing the position of each coordinate of
each atom in the molecule. Most stable structure for each com-
pound was generated after energy minimization. Then, opti-

mized geometries and corresponding pIC50 were imported

http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1 Structural and biological data of procollagen C-proteinase inhibitors.

R4
N

S
R1

OO

R2

R3

a

a R1 R2 R3 R4 IC50 (lM) pIC50

1 0 4-MeO-Ph H CH2CO2H CONHOH 10.00 5.00

2 0 4-MeO-Ph CH2CO2H H CONHOH 345.00 3.46

3 0 4-MeO-Ph CH2Ph H CONHOH 16.00 4.80

4 0 4-MeO-Ph CH2Ph CH2CO2H CONHOH 2.80 5.55

5 0 4-MeO-Ph Ph H CONHOH 69.00 4.16

6 0 4-MeO-Ph CH2CH2Ph H CONHOH 18.00 4.74

7 1 4-MeO-Ph Ph H CONHOH 3.00 5.52

8 1 4-MeO-Ph CH2Ph H CONHOH 4.50 5.35

9 1 4-MeO-Ph CH2CH2Ph H CONHOH 0.90 6.05

10 2 4-MeO-Ph Ph H CONHOH 28.00 4.55

11 2 4-MeO-Ph CH2Ph H CONHOH 10.00 5.00

12 2 4-MeO-Ph CH2CH2Ph H CONHOH 4.90 5.31

13 0 4-MeO-Ph Sec-butyl H CONHOH 112.00 3.95

14 0 4-MeO-Ph CH2(4-F-Ph) H CONHOH 34.00 4.47

15 0 4-MeO-Ph CH2CO2n-Bu H CONHOH 167.00 3.78

16 0 4-MeO-Ph 4-MeO-Ph H CONHOH 73.00 4.14

17 0 4-MeO-Ph CH2CH2(4-MeO)Ph H CONHOH 18.00 4.74

18 0 4-MeO-Ph CH2(4-MeO)Ph H CONHOH 29.00 4.54

19 0 4-MeO-Ph CH2(4-CF3)Ph H CONHOH 67.00 4.17

20 0 4-MeO-Ph CH2(4-Cl)Ph H CONHOH 19.00 4.72

21 0 4-MeO-Ph CH(Ph)2 H CONHOH 102.00 3.99

22 1 4-MeO-Ph H H CONHOH 81.00 4.09

23 1 4-MeO-Ph CH2CH2-N-morpholinyl H CONHOH 1.70 5.77

24 1 4-MeO-Ph Sec-butyl H CONHOH 1.00 6.00

25 1 4-MeO-Ph CH2-cyclhexane H CONHOH 8.10 5.09

26 1 4-MeO-Ph CH2CH2(2-pyridyl) H CONHOH 1.70 5.77

27 1 4-MeO-Ph 4-MeO-Ph H CONHOH 1.00 6.00

28 1 4-MeO-Ph CH2CH2(4-MeO-Ph) H CONHOH 2.30 5.64

29 1 4-MeO-Ph CH2CH2(3-MeO-Ph) H CONHOH 11.00 4.96

30 1 4-MeO-Ph CH2CH2(4-NO2-Ph) H CONHOH 23.00 4.64

31 1 4-MeO-Ph CH2CH2(4-NH2SO2 -Ph) H CONHOH 42.00 4.38

32 1 4-MeO-Ph CH2CH2(3,4-diMeO-Ph) H CONHOH 166.00 3.78

33 1 n-Bu CH2CH2(4-MeO-Ph) H CONHOH 6.70 5.17

34 0 n-Bu CH2CH2(4-MeO-Ph) H CONHOH 55.00 4.26

35 1 Ph CH2CH2Ph H CONHOH 2.20 5.66

36 1 4-CO2H-Ph CH2CH2Ph H CONHOH 1.00 6.00

37 1 4-(C(‚NOH)NH2)-Ph CH2CH2(4-MeO-Ph) H CONHOH 0.08 7.10

38 1 3-(C(‚NOH)NH2)-Ph CH2CH2(4-MeO-Ph) H CONHOH 0.40 6.40

39 1 2-(C(‚NOH)NH2)-Ph CH2CH2(4-MeO-Ph) H CONHOH 7.10 5.15

40 1 4-(Ph-C(‚O)NH)-Ph CH2CH2(4-MeO-Ph) H CONHOH 0.41 6.39

41 1 4-(Ph-SO2-NH)-Ph CH2CH2(4-MeO-Ph) H CONHOH 0.47 6.33

42 1 4-SO2Me-Ph CH2CH2(4-MeO-Ph) H CONHOH 0.29 6.54

43 1 2-SO2Me-Ph CH2CH2(4-MeO-Ph) H CONHOH 9.10 5.04

44 1 4-tBu-Ph CH2CH2Ph H CONHOH 17.00 4.77

45 0 4-SO2Me-Ph CH2CH2(4-MeO-Ph) H COCH2SH 4.70 5.33

46 1 4-SO2Me-Ph CH2CH2(4-MeO-Ph) H COCH2SH 13.00 4.89

47 2 4-SO2Me-Ph CH2CH2(4-MeO-Ph) H SH 14.00 4.85

48 1 4-SO2Me-Ph CH2CH2(4-MeO-Ph) H SH 9.40 5.03

49 1 4-NHCONHPh-Ph CH2CH2(4-MeO-Ph) H CONHOH 0.09 7.03

50 1 4-NHCONH(4-MeO-Ph)-Ph CH2CH2(4-MeO-Ph) H CONHOH 0.35 6.46

51 1 4-NHCONH(4-CF3-Ph)-Ph CH2CH2(4-MeO-Ph) H CONHOH 0.04 7.38

52 1 4-NHCONH(4-Cl-Ph)-Ph CH2CH2(4-MeO-Ph) H CONHOH 0.30 6.52

53 1 4-NHCONHBn-Ph CH2CH2(4-MeO-Ph) H CONHOH 0.01 8.00

54 1 4-NHCONHMe-Ph CH2CH2(4-MeO-Ph) H CONHOH 0.06 7.22

QSAR study of the non-peptidic inhibitors of procollagen C-proteinase 803



804 A. Khazaei et al.
into the VLife MDS 3.5 (Vlife Sciences Technologies Pvt. Ltd.
Pune, India) software. Vlife MDS is a complete molecular
modeling software which can perform tasks such as QSAR,

combinatorial Library generation, pharmacophore, chemin-
formatics, and docking. The energy-minimized molecules were
used for the calculation of the various 2D molecular descrip-

tors (Individual, Chi, ChiV, Path count, ChiChain,
ChiVChain, Chainpathcount, Cluster, Pathcluster, Kapa,
Element Count, and so on). In addition, alignment indepen-

dent descriptors were calculated and were added to the descrip-
tor list. A descriptor that is constant for all the molecules will
not contribute to QSAR and hence was removed. Training and
test set were created by using a sphere exclusion method for

choosing uniformly distributed molecules in both sets
(Hudson et al., 1996; Zheng and Tropsha, 1999). In the accept-
able dissimilarity value or sphere exclusion radius the test set

should be interpolative i.e. derived within the min–max range
of the train set. Radius values varying from 0.8 to 6 were
examined which a radius of 0.9 to 5 had an acceptable dissim-

ilarity value and were used for further analysis.
2.2. Regression and variable selection methods

Feature or variable selection is one of the important steps in a
QSAR study, which known as variable selection technique
(Guyon and Elisseeff, 2003). In principle, any variable selec-
tion method can be coupled with any statistical method of

choice for building quantitative model. Multiple linear regres-
sion (MLR) (Darlington, 1990), principal component regres-
sion (PCR) (Pearson, 1901), and partial least squares (PLS)

(Tenenhaus et al., 2005) were used as the regression methods
and stepwise, Genetic algorithm (GA), and simulated anneal-
ing (SA) were used as the feature selection methods

(Metropolis et al., 1953). In the stepwise (SW) feature selection
method, forward–backward (FB) was used and the cross-
correlation limit was set at 0.5, the number of variables at 5,

and the term selection criteria at r2. In the GA method, cross-
correlation limit, population, and number of generations were
set at 0.5, 10, and 1000, respectively. In the SA method, max-
imum temperature, minimum temperature, and crosscorrela-

tion limit were set at 100, 0.01, and 0.5, respectively. At any
radius, GA, SA, and FB as the feature selection methods were
used with the MLR, PCR and PLS as the regression methods.

Variable selection and regressions were done by Vlife MDS
software.
Table 2 Frequently used a values and the corresponding

critical values of Zc for one-tail test.
a

a Zc

0.10 1.28

0.05 1.64

0.01 2.33

0.001 3.10

a For Z P 4, a = (1/r(2p)0.5)exp(�Z2/2).
2.3. Statistical analysis

The performance of developed QSAR models was evaluated
using r2 (the squared correlation coefficient), q2 (cross-

validated correlation coefficient), F-test (Fischer’s value) for
statistical significance, and pred_r2, (r2 for the external test
set). The main utility of a QSAR model is their capability repli-
cated by the model. However, if the following conditions are

satisfied a QSAR model will be robust and predictive:
r2 > 0.6, q2 > 0.6 and pred_r2 > 0.5 (Golbraikh and
Tropsha, 2002). External and internal validation ability of a

model is evaluated by some validation criteria. Most important
and frequently used criteria are q2 and pred_r2 for internal and
external validation, respectively.
2.3.1. Internal validation

The cross-validation analysis was performed using the leave-

one-out (LOO) method. Internal or cross-validation criterion
(q2) is calculated according to the formula:

q2 ¼ 1�
P

yi � ypred
� �2
P

yi � �yð Þ2
ð1Þ

where yi, �y, and ypred are observed, mean, and predicted activ-
ity in the training, respectively.pred_r2 is used as a criterion for
evaluation ability of a model to predict the unknown activity

of the new chemicals. Both summations are over all molecules
in the training set and hence the predictions were based on the
current trial solution, the q2 obtained indicates the predictive

power of the current model (Table 3).

2.3.2. External validation

When truly external date points are not available for test of the

model prediction ability, original date set are divided into
training and test set. The model is built from train set, and then
is validated with the test set. pred_r2 is calculated according to

the following equation:

R2
pred ¼ 1�

P
ypredðtestÞ � yðtestÞ

� �2
P

yðtestÞ � �ytraining

� �2 ð2Þ

where ypred(test) and are ytest predicted and observed activity for

test set and �ytraining is the mean activity value of train test. Both

summations are over all molecules in the test set. The pred_r2

value is indicative of the predictive power of the current model
for the external test set (Table 3). The statistical significance of

the model is determined by the F-test which high value is
interest.

2.3.3. Randomization test

To evaluate the statistical significance of the QSAR model for
a real data set, one-tail hypothesis testing was used (Golbraikh
and Tropsha, 2003; Gilbert, 1976). To evaluate chance correla-
tion of the models, training sets were examined by comparing

these models to those derived from random data sets. Random
sets were generated by shuffling the activities of the molecules
in the training set. The statistical model was derived using

various randomly scrambled activities (random sets) with the
selected descriptors and the corresponding q2 values were cal-
culated. The significance of the models, hence obtained was

derived based on a calculated Z score (Gilbert, 1976; Cramer
et al., 1988). A Z score value is calculated by the following
formula:

Z score ¼ h� l
r

� �
ð3Þ



Table 3 Statistical parameters for regression and feature selection methods at different dissimilarity values.

Regression

method

Feature

selection

method

Radius

Parameter 0.9 1.6 1.7 1.9 2 3 4 5

MLR Stepwise r2 0.71 0.72 0.74 0.84 0.80 0.70 0.80 0.91

q2 0.66 0.67 0.69 0.78 0.79 0.71 0.78 0.85

F-test 39.45 37.37 39.28 33.94 35.71 35.59 35.66 78.83

N 52.00 46.00 45.00 37.00 36.00 23.00 16.00 9.00

Pred_r2 0.96 0.69 0.47 0.37 0.17 0.36 0.29 �1.48
r2 se 0.56 0.57 0.55 0.46 0.47 0.61 0.55 0.42

q2 se 0.61 0.62 0.60 0.54 0.56 0.69 0.65 0.55

Best rand r2 0.26 0.28 0.22 0.33 0.44 0.34 0.42 0.92

Best rand q2 0.14 0.14 0.06 0.11 0.17 0.18 0.10 0.86

Z score rand r2 13.87 12.62 13.84 9.97 8.32 9.15 7.43 4.92

Z score rand q2 12.35 10.93 11 6.14 5.81 7.98 5.44 4.24

a rand r2 0 0 0 0 0 0 0 0

a rand q2 0 0 0 0 0 0 0 0

Genetic algorithm r2 0.67 0.56 0.58 0.63 0.59 0.67 0.75 0.91

q2 0.57 0.44 0.48 0.54 0.46 0.54 0.56 0.69

F-test 24.32 18.10 19.13 19.29 15.48 13.02 12.21 18.33

N 52.00 46.00 45.00 37.00 36.00 23.00 16.00 9.00

Pred_r2 0.97 0.84 0.67 0.55 0.47 �0.03 0.23 0.30

r2 se 0.60 0.72 0.70 0.69 0.77 0.77 0.72 0.50

q2 se 0.69 0.81 0.78 0.78 0.88 0.90 0.95 0.95

Best rand r2 0.22 0.24 0.31 0.34 0.23 0.37 0.56 0.96

Best rand q2 0.06 0.10 0.19 0.14 0.05 0.10 0.26 0.61

Z score rand r2 12.79 9.79 9.36 9.56 9.45 6.32 4.20 2.89

Z score rand q2 7.89 8.11 8.19 8.15 7.30 6.48 3.96 1.81

a rand r2 0 0 0 0 0 0 0 0.01

a rand q2 0 0 0 0 0 0 0 0.05

Simulated annealing r2 0.67 0.71 0.66 0.72 0.74 0.75 0.86 0.99

q2 0.60 0.64 0.56 0.64 0.67 0.54 0.68 0.88

F-test 24.54 26.00 19.98 21.15 30.96 13.87 17.00 121.80

N 52.00 46.00 45.00 37.00 36.00 23.00 16.00 9.00

Pred_r2 0.98 0.85 0.81 0.53 0.32 �0.28 0.01 �0.58
r2 se 0.60 0.58 0.63 0.61 0.61 0.68 0.56 0.17

q2 se 0.66 0.66 0.72 0.69 0.69 0.93 0.85 0.66

Best rand r2 0.27 0.24 0.29 0.34 0.29 0.49 0.76 0.97

Best rand q2 0.12 0.03 1.10 0.14 0.14 0.23 0.54 0.77

Z score rand r2 11.40 11.75 9.84 8.71 11.67 4.80 3.94 2.32

Z score rand q2 12.15 9.41 8.13 7.52 10.02 3.12 3.48 1.92

a rand r2 0 0 0 0 0 0 0 0.05

a rand q2 0 0 0 0 0 0 0 0.05

PLS Stepwise r2 0.70 0.72 0.74 0.84 0.85 0.77 0.78 0.91

q2 0.65 0.67 0.68 0.78 0.79 0.71 0.72 0.85

F-test 57.95 57.26 59.78 43.76 46.06 74.10 51.28 78.83

N 52.00 46.00 45.00 37.00 36.00 23.00 16.00 9.00

Pred_r2 0.95 0.71 0.48 0.37 0.17 0.31 0.27 �1.48
r2 se 0.56 0.56 0.55 0.46 0.46 0.60 0.62 0.42

q2 se 0.61 0.61 0.60 0.54 0.55 0.68 0.70 0.55

Best rand r2 0.18 0.26 0.26 0.41 0.49 0.29 0.46 0.90

Best rand q2 0.50 0.12 0.13 0.20 0.22 0.09 0.31 0.81

Z score rand r2 14.66 13.76 12.74 8.22 9.31 10.36 9.02 4.28

Z score rand q2 11.96 12.10 8.96 5.79 5.70 8.94 7.47 3.65

a rand r2 0 0 0 0 0 0 0 0

a rand q2 0 0 0 0 0 0 0 0

Genetic algorithm r2 0.65 0.58 0.53 0.63 0.64 0.71 0.78 0.91

q2 0.57 0.49 0.39 0.55 0.53 0.58 0.66 0.76

F-test 45.52 30.60 23.97 29.78 29.83 25.03 23.24 77.03

N 52.00 46.00 45.00 37.00 36.00 23.00 16.00 9.00

(continued on next page)
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Table 3 (continued)

Regression

method

Feature

selection

method

Radius

Parameter 0.9 1.6 1.7 1.9 2 3 4 5

Pred_r2 0.94 0.79 0.59 0.55 0.14 0.46 0.42 �0.16
r2 se 0.61 0.69 0.73 0.68 0.71 0.70 0.65 0.42

q2 se 0.67 0.77 0.83 0.75 0.80 0.85 0.81 0.71

Best rand r2 0.21 0.23 0.23 0.25 0.30 0.49 0.53 0.85

Best rand q2 0.08 0.07 0010 0.10 0.13 0.35 0.32 0.65

Z score rand r2 13.85 11.38 9.47 10.40 9.86 5.68 4.53 3.29

Z score rand q2 11.90 9.48 7.86 8.07 4.52 4.03 2.76 2.60

a rand r2 0 0 0 0 0 0 0 0

a rand q2 0 0 0 0 0 0 0.01 0.01

Simulated annealing r2 0.63 0.68 0.64 0.70 0.73 0.82 0.83 0.94

q2 0.55 0.59 0.55 0.61 0.66 0.60 0.62 0.61

F-test 27.46 30.77 25.10 26.80 30.33 30.11 19.80 126.47

N 52.00 46.00 45.00 37.00 36.00 23.00 16.00 9.00

Pred_r2 0.92 0.68 0.90 0.29 �0.43 0.19 0.02 �0.42
r2 se 0.63 0.61 0.64 0.62 0.61 0.56 0.59 0.33

q2 se 0.70 0.70 0.73 0.72 0.70 0.84 0.88 0.90

Best rand r2 0.18 0.31 0.31 0.33 0.25 0.51 0.63 0.87

Best rand q2 0.03 0.18 0.15 0.12 0.02 0.20 0.33 0.69

Z score rand r2 12.64 9.36 8.25 9.37 9.99 6.21 3.58 2.46

Z score rand q2 6.78 7.67 8.11 8.11 8.75 3.52 1.90 1.79

a rand r2 0 0 0 0 0 0 0 0.01

a rand q2 0 0 0 0 0 0 0.05 0.05

PCR Stepwise r2 0.61 0.61 0.61 0.73 0.65 0.66 0.78 0.91

q2 0.57 0.58 0.58 0.70 0.62 0.61 0.72 0.85

F-test 78.67 71.60 68.89 47.08 65.34 41.99 51.28 78.83

N 52.00 46.00 45.00 37.00 36.00 23.00 16.00 9.00

Pred_r2 0.90 0.70 0.70 0.54 0.40 0.55 0.27 �1.48
r2 se 0.64 0.66 0.66 0.58 0.68 0.74 0.62 0.42

q2 se 0.66 0.68 0.69 0.61 0.72 0.79 0.70 0.55

Best rand r2 0.11 0.21 0.19 0.28 0.21 0.24 0.46 0.90

Best rand q2 0.05 0.12 0.10 0.16 0.13 0.12 0.31 0.81

Z score rand r2 24.13 19.37 17.85 12.05 14.18 11.56 9.02 4.28

Z score rand q2 21.04 18.82 17.58 10.66 13.40 9.96 7.47 3.65

a rand r2 0 0 0 0 0 0 0 0

a rand q2 0 0 0 0 0 0 0 0

Genetic algorithm r2 0.52 0.43 0.56 0.65 0.60 0.51 0.64 0.66

q2 0.46 0.33 0.51 0.58 0.52 �0.10 0.47 �1.49
F-test 26.73 16.71 26.88 32.97 25.23 10.41 11.58 14.01

N 52.00 46.00 45.00 37.00 36.00 23.00 16.00 9.00

Pred_r2 0.92 0.51 0.78 0.66 0.15 0.58 0.22 �2.12
r2 se 0.72 0.81 0.71 0.66 0.74 0.91 0.84 0.84

q2 se 0.76 0.88 0.75 0.72 0.82 1.37 1.01 2.31

Best rand r2 0.17 0.27 0.22 0.32 0.27 0.53 0.56 –

Best rand q2 0.07 0.19 0.09 0.19 0.14 0.17 0.42 0.37

Z score rand r2 14.05 7.62 11.20 10.52 9.99 4.29 4.10 –

Z score rand q2 13.16 3.42 9.61 8.59 9.42 0.54 3.20 1.11

a rand r2 0 0 0 0 0 0 0 99.00

a rand q2 0 0 0 0 0 99.00 0 99.00

Simulated annealing r2 0.63 0.64 0.68 0.67 0.71 0.71 0.80 0.78

q2 0.56 0.57 0.61 0.58 0.61 �0.08 0.69 0.50

F-test 28.38 25.62 29.74 22.32 26.46 15.61 16.87 25.99

N 52.00 46.00 45.00 37.00 36.00 23.00 16.00 9.00

Pred_r2 0.89 0.76 0.75 0.51 0.36 �0.58 �0.00 �4.92
r2 se 0.63 0.65 0.61 0.66 0.64 0.72 0.63 0.67

q2 se 0.69 0.70 0.68 0.74 0.74 1.40 0.81 1.02

Best rand r2 0.23 0.33 0.31 0.33 0.25 0.56 0.60 –
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Table 3 (continued)

Regression

method

Feature

selection

method

Radius

Parameter 0.9 1.6 1.7 1.9 2 3 4 5

Best rand q2 0.14 0.16 0.18 0.14 0.04 0.18 0.39 0.51

Z score rand r2 12.46 10.35 9.40 8.97 12.15 5.91 4.44 –

Z score rand q2 7.27 10.34 5.67 8.82 3.69 1.26 3.98 3.50

a rand r2 0 0 0 0 0 0 0 99.00

a rand q2 0 0 0 0 0 99.00 0 0

MLR= multiple linear regression, PCR= principal component regression, PLS = partial least squares, N= number of molecules in the train

set, r2 = coefficient of determination, q2 = cross-validated r2, pred_r2 = r2 for external test set, Z score q2 = the Z score calculated by q2 in the

randomization test, Z score r2 = the Z score calculated by r2 in the randomization test, best rand q2 = the highest q2 value in the randomization

test, best rand r2 = the highest r2 value in the randomization test, r2 se = standard error of squared correlation coefficient, q2 se = standard

error of cross-validated square correlation coefficient, a rand q2 and a rand r2 = the statistical significance parameter obtained by the ran-

domization test.

QSAR study of the non-peptidic inhibitors of procollagen C-proteinase 807
where l is the average value of q2 for random data sets and h is
the q2 value for the actual data set, and r is its standard devi-
ation calculated for various Y set using models build by differ-
ent random data sets.

The probability (a) of significance of randomization test is
derived by comparing Z score value with Z score critical value
as reported in Table 2 (Shen et al., 2003), if Z score value is less

than 4.0; otherwise it is calculated by the formula as given in
Table 2. If the Z score is higher than the tabulated values of
Zc (Table 2), one concludes that at the level of significance that

corresponds to that Zc should be accepted. In this case, it is
concluded that the result obtained for the actual data set is sta-
tistically much more significant than the results obtained for

random data sets at a given level of significance. For example,
a Z score value greater than 3.10 indicates that there is a
probability (a) of less than 0.001 that the QSAR model
constructed for the real data set is random. The randomization

test suggests that all the developed models have a probability
of less than 1% that the model is generated by chance
(Table 3).
3. Results and discussion

In the present study, some novel non-peptidic procollagen C-

proteinase inhibitors (Table 1) were examined using QSAR
study. Acceptance criteria of dissimilarity value were checked
and radii of 0.9, 1.6, 1.7, 1.9, 2, 3, 4, and 5 were used in selec-

tion of train and test sets. At any radius, MLR, PCR, and PLS
methodologies based on various feature selection methods viz.
SW, GA and SA were investigated. The obtained statistical

parameters in different methodologies at each radius have been
shown in Table 3. Some statistically significance 2D QSAR
models based on the statistical parameters were selected for
discussion.

Model 1 (MLR–SA):

pIC50 ¼ 4:1718�0:8293ð�0:1643ÞðTN S 4Þþ0:4929ð�0:1555ÞðchiV5Þþ
1:4048ð�0:2374ÞðTNN 2Þ�0:0907ð�0:0670ÞðSsCH3E� indexÞ

Model 2 (PLS–SW):

pIC50 ¼ 3:7310þ 0:2754ðT C N 3Þ þ 0:1876ðT N O 7Þ
� 0:4553ðT N S 4Þ
Model 3 (PCR–SA):

pIC50 ¼ 1:4006þ 0:4594ðchiV3Þ � 0:2630ðT O O 5Þ
� 0:7145ðT O S 3Þ þ 1:0664ðSdssCcountÞ

For the selection of the most significant model the internal
predictively (q2) and external predictively (pred_r2) should be

considered. As the Table 3 shows, as the dissimilarity value
(radius) increases, the number of molecules in train set (N)
decreases and the number of molecules in test set increases.
At low radius, the number of molecules is large in a train

set, so q2 will be low and pred_r2 will be high. At large radius,
the number of molecules is low in a train set, so q2 will be high
and pred_r2 will be low. Thus there is a trade-off between q2

and pred_r2. At optimum radius the values of q2 and Pred_r2

are acceptable. The statistically best significant model (Model
1) was obtained by MLR-SA methodology at a radius of 1.6

for PCP inhibitors. This model with a coefficient of determina-
tion (r2) = 0. 71 can well approximate the real inhibitor activ-
ities. Cross-validated q2 of this model, 0.64, indicates good
internal predictive power of the model. External validation

of the model (pred_r2 = 0.85) showed that the model can well
predict activity of new PCP inhibitors. The developed MLR–
SA model reveals that the descriptor chiV5 (atomic valence

connectivity index (order5)) plays the most important role
(�48%) in determining PCP inhibitor activity. It suggests that
increase atomic valence connectivity index is favorable for the

activity. The next important feature that positively influences
the activity is T_N_N_2 (�12%) (count of number of
Nitrogen separated from any other Nitrogen atom by 2 bonds

in a molecule). The rest influential descriptors are T_N_S_4
(�14%) (count of number of Nitrogen separated from any
Sulfur atom by 4 bonds in a molecule), and SsCH3E-index
(�26%) (Electrotopological state indices for number of –

CH3 group connected with one single bond) which are inver-
sely proportional to the activity. The next statistically best sig-
nificant model is model 2 that developed by PLS–SW at a

radius of 1.6. The model explains 72% (r2 = 0.72) of the total
variance in the training set as well as it has internal (q2) and
external (pred_r2) predictive ability of �67% and �71%
respectively. As it is clear from the model T_C_N_3 (count
of number of Carbon separated from any Nitrogen atom by
3 bonds in a molecule) plays the most important role
(�60%) in determining activity which is positively correlated.



Table 4 Experimental and predicted activities of some new PCP inhibitors (test set).

Compound Exp. pIC50 Model-1 (MLR–SA) Model-2 (PLS–SW) Model-3 (PCR–SA)

Pred. pIC50 Res. Pred. pIC50 Res. Pred. pIC50 Res.

5 4.16 4.35 0.19 4.38 0.22 4.19 0.03

6 4.74 4.46 �0.28 4.10 �0.64 4.46 �0.28
7 5.52 4.86 �0.66
8 5.35 5.33 �0.02 5.38 0.03

9 6.05 5.36 �0.69 5.11 �0.94 5.14 �0.91
11 5.00 5.29 0.29 5.48 0.48 4.85 �0.15
18 4.54 4.34 �0.20 4.38 �0.16 4.45 �0.09
28 5.64 5.27 �0.37 5.30 �0.34 5.28 �0.36
49 7.03 7.07 0.04 6.95 �0.08 6.85 �0.18
50 6.46 6.99 0.53

Table 5 Experimental and predicted activities of some new PCP inhibitors (train set).

Compound Exp. pIC50 Model-1 (MLR–SA) Model-2 (PLS–SW) Model-3 (PCR–SA)

Pred. pIC50 Res. Pred. pIC50 Res. Pred. pIC50 Res.

1 5.00 4.07 �0.93 4.38 �0.62 4.30 �0.70
2 3.46 4.12 0.66 3.83 0.37 3.91 0.45

3 4.80 4.42 �0.38 4.38 �0.42 4.31 �0.49
4 5.55 4.67 �0.88 4.93 �0.62 5.17 �0.38
7 5.52 5.25 �0.27 5.38 �0.14
8 5.35 4.98 �0.37
10 4.55 5.21 0.66 5.48 0.93 4.72 0.17

12 5.31 5.32 0.01 5.21 �0.10 5.01 �0.30
13 3.95 3.96 0.01 4.10 0.15 4.31 0.36

14 4.47 4.44 �0.03 4.38 �0.09 4.34 �0.13
15 3.78 4.07 0.29 3.83 0.05 4.26 0.48

16 4.14 4.26 0.12 4.38 0.24 4.33 0.19

17 4.74 4.37 �0.37 4.29 �0.45 4.61 �0.13
19 4.17 4.50 0.33 4.38 0.21 4.51 0.34

20 4.72 4.52 �0.20 4.38 �0.34 4.45 �0.27
21 3.99 4.93 0.94 4.93 0.94 4.90 0.91

22 4.09 4.59 0.5 4.56 0.47 5.27 1.18

23 5.77 4.84 �0.93 5.11 �0.66 4.98 �0.79
24 6.00 5.79 �0.21 5.38 �0.62 5.44 �0.56
25 5.09 5.31 0.22 5.66 0.57 5.07 �0.02
26 5.77 5.15 �0.62 5.38 �0.39 5.00 �0.77
27 6.00 5.27 �0.73 5.30 �0.70 5.28 �0.72
29 4.96 5.42 0.46 5.66 0.70 5.29 0.33

30 4.64 5.61 0.97 5.66 1.02 5.75 1.11

31 4.38 5.22 0.84 5.30 0.92 5.42 1.04

32 3.78 4.74 0.96 4.83 1.05 4.13 0.35

33 5.17 5.15 �0.02 5.02 �0.15 5.05 �0.12
34 4.26 4.26 0.00 4.01 �0.25 4.38 0.12

35 5.66 5.45 �0.21 5.11 �0.55 4.99 �0.67
36 6.00 5.51 �0.49 5.48 �0.52 6.22 0.22

37 7.10 6.85 �0.25 7.15 0.05 6.44 �0.66
38 6.40 6.91 0.51 6.58 0.18 6.42 0.02

39 5.15 5.30 0.15 5.49 0.34 6.46 1.31

40 6.39 5.67 �0.72 6.40 0.01 6.85 0.46

41 6.33 6.04 �0.29 6.40 0.07 6.43 0.10

42 6.54 5.57 �0.97 5.67 �0.87 5.89 �0.65
43 5.04 5.18 0.14 4.84 �0.20 4.92 �0.12
44 4.77 5.04 0.27 5.11 0.34 5.44 0.67

45 5.33 4.81 �0.52 4.94 �0.39 4.70 �0.63
46 4.89 5.63 0.74 5.40 0.51 5.38 0.49

47 4.85 4.87 0.02 4.94 0.09 4.9 0.05

48 5.03 5.65 0.62 5.12 0.09 4.75 �0.28
50 6.46 6.98 0.52 7.14 0.68

51 7.38 7.14 �0.24 6.95 �0.43 7.05 �0.33
52 6.52 7.15 0.63 6.95 0.43 7.00 0.48

53 8.00 7.13 �0.87 6.95 �1.05 6.97 �1.03
54 7.22 6.75 �0.47 6.40 �0.82 6.48 �0.74

808 A. Khazaei et al.



QSAR study of the non-peptidic inhibitors of procollagen C-proteinase 809
T_N_S_4 (count of number of Nitrogen separated from any
Sulfur atom by 4 bonds in a molecule) (�20%) and
T_N_O_7 (�20%) (count of number of Nitrogen separated

from any Oxygen atom by 7 bonds in a molecule) which are
negatively and positively correlated, respectively. These
descriptors suggest that decrease and increase the T_N_S_4

and T_N_O_7 of the compounds will lead to decreased and
increased pIC50, respectively. The last model (Model 3) was
developed by PCR–SA at a radius of 1.7. Model 3 has a cor-

relation coefficient (r2) of 0.68 which can explain 68% of the
variance in the observed activity values. Internal and external
validations are 0.61 and 0.75, respectively. chiV3 (�46%)
(atomic valence connectivity index (order 3) and SdssCcount

(�40%) (total number of carbons connected with one double
and two single bond) have the most positive effect on pIC50.
T_O_O_5 (count of number of Oxygen separated from any

other Oxygen atom by 5 bonds in a molecule) and T_O_S_3
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Figure 1 Predicted (blue) versus experimental values (red) of

biological activity: (a) MLR–SA, (b) PLS–SW, and (c) PCR–SA.
(count of number of Oxygen separated from any Sulfur atom
by 3 bonds in a molecule) which are inversely correlated have
(�10%) and (�4%) contribution in the PCP inhibitors activ-

ity, respectively. After validation the mentioned models using
statistical parameters the activity of molecules in train and test
set was predicted and compared with experimental values

which have been shown in Tables 4 and 5 and Fig. 1. The dif-
ference between predicted and experimental values (Residual)
of the biological activities has been shown in Fig. 2. As it is

clear from Fig. 2 the Residuals are small enough which implies
that the obtained models can be used to predict the activity of
new compounds with PCP-inhibitors property.

Although descriptors have an important role in identifying

relationship with the activity, the exact interpretation of the
conventional QSAR models has always been a challenging
task. These models do not clearly specify the site at which

modification is required in the molecules. For this purpose,
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Figure 2 Residual plot between predicted and experimental

values: (a) MLR–SA, (b) PLS–SW, and (c) PCR–SA.
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3D-QSAR models such as CoMFA have played a vital role
(Cramer et al., 1988). The 3D-QSAR descriptors are steric
and electrostatic fields calculated at the grid points generated

around aligned set of molecules. As the descriptor pool is very
large, 3D-QSAR models are generated by using regression
methods such as Partial Least Squares (PLS) method, which

can reduce the dimensionality. The 3D-QSAR models can pro-
vide clues for designing new molecules by specifying areas
along with its steric and electrostatic requirements of the mole-

cules. However, 3D-QSAR method has some limitation. Two
of the major limitations of this method are its dependency
on molecular alignment and conformers chosen for the align-
ment. This aspect becomes vital when there is not any informa-

tion about bio-active conformation or when the molecular
framework is not rigid. Recently Fragment based QSAR
(Group based QSAR (G-QSAR)) has been developed which

provides a method for better understanding of the structure
activity relationship both in terms of identifying important
chemical modifications at specific substitution sites and also

by providing a mathematical model for the prediction of the
activities of the new molecules. The site specific clues along
with the interpretation of descriptors provided by G-QSAR

will help medicinal chemists to design better molecules
(Ajmani et al., 2009).
4. Conclusion

In conclusion, some novel sulfonamide derivatives as PCP
inhibitors were studied by QSAR. The developed models
reveal some useful structural information associated with inhi-

bitory concentration. Sphere exclusion method was used to
classify data into categories of train and test set. The generated
models were analyzed and validated for their statistical signif-

icance, internal and external prediction power. QSAR study
reveals descriptors which play important role in the biological
activities of PCP inhibitors. Alignment Independent (AI) and

Atomic valence connectivity index (chiv) are subclasses of
physicochemical descriptors that have the greatest effect. The
derived models can be useful in designing and synthesis of

some new PCP inhibitors that can be used for treatment of
fibrotic conditions.
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