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KEYWORDS Abstract Topological indices as a molecular descriptors are important tools in (QSAR)/(QSPR)
Entropy; studies. The graph entropies with topological indices inspired by Shannon’s entropy concept
Zagreb type indices; become the information-theoretic quantities for measuring the structural information of chemical
Fourth Atom Bond Connec- graphs and complex networks. The graph entropy measures are playing an important role in a vari-
tivity index; ety of problem areas including, discrete mathematics, biology, and chemistry. Our contribution is to
Fifth Geometric Arithmetic explore graph entropies that are based on a novel information functional, which is the number of
index; vertices of different degree together with the number of edges between different degree vertices.

Sanskruti index;
Titanium difluoride;
Cuprite

In this paper, we study the chemical graph of crystal structure of titanium difluoride TiF, and
crystallographic structure of cuprite Cu, 0. Also, we compute entropies of these structures by mak-
ing a relation of degree based topological indices namely first redefined Zagreb index, second rede-
fined Zagreb index, third redefined Zagreb index, fourth Atom Bond Connectivity index, fifth
Geometric Arithmetic index, Sanskruti index with the help of information function.
© 2020 Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction the chemical applications of graph theory. These properties
can be characterized by certain graph invariants referred to
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chemistry, mathematics and information science. It examines
Quantitative structure-activity relationship (QSAR) and
Quantitative Structure-Property Relationship (QSPR) that
are utilized to predict the bioactivity and physiochemical prop-
erties of chemical compounds (Wu et al., 2015).

Let G be a graph with V(G) be the vertex set and E(G) be the
edge set of G. The degree &(r) of a vertex r is the number of edges
of G incident with vertex r. The length of a shortest path in a graph
G is a distance d(r, s) between r and s. If G is a graph with p vertices
and ¢ edges, then we say the order of G is p and the size of G is ¢. A
graph of order p and size ¢ is addressed as (p, ¢)-graph.

In chemical graph, the vertices represent atoms and edges
refer as the chemical bonds in underlying chemical structure.
A topological index is a numerical value that is computed
mathematically from the molecular graph. It is associated with
chemical constitution indicating for correlation of chemical
structure with many physical, chemical properties and biolog-
ical activities. The exact formulas of topological indices for
chemical graphs have been computed in (Siddiqui et al.,
2016; Siddiqui et al., 2016). For further detail of application
point see (Gao et al., 2017; Imran et al., 2018).

The concept of entropy was introduced first in Shannon’s
famous paper (Shannon, 1948) as ““ The entropy of a probabil-
ity distribution is known as a measure of the unpredictability
of information content or a measure of the uncertainty of a
system”. Later, entropy was initiated to be applied to graphs
nd chemical networks. It was developed for measuring the
structural information of graphs and chemical networks. In
1955, Rashevsky, (Rashevsky, 1955) introduced the concept
of graph entropy based on the classifications of vertex orbits.
Recently, graph entropies have been widely applied in many
different fields, such as chemistry, biology, ecology and sociol-
ogy (Dehmer and Graber, 2013; Ulanowicz, 2004).

The graph entropy measures that associate probability distri-
butions with elements (vertices, edges, etc.) of a graph can be clas-
sified as intrinsic and extrinsic measures. There are several
different types of such graph entropy measures (Mowshowitz
and Dehmer, 2012). The degree powers are extremely significant
invariants and studied extensively in graph theory and network
science, and they are used as the information functionals to
explore the networks (Cao et al., 2014; Cao and Dehmer, 2015).
Dehmer introduced graph entropies based on information func-
tionals, which capture structural information, and studied their
properties (Dehmer, 2008; Dehmer et al., 2012). For more expan-
sive research, Estrada et.al proposed a physically-sound entropy
measure for networks/graphs (Estrada and Hatano, 2007) and
studied the walk-based graph entropies (Estrada, 2010).

2. Application of degree based entropies

Shannon’s seminal work (Shannon, 1948) in the late nineteen-
forties marks the starting point of modern information theory.
Following early applications in linguistics and electrical engi-
neering, information theory was applied extensively in biology
and chemistry, see, (Morowitz, 1953; Quastler, 1954). Here,
the main novelty was the idea of considering a structure as
an outcome of an arbitrary communication (Bonchev, 2003).
With the aid of this insight, Shannon’s entropy formulas
(Shannon, 1948) were used to determine the structural infor-
mation content of a network (Sol and Valverde, 2004). As a
result, this method has been used for exploring living systems,

e.g., biological and chemical systems by means of graphs.
These applications are closely related to the work of
Rashevsky (1955) and Trucco (1956). In what follows, we
review in chronological order graph entropy measures that
have been used for studying biological and chemical networks.

Moreover entropy measures for graphs have been widely
applied in biology, computer science and structural chemistry,
see, (Dehmer and Mowshowitz, 2011). Broadly speaking, the
applications for entopic network measures range from quanti-
tative structure characterization in structural chemistry or soft-
ware technology to explore biological or chemical properties of
molecular graphs. We emphasize that the just mentioned appli-
cations relate to solve an underlying data analysis problem,
e.g., a clustering or classification task. However, the so-called
structural interpretation needs to be investigated as well. This
calls to examine what kind of structural complexity does the
measure detect. This problem is intricate as it is not clear on
which graph class the measure should be evaluated. We conjec-
ture that the introduced degree-based entropy can be used to
measure network heterogeneity. Similar entopic measures
which are based on vertex-degrees to detect network hetero-
geneity have been introduced by Sol and Valverde (2004)
and Tan and Wu (2004).

3. Research aim and methodology

Our aim in this article, is to discuss the chemical graph of crys-
tallographic structure of cuprite Cu,O[m, n, f] and crystal struc-
ture of titanium difluoride TiF,[m,n,t]. Also, we compute
entropies of these structures by making a relation of degree
based topological indices namely first redefined Zagreb index,
second redefined Zagreb index, third redefined Zagreb index,
fourth Atom Bond Connectivity index, fifth Geometric Arith-
metic index, Sanskruti index with the help of information
function.

The methodology of this article is as follows. In Section 4,
we introduce the definition of degree based topological indices
of graph. In Section 5, we introduce the definition of degree
based and edge weight based entropy of Graph. In Section 6,
we discuss the crystallographic structure of Molecule
Cu,O[m, n, f] and compute the corresponding entropies. In Sec-
tion 7, we discuss the crystal structure of titanium difluoride
TiF,[m,n,t] and compute the corresponding entropies. In Sec-
tion 8, we present the comparisons of these computes results
for Cu,O. In Section 9, we present the comparisons of these
computes results for TiF,[m,n,]. In Section 10, we represent
the conclusion of this paper.

4. Degree based topological indices of graph

The modified version of the Zagreb indices were introduced by
Ranjini et al. (2013), namely, the redefined first, second and
third Zagreb index for a graph G as;

ReZGi(G) = Y
rseE(G)
ReZGy(G) = ) oL
rs€E(G)
ReZG3(G) = Y (E(r)E(s))(E(r) + E(s))

rs€E(G)
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The fourth version of atom bond connectivity index ABC, of a 1
. . ENTrez6,(G) = log (ReZG,(G)) —
graph G is introduced by Ghorbani and Hosseinzadeh (2010): rezc, (0) = log (Re2G:(G)) (ReZG,(G))
S, +5 ~2 srets) 114
o= 3 | TT [2050] ”
rs€E(G S S ,,5612!0) C(’) + 6(5)

where S" = Zr&eE(G)é(s) and SS = erEE((})é(r)'
The fifth version of geometric arithmetic index GA4s of a
graph G is introduced by Graovac et al. (2011) as:
24/S.S;
S, + S

GAs(G) =

rseE(G)
In 2016, Hosamani (2016) introduced the Sanskruti index S(G)
for a molecular graph G as:

so- 5 (55%)

rs€E(G)

5. Degree based and edge weight based entropy of graph

In 2014, Chen et al. (2014a) introduced the definition of the
entropy of edge weighted graph. For an edge weighted graph,
G = (V(G); E(G);Y(rs)), where V(G) , E(G) and y(rs) denote
the vertex set, the edge set and the edge weight of edge (rs),
respectively. Then the entropy of edge weighted graph is repre-
sented in Eq. (1).

Yy(r's) W (r'sh)
ENT,(G g log 1
W0 = V5 eE(G) EE Y(rs) EE Y(rs) M

o The Redefined first Zagreb Entropy

If Y (rs) = S50, then

N )
Z w(ls)f Z é(’,)gv(s)

rs€E(G) rs€E(G)

RCZG] (G)

Now Eq. (1) reduced in the following from and is called The
Redefined first Zagreb Entropy.

ENTgrez6,(G) = log (ReZG,(G)) —

<iog | TT [*055) ] R

rs€E(G)

o The Redefined Second Zagreb Entropy

If Y (rs) = 5#;‘*9"1, then

S u = Y AP

rs€E(G) HEE(G)

= ReZG,(G)

Now Eq. (1) reduced in the following from and is called The
redefined second Zagreb Entropy.

e The Redefined Third Zagreb Entropy

If y(rs) = (£(r)E()) (£(r) + &(5)). then
Do) = D (EMEE)Er) +&(s))

rs€E(G) rs€E(G)

Now Eq. (1) reduced in the following from and is called The
redefined third Zagreb Entropy.

ENTREZG3 (G) :log(R€ZG3(G))

~Tz® log[ [T [ctre)(e)+&(s))) e

rseE(G)

4

e The Fourth Atom Bond Connectivity Entropy

If (rs) = | /55%2, then

Zzp;s Z S+S ZfABC4(G)

rs€E(G rs€E(G

Now Eq. (1) reduced in the following from and is called The
Fourth Atom Bond Connectivity Entropy.

1

ENT 43¢,(G) (ABC4(G))

= log (ABC4(G)) —

x log H

rseE(G)

()

Sr+S5—2
:| SrSs

S, +S,—2
S, S,

o The Fifth Geometric Arithmetic Entropy

If y(rs) = 355", then
2v/S,S;
Do) =) T e =04s(0)
rs€E(G) rs€E(G) T 95

Now Eq. (1) reduced in the following from and is called the
Fifth Geometric Arithmetic Entropy.

1
(GAs(G))

x log H {2 SrSs [@ (6)
rs€E(G) Sr+Ss

ENT4(G) = log (GAs(G)) —
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e The Sanskruti Entropy

3
If Y (rs) = (Sf;;f;z) , then
S, xS \°
w = ¥ (255) =s)
)‘SEXE(:G) I‘SEXE(:G) S,— + SS -2

Now Eq. (1) reduced in the following from and is called the
Sanskruti Entropy.

3 [(sfw?)z]
S, x S,
e | 11 (5252 | 7

6. Crystallographic structure of Cu,O[m, n,

Among various transition metal oxides, Cu,O has attracted
large attention in recent years owing to its distinguished prop-
erties and non-toxic nature, low-cost, abundance, and simple
fabrication process (Chen et al., 2014b). Nowadays, the
promising applications of Cu,O mainly focus on chemical sen-
sors, solar cells, photocatalysis, lithium-ion batteries and catal-
ysis (Yuhas and Yang, 2009). The chemical graph of
Crystallographic structure of Cu,O described in Fig. 1 and
Fig. 2, see details in (Zhang et al, 2006). Let
G = Cu,O[m,n, 1] be the chemical graph of Cu,O with m x n
unit cells in the plane and ¢ layers. We construct this graph first
by taking m x n unites in the mn-plane and then storing it up in
t layers. The number of vertices and edges of Cu,O[m, n, 1] are
(m+1)(n+1)(¢+ 1) + Smnt and 8mnt, respectively.

To compute our result we make the partitions of the ver-
tices and edge. More preciously the vertex partition of
Cu,O[m, n, 1] based on degrees of each vertex is depicted in
Table 1. Also the edge partition of Cu,O[m,n,t] based on
degrees of end vertices of each edge are depicted in Table 2.

@ o—a P

[ © e,

a

Fig. 1

6.1. Results for crystallographic structure of CuyOlm, n,t|

In this section we computes the entropies of the crystallo-
graphic Structure of molecule Cu,O.

e The Redefined First Zagreb Entropy of Cu,Olm,n, t|

Now using Eq. (2), and Table 2, we computed the Rede-
fined first Zagreb entropy in the following way:

It is easy to see that the Redefined first Zagreb index by
using Table 2 is

ReZG\(G) =n+m+t— 3+ nm+ nt + mt + 6nmt
Since Cu,O[m, n, ] has three types of edges, So Eq. (2), with
Table 2 can take the form:

1

ENTrz6,(Cia0) =log(ReZGi(G)) ~ gz

S+

() +E(s) |:<,‘(r)<(\')
xlog H [cmsm}

rs€E (G)

{%} Eee

< 11

rs€E>(G)

ENTrez6,(Cuz0) = log(ReZG(G))
—m log [[(471 +4m+41-8) x (3) (7)]
X [(4nm +4nt+4mit — 8n—8m — 81+ 12))

x[4(2nmt —nm —nt —mt+n+m+1—1) x G)@]}

Now using the value of the Redefined first Zagreb index in
above equation, we obtained the exact value of Redefined first
Zagreb entropy in following expression.

(b)

~a

a

Crystallographic structure of Molecule Cu,O. (a) Structural characteristics of Cu and O atoms in the Cu,O lattice. The Cu,O

lattice is formed by interpenetrating the Cu and O lattices with each other. (b) Unit cell of Cu,0. Copper atoms are shown as small blue
spheres, and oxygen atoms are shown as large red spheres. In the Cu, O lattice, each Cu atom is coordinated with two O atoms, and each O

atom is coordinated with four Cu atoms.



On entropy measures of molecular graphs

6289

Table 1 Vertex partition of Cu,O[m, n, t] based on degrees of
each vertex.

&(r)  Frequency Set of
Vertices

1 dm+4n+4t—8 Vi

2 dmnt + 2mn +2mt + 2nt —4n —4m — 4t +6 V),

4 2nmt —nm —nt —mt+n+m—+1t— 1 V3

Table 2 Edge partition of Cu,O[m,n, ] based on degrees of
end vertices of each edge.

(&(r), &(s))  Frequency Set of
Edges
(1,2) dn+4m+ 4t —8 E|
(2,2) 4nm + 4nt + dmt — 8n — 8m — 8t + 12 E,
(2,4) 42nmt —nm —nt —mt+n+m+1—1) E;

ENTgrez6,(CuO) =log(n+m+t—3+nm+ nt+mt+ 6nmt)

3
log |:[(4n+4m+4t—8)>< ©) () ]]
T (nrmti—3nmtnt+mi+-6nmi)

_ log[(4nm+A4nt+4mi—8n—8m—81+12)]
(n+m+t—34+nm-+nt+mt+6nmt)

log [[4(2nm/—mn—nt—m/+n+m+l—1)>< (%) (%) ]:|

(n+m+t=3-+nm-+nt+-mt-+6nmt)

(b)
Fig. 2 Crystallographic structure of Cu,0[3,2,3].

e The Redefined Second Zagreb Entropy of Cu,O[m, n, |

Now using Eq. (3), and Table 2, we computed the Rede-
fined second Zagreb entropy in the following way:

It is easy to see that the Redefined second Zagreb index by
using Table 2 is

4 4 4 4 32

ReZG,(G) = 3T gm gt = gmt + ?nmt
Since CuyO[m, n, 1] has three types of edges, So Eq. (3), with
Table 2 can take the form:

ENTrez6,(Cur0) =log(ReZG,(G))

£(r)é(s)
1 E(r)és) [51;)75(\!]
T (ReZG,(G)) 10g|: H [E(I'HE(S)}

rs€Ep (G)

{ ) ] [ i) }
E(r)E(s EN+El) E(r)é(s) E(r+E(s)
< I [a‘ ] < 11 Lf(r)ﬂf(»‘)} }

rEB(G) 1S€E3(G)

3
= log (ReZG(G)) ~ gy log [[(4n +am+4—8) x (3) (2)}
X [(4nm +4nt +4mt — 8n — 8m — 8¢+ 12)]

x[4(2nmt —nm—nt —mt+n+m+1—1) x (%)G)]}

Now using the value of the Redefined second Zagreb index in
above equation, we obtained the exact value of Redefined sec-
ond Zagreb entropy in following expression.

ENTrez6,(Ctz0) = log (¢ —2nm — 4nt — 2mt + Znmi)

log |:[(4n+4m+4t—8) x (%) (%) ]}

4_4 4 4 32
(gfjnmfjmfgmﬂrjnmt)

_ log[(4nm+-4nt+4mi—8n—8m—81+12)]
(%{%nmf%ntfgmt#»%znmt)

log |:[4(2nmt7nnlfnrfmt+n+m+t7l)>< (%) (%) ]}

1 4 4 4 2
(jfjnm7§n17§ml+7nmr)
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e The Redefined Third Zagreb Entropy of Cu,O[m, n, |

Now using Eq. (4), and Table 2, we computed the Rede-
fined third Zagreb entropy in the following way:
It is easy to see that the Redefined third Zagreb index by
using Table 2 is
ReZG5(G) = 88n + 88m + 881 — 48 — 128nm — 128nt — 128mt
+ 384nmt

Since CuyO[m, n, 1] has three types of edges, So Eq. (4), with
Table 2 can take the form:

ENTrez6,(Cur0) =log(ReZG5(G))

1
T (ReZGy <c))

|: H [(E(rE@s))(& ()+é(s))][(é(r)i(»\))(i(')+5(»))]

rs€Ey (G)

x H [(f(r)é(s))(é(r‘)+é(s))]“‘:“)i(“))@("Hi(’s)”

rs€E>(G)
D)+ (8))]:|

< T &) (E(r) + &)
rs€E3(G)
=log (ReZG5(G)) — gz 10g [[(4n+4m+4t— 8) x (e)“)]

X [(4nm+4nt + 4mt — 8n — 8m — 81+ 12) x (16)"]
x[4(2nmt —nm—nt —mt+n+m+1—1) x (48)“8)]}

Now using the value of the Redefined third Zagreb index in
above equation, we obtained the exact value of Redefined third
Zagreb entropy in following expression.
ENTrez6,(CuO) =log (88n+88m+881—48 — 128nm
—128nt—128mt+384nmt)
B log[[(4n+4m—+4t—8) x (46656)]]
(88n+88m+ 881 —48 — 128nm — 128nt — 128mt + 384nmt)
log [(4nm+4nz+4mt—8n—8m—8t+12) X ((16)“‘”)]
~ (88n+88m+881—48 — 128nm — 128n1 — 128mt+384nmi)

log [[4(2nmt—nm —nt—mt+n+m-+1—1)x (48)(48)]}
 (88n488m+881— 48— 128nm— 128nt — 128m1 + 384nmi)

e The Fourth Atom Bond Connectivity Entropy of Cu,O[m, n, {]

The Table 3 shows the edge partition of the chemical graph
Cu,O[m, n, ] based on the degree sum of end vertices of each
edge.

Now using Eq. (5), and Table 3, we computed the fourth
atom bond connectivity entropy in the following way:

Table 3 Edge partition of Cu20[m, n, t] with m,n, ¢t > 2 based

on degree sum of end vertices.

(Ss, S;) Frequency Set of
Edges

(2,4) 4dm+4dn+4t—38 Ey

(4, 6) 4mn + 4mt + 4nt — 8m — 8n — 81 + 12 E;

(5.8)  4n+4m+4r—8 E;

(6, 8) 4mn + 4mt + 4nt — 8m — 8n — 8t + 12 Ey

(8, 8) 8mnt — 8mn — 8mt — 8nt + 8m +8n+ 8t —8 Es

It is easy to see that the fourth atom bond connectivity
index by using Table 3 is

ABC,(Cu20) :\/ﬁmnz+<%—\/ﬁ+z> (mn-+mt +nt)
424431420 4 6 (8)
+<2\/‘*¢8§+\/12+@74>(m+n+1)

Since Cu,O[m,n, 1] has five types of edges, So Eq. (5), with
Table 3 can take the form:

ENT.5c,(G) =log(ABCy) ~ ey [ H {\/ { ) }

rs€E) (G)

Sp+85—2
< 1 [ 55,

rs€E> (G) rseE3(G)
/5552 SreSy=2
% H 5452 [ f] % H ) [ kR ]
;85 S Sy
rs€E4(G) rs€Es(G)

<

ENT,5¢,(G ) =log(ABCy) — ey log [[(4/11+4n+4t8)>< (J%) ()}

L
X | (4mn+4mt+4nt —8m —8n— 81+ 12) x (J-)(”}

%)

-<4n+4m+4l78)x( {|>( E

X

58

X [(4mn+4mt+4nt78m78n78t+12) X (ﬁ)}

X (Smnt—811114—8mt—8nl+8m+8n+8,_8>X(\/%)( T)H

Now using the value of the fourth atom bond connectivity
index from Eq. (8), we obtained the exact value of fourth atom
bond connectivity entropy in following expression.

o
ENT.5c,(G) =log(ABCy) — e log |:|:(4W1+4n+4r— 8) x (%) (,)

1
T (4BCy) log

[ _(4mn+4ml+4nl 8m —8n—81+12) x (7) (TL) j|j|

Il g
— e log (4/1+4m+41—8)><( %)( )H

—apey log H(4mn+4mt+4m—8m—8n—8t+ 12) x (%)H

v

!
— timey 10g

(8mnt — 8mn — 8mt — 8nt +8m+8n+ 81— 8) x ( lz) (\/1:)”

e The Fifth Geometric Arithmetic Entropy of Cu,O[m, n, {|

Now using Eq. (6), and Table 3, we computed the fifth geo-
metric arithmetic entropy in the following way:

It is easy to see that the fifth geometric arithmetic index by
using Table 3 is:

GAs(G) = 8mnt+ (i—l— 86 _ 8) (mn 4+ mt + nt)

B VAT (9)
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Since Cu,O[m,n, 1] has five types of edges, So Eq. (6), with
Table 3 can take the form:

2./5755
ENTg4,(G) _log(GAS)—mlog{ H [@}[m

S)+S;
rs€Ey (G)

<[ T e

S48y
rs€ b (G) rse€E3(G)
2v/5rSs 2v/5rSs
< IT [xE= ] « [ 2= ]
S48 Sr+Ss
rs€E4(G) rs€Es(G)

ENTg4,(G) =log(GAs) — iy log [

(4m+4n+4t—8) x (¥) (()}

[ 28 (%ﬁ)}

x | (4mn+4mt+4nt — 8m — 8n — 81+ 12) x (7

~——

x| (4n+4m+4r—8) x (41@)(

)

3

' w)}

x | (4mn+4mt+4nt —8m —8n — 81+ 12) x (#)

x [(8mnt — 8mn — 8mt — 8nt + 8m+8n+ 8t —8)]]

Now using the value of the fifth geometric arithmetic index
from Eq. (9), we obtained the exact value of fifth geometric
arithmetic entropy in following expression.

ENTg4,(G) :log(GA5)—((l—imlogH(4m+4n+4t—8)>< (%5)( 5)]

~ 1 jog

@i (4mn+4mt+4nt —8m —8n — 81+ 12) x (%g)( ’

i (9
e log | | (4n+4m+41—8) x (41—@) }

—_1_log

(G4s)

[ SNl
(4mn + 4t +4nt — 8m — 8n — 81+ 12) (#)

— iy Lo [[(8mnt — 8 — 8mt — 8nt +8m + 81+ 81— 8)]]

o The Sanskruti Entropy of Cu,O[m,n, (|

Now using Eq. (7), and Table 3, we computed the Sanskruti
entropy in the following way:
It is easy to see that the Sanskruti index by using Table 3 is:

_262144mne 137292mn 137292mt  137292nt

(@) 343 343 343 343
118974696n 118974696 118974696m 55213740
456533 456533 456533 456533

Since Cu,O[m,n, ] has five types of edges, So Eq. (7), with
Table 3 can take the form:

Sexsg )3
5SSy z) }

ENTS(G) —log(S(G))—(S(‘G))Iog|: 11 [(%ﬂ [«

rs€E) (G)

< 11 [(smﬂ

rs€E> (G)

< 1T [(9)]

rs€E4(G)

[(s235)’]

ENTS(G) =10g(S(G)) 5y log [ (4m -+ 4n-+ 41— 8) x (8) |
X [(4mn +4mt+4nt —8m—8n—8t+12) x (27)<27)}
X [(4n+4m+4t—8) x (G000 (%)}

X {(4/11/1 +4mt +4nt —8m —8n—81+12) x (64)(64)}

X [(Smnt — 8mn — 8mt — 8ni+8m+8n+ 81 — 8) x (%) (Eﬂgx)H

Now using the value of the Sanskruti index, we obtained the
exact value of Sanskruti entropy in following expression.

dm-dn+41-8)x(8) V]|

ENTs(G) =log(S(G)) — e[l EO)

log [[(4mn+4mt+4m—8m—8n—8t+12) X (27)(27)H
(8(G))

64000

log { |:(4n+4m+4t—8)><(%)( [Ex) )]

(8(6))

log [ [(4mn-+4mi+4ni—8m—8n—81+12)x (64)]]
(S(G))

(32768)
log | | (8mnt—8mn—8mit—8nt+8m-+8n+81—8)x (%) 343
(8(6))

7. Crystallographic Structure of TiF;[m,n,t|

Titanium Difluoride is a water insoluble Titanium source for
use in oxygen-sensitive applications, such as metal production.
Fluoride compounds have diverse applications in current tech-
nologies and science, from oil refining and etching to synthetic
organic chemistry and the manufacture of pharmaceuticals.
The chemical graph of crystal structure of titanium difluoride
TiF>[m,n, 1] is described in Fig. 3, for more details see (Cotton
et al., 1999). Let G = TiF,[m,n,t] be the chemical graph of
TiF, with m x n unit cells in the plane and ¢ layers. We con-
struct this graph first by taking m X n unites in the mn-plane
and then storing it up in ¢ layers. The number of vertices
and edges of TiFy[m,n,t] are 12mnt+ 2mn+ 2mit + 2nt+
m+n+t+ 1 and 32mnt, respectively.

To compute our result we make the partitions of the ver-
tices and edge. More preciously the vertex partition of
TiF,[m,n, 1] based on degrees of each vertex is depicted in
Table 4. Also the edge partition of TiFs[m,n,t] based on
degrees of end vertices of each edge are depicted in Table 5.

7.1. Results for Crystallographic Structure of TiF,[m, n,t|

In this section we computes the entropies of the Crystal Struc-
ture of Titanium Difluoride TiF,[m,n, ).

o The Redefined First Zagreb Entropy of 7iF;[m, n, (|

Now using Eq. (2), and Table 5, we computed the Rede-
fined first Zagreb entropy in the following way:

It is easy to see that the Redefined first Zagreb index by
using Table 5 is

ReZG\(G)=1+m+n+t+2mn+2mt + 2nt + 12mnt

Since TiF>[m,n,t] has three types of edges, So Eq. (2), with
Table 5 can take the form:
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Ao 4. A Ao

(a)

(b)

Fig. 3  Crystal Structure Titanium Difluoride TiF>[m,n, 1], (a) represents unit cell of TiF>[m,n, ] with Ti atoms in red and F atoms in

green (b) crystal structure of TiF,[4,1,2].

Table 4 Vertex partition of 7iF,[m,n, ] based on degrees of
each vertex.

&(r)  Frequency Set of
Vertices

1 8 4

2 4m +4n+ 4t — 12 V)

4 8mnt + dmn + dmt + 4nt —4n—4m —4t+6 V3

8 4mnt —2(mn +mt +nt) +m+n+1t—1 Vy

E(r)é(s)
rs€Ey(G)

) +éls
ENToz6, (TiFs )=10g(ReZG|(G))—mlog{ II [“"”4“)][’

&) +EGs) N+l
€ +s) [EWJ} N+ [W]
« X1 L) I 1]

(r)els)

rs€E>(G) ) rs€E3(G)

E(r)+&(s
QU0 [ }
< 11 [smcf?s)]

rseE4(G)

ENTrz6,(TiF2) =10g(ReZG1(G)) ~ iz Yo [ [8) x ) @
<[S(m+n+1—3))x ()]
< [(16(mn+ mit+nt) — 16(m-+n -+ 1) +24) x (&) V]
x[(32mnt — 16(mit+ mn-+nt) +8(m+n+1) — 8) x (z)(%)]]

Table 5 Edge partition of TiF,[m,n, {] based on degrees of end
vertices.

(¢(r), &(s))  Frequency Set of
Edges

(1, 4) 8 E

(2, 4) 8(m—+n+1—3) E

4, 4) 16(mn + mt + nt) — 16(m + n + t) + 24 E5

(4, 8) 32mnt — 16(mt + mn+nt) +8(m+n+1) —8 E4

Now using the value of the Redefined first Zagreb index in
above equation, we obtained the exact value of Redefined first
Zagreb entropy in following expression.

ENTrgz6,(TiF>) =log(1+m+n+t+2mn+2mt+2nt+ 12mnt)

log [[(s)x(g) (3)]]

(14-m+-n+t-+2mn-+2mt4-2nt+12mnt)

log |:(8(m+n+1—3))><(%) G)]

(1-Fmpn-t4+-2mn-+2mi+-2nt+12mnt)

lo, - 1 (%)
e | (16(mn-+metnt)—16(m+n+1)+24)x (4)

(1-mtnt-t4-2mn-+ 2mi+-2nt+12mnt)

log |:[(32mm— 16(mt+mn+nt)+8(m-+n+1)—8)x (é) (%) ]:|

(14m+n-+t+2mn+2mi+2nt+12mnt)

o The Redefined Second Zagreb Entropy of 7iF,[m,n, {]

Now using Eq. (3), and Table 2, we computed the Rede-
fined second Zagreb entropy in the following way:

It is easy to see that the Redefined second Zagreb index by
using Table 2 is

. 16 32 32 32 256

ReZG,(TiF,) = 53 mn = ?mt - ?m‘ + Tmnz
Since Cu,O[m, n, ] has three types of edges, So Eq. (3), with
Table 2 can take the form:

ENTrezc, (TiFy) log(ReZGg(G))mlog{ II [;W‘)} e
rs€E (G)

¢ &(r)+E(s)
rs€Ex(G) rs€E3(G)

rCENG)
=log(ReZG,(G)) ——(R(,Zéz(g)) log [[(g) x (43) (%)]
x[(8(m+n+1-3) x )]

X[(16(mn +mt +nt) — 16(m+n+ 1) +24) x (2)*

&

x[(32mnt — 16(mt +mn+nt) +8(m+n+1) —8) x (§) <%)]]
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Now using the value of the Redefined second Zagreb index in
above equation, we obtained the exact value of Redefined sec-
ond Zagreb entropy in following expression.

ENTrez6,(TiF>) = log (3¢ —2mn — Zmt — Znt + ESmnt)

log [[(8)x(§) (%)]_

16_ 32 32 32 256,
(ﬁf7mnmethm+——mm‘)

log |:(8(m+n+l 3))><( )(%)“

(}(‘ Linn—2mi— xnl+7ﬁmm)

log [(16(nm+mt+nt)—l6(m+n+t)+24) X (Z)m}
(%7%/71"7%21‘)’1[7%)1!4»%)11”!)

log |:[(32mm‘7 16(mt+-mn-+nt)+8(m-+n+1)—8) x (%) (§) :|

(% }—}zmnf—mt S’Vl[‘FZDGVVIVl[)

e The Redefined Third Zagreb Entropy of TiF>[m, n, 1|

Now using Eq. (4), and Table 5, we computed the Rede-
fined third Zagreb entropy in the following way:

It is easy to see that the Redefined third Zagreb index by
using Table 5 is
ReZG;(TiF,) = 12288mnt — 992 + 1408m + 14081 + 1408¢

— 4096mn — 4096mt — 4096nt

Since CuyO[m, n, ] has three types of edges, So Eq. (4), with
Table 5 can take the form:

ENTrez6, (TiF>) =log(ReZG5(G))

~mzator| T €W+ e oo

r€E1 (G)

x H [(é(r)é(s))(i(r)+§(S))][(é(r)i("‘))(i(r){("'))}
rs€Er (G)

x H [(g’(r)g’(s))(ﬁ(r)+g'(s))]“‘:("m"))(é“)';”)ﬂ

rs€E3(G)
i(»‘))(i(")*i(»‘))]:|

=log(ReZG;(G))— Wlog [[(8) « (20)(20)]

x T e @) +am ™

rs€E4(G)

X[(8(m+n+1—3))x (48)*Y]
X [(16(mn-+mi+nt)—16(m-+n+1)+24) x (144)1*9]

x [(32mnt—16(mt+mn+nt)+8(m+n+1)—8) x (384)(384>]]

Now using the value of the Redefined third Zagreb index in
above equation, we obtained the exact value of Redefined third
Zagreb entropy in following expression.

ENTreze, (TiF,) = log (12288mnt — 992 + 1408m + 1408n

+1408¢ — 4096mn — 4096mt — 4096nt)

log [[(8)x (20) )]
- (12288mnt—992+1408m-+1408n-+14081—4096mn—4096mt—4096nt)
log [(8(m-+n+1-3))x (48) 4]
- (12288nmnt—992+1408m-+14081+14081—4096mn—4096mt—4096n1)

log [( 16(mn-+mit-+nt)—16(m-+n-+1)+24) x(m)(”‘”]
- (12288mnt—992+1408m-+1408n-+ 14081 —4096mn—4096mt—4096nt)

og [[(32mnt—16(mt-+mn-+nt)+8(m-+n+1)-8) x (384) ™9 ]
- (12288mnt—992+1408m-+14081+14081—4096mn—4096mt—4096nr)

e The Fourth Atom Bond Connectivity Entropy of 7iF;[m, n, {]

The Table 6 shows the edge partition of the chemical graph
TiF,[m,n, ] based on the degree sum of end vertices of each
edge.

Now using Eq. (5), and Table 6, we computed the fourth
atom bond connectivity entropy in the following way:

It is easy to see that the fourth atom bond connectivity
index by using Table 6 is:

ABC(TiFy) = 2/t — (245 18 (o + mut + )
—i—(%—i—%a 16)(m—i—n-i—z) (10)
—46— & _‘_12\/_—_‘_\/_‘_’_4\/1_9'_’_8

Since TiF,[m,n,t] has six types of edges, So Eq. (5), with
Table 6 can take the form:
ENT5¢,(G) =log(ABCy)

1{ I [

rs€E (G)

Sp+8;-2
< I1 [ 5.5,
1S€E3(G) 15€E4(G)
X 3 X
rSEES(G) 15€Eq(G)

ENT ipc,(G) =10g(ABCy)— ks log H(@X (\/\/1—1’5?

P 5

x[(16(mn+mt+m)—16(m+n+t )+8) x 1) }

X

(32mnt — 16(mn+ mt + nt) +8 wﬁ

X
<€

V3B

=(8(m+n+t72)) x (Q)(“)”

X

Now using the value of the fourth atom bond connectivity
index from Eq. (10), we obtained the exact value of fourth
atom bond connectivity entropy in following expression.

=log(4BC:) - k- H<8>x( )(27‘)H

ENT 45¢,(G)

el
~cateloe | |16)x ((/3%) (F)H

—mlogH(lé(mn+mr+nr)716(m+n+t)+8)><(%)G‘)H
,m]og (32mm‘7Ié(mn+mt+nt)+8)(\/%)( %)H

~ ey log (8(m+n+t—2))><(§)(%)H

Table 6 Edge partition of TiF>[m,n,t],m,n,s
degree sum of end vertices of each edge.

> 2 based on

(Ss, Si) Frequency Set of edges
4, 13) 8 E
(8, 18) 8m+n+1-3) E
(13, 16) 16 E
(16, 18) 16(mn+mt +nt) —16(m+n+1)+8 E,
(16, 24)  32mnt — 16(mn + mt + nt) + 8 Es
(18, 32)  8(m+n+1-2) Eg




6294 S. Manzoor et al.

244 4 2
8101214 5 K g1a1210 8 6
n m

(a) (b)

2 4 2
6 R|o|2]4]618161412]0864
n m

(c)
Fig. 4 (a) The Redefined first Zagreb entropy, (b) The Redefined second Zagreb entropy, (c) The Redefined third Zagreb entropy.
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Fig. 5 (a) The ABCy entropy, (b) The GAs entropy, (c) The Sanskruti entropy.
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o The Fifth Geometric Arithmetic Entropy of 7iF,[m,n, (]

Now using Eq. (6), and Table 6, we computed the fifth geo-
metric arithmetic entropy in the following way:

It is easy to see that the fifth geometric arithmetic index by
using Table 6 is:

_ 64\/5(_)mnt + <|912_7ﬁ 3zf) (mn + mit + nt)
,(%ﬁ 45;;) (m+n+1)+%8

16\/— 3104V13 _ 12192
+5 0 325

GAs(G)

Since TiF,[m,n,t] has six types of edges, So Eq. (6), with
Table 6 can take the form:

ENTGAS(G) = log (GAs) —

[z s,‘sg]
/S Sr+Ss
(0115) log{ H [zg/ig]

rs€E (G)

X

I [
Sp+Ss

S+S,
rs€E> (G) rs€E3(G)
2 SrSs 2+/SrSs
y ws\ y 2/Si5s I:Sr*Ss
I 5% II 5%
rs€ E4(G) rseEs(G)
2,/575;
s ]
< 11 3%
rs€Eq(G)

ENTg4,(G) =log(GAs)—

X

[ x [ (16) x (8\2/91_3 (T)}
{16m”+mt+”’>_16("1+n+t)+8) 21*‘75)(%)}

(32mnt — 16(mn+mt +nt) +8) x («)\5/5) (%)}
[8(7"+n+172)) (g)(?)H

Now using the value of the fifth geometric arithmetic index
from Eq. (9), we obtained the exact value of fifth geometric
arithmetic entropy in following expression.

(8)x (4F) (;)H

< (1) @]

ENTg4,(G) =log(GAs)—

(:45 log

ol log (16) x (W (e

s
g{
{
ol

(8(m+n+1-3)

«
5 \/
S —

—

123
{16 mn+mt+nt)—16(m+n+1)+8) x (zf)(”)H
o) (3
log | | (32mnt — 16(mn+ mt +nt) +8) x ( )

4
=
[
[E—

O]

[(8(111+n+t—
e The Sanskruti Entropy of 7iF;[m, n, ]
Now using Eq. (7), and Table 6, we computed the Sanskruti

entropy in the following way:
It is easy to see that the Sanskruti index by using Table 6 is:

_ 226492416 33242832 46760544 ,, . 113246208
5(6) oss0  mnt taso N+ Tegsy Nl 650 M
_ 187258525708696
+3888m -+ 38881 + 38887 — LTINS

Since TiF,[m,n,t] has six types of edges, So Eq. (7), with
Table 6 can take the form:

ENTs(G )=log(S(G)) — ey log [..KI;I(G) [(%ﬂ ()]
T[] T[]

< TI [(Sﬁ; 2”[(;:;;% H)[(Sﬁf ) ][(ﬁxzz‘:f]

rs€E4(G rsek:

x 11 [(%)? [(s2s, \}:|

rs€Eq (G)

Table 7 Comparison of the Redefined Zagreb Entropies for
Cu,Om, n, 1.

[i’l’l7 n, l] ENTReZG| ENTR(,ZG2 ENTReZG;
[L,1,1] 0.22 0.41 0.22
2,2,2] 0.45 0.82 0.52
[3,3,3] 0.84 1.65 0.92
[4,4,4] 127 2.13 1.42
5.5, 5] 555 2.68 530

Table 8 Comparison of the ABC,;,GAs and Sanskruti S
Entropies for Cu,O[m, n, 1|.

[m, n, l] ENTABC4 E]VTGA5 ENTyg
[1,1,1] 1.32 121 112
2,2,2] 1.65 1.32 29
3,3,3] 1.84 2.45 3.32
[4,4,4] 2.87 3.53 442
5,5, 5] 260 468 452

Table 9 Comparison of the Redefined Zagreb Entropies for
TiF;[m,n,t].

[m, i, [] ENTR@ZGI ENTReZGz ENTR@ZG;
[1,1,1] 0.12 0.21 032
2,2,2] 0.35 0.92 0.92
3,3,3] 0.14 1.35 1.32
[4,4, 4] 1.37 2.83 1.82
5,5, 5] 2.63 2.78 2.12

Table 10 Comparison of the 4BC4,GAs and Sanskruti S
Entropies for TiF,[m,n, f].

[m, n, l] ENTABC4 E]VTGA5 ENTyg
[1,1,1] 1.42 161 1.72
2,2,2] 1.85 1.92 2.62
3,3,3] 2.84 235 3.82
[4,4,4] 3.57 3.43 4.62
5,5, 5] 423 498 492
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Fig. 6 (a) The Redefined first Zagreb entropy, (b) The Redefined second Zagreb entropy, (c) The Redefined third Zagreb entropy.
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Fig. 7 (a) The ABCy entropy, (b) The GAs entropy, (c) The Sanskruti entropy.
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ENT5(G) =10g(S(G)) 5y log H(S) x {(%)“](% }

X |(8(m+n+1-3))x [(16)3]“6)3]

7

x {(16(mn+mt+m‘) —16(m+n+1)+8) x {('#)3] (]“)l}

I

x | (32mnt — 16(mn + mt + nt) + 8) x [(‘1;492)3} (‘43)}

X [(8(m+n+t—2)) X [(12)3]“”]”
Now using the value of the Sanskruti index, we obtained the
exact value of Sanskruti entropy in following expression.
ENTS(G) = log(S(G))
52\3
log H:(S)x [(%)3] (15) ”
N (S(@)

log [ |:(8(m+n+t—3))>< [(16)3}“"’3] ]
(5(G))

o .
tog | [16)<[(%)’] ) ”
EE)

il q(#)
log | | (16(mn+mit+nt)—16(m+n+1)+8)x [(%) }

(8(6))

- e
log | | (32mnt—16(mn+mt+nt)+8)x [(%)3] ( 19) :| :|
(8(0))

log [ |:(8(m+n+t—2))>< [(12)3]“2’3] ]
(S(G))

8. Comparisons and discussion for Cu,O[m, n, ]

Since the degree based entropy has lot of application in differ-
ent branches of science, namely pharmaceutical, chemistry,
biological drugs and computer science. So the numerical and
graphical representation of these calculated results are helpful
to scientist. So in this section, we have computed numerically
all degree based entropies for different values of m,n,t for
CuyO[m, n, 1]. In addition, we construct Tables 7, 8 for small
values of m, n, t for degree based entropy to numerical compar-
ison for the structure of CuyO[m, n, t]. Now, from Tables 7, 8,
we can easily see that all the values of entropy are in increasing
order as the values of m, n, t are increases. The graphical repre-
sentations of computed results are depicted in Fig. 4 and Fig. 5
for certain values of m, n, t.

9. Comparisons and discussion for TiF;[m,n,t|

Since the degree based entropy has lot of application in differ-
ent branches of science, namely pharmaceutical, chemistry,
biological drugs and computer science. So the numerical and
graphical representation of these calculated results are helpful
to scientist. So in this section, we have computed numerically
all degree based entropies for different values of m,n, t for
TiF>[m,n, ). In addition, we construct Tables 9, 10 for small
values of m, n, t for degree based entropy to numerical compar-

ison for the structure of Cu,O[m, n, t]. Now, from Tables 9, 10,
we can easily see that all the values of entropy are in increasing
order as the values of m, n, t are increases. The graphical repre-
sentations of computed results are depicted in Fig. 6 and Fig. 7
for certain values of m,n, t.

10. Conclusion

In this paper, based on Shannon,s entropy and Chen et.al
entropy definitions, we study the graph entropies related to a
new information function. We introduces a relation between
the degree based topological indices with degree based entro-
pies. We computed the degree based entropies for crystallo-
graphic Structure of Copper Oxide Cu,O[m,n,t] and
Titanium Difluoride TiF;[m,n,f]. We also computed the
numerical values of these entropies in Tables and give the com-
parison between the degree based topological indices and
degree based entropies, which leads us to know the Physico-
chemical properties of these crystallographic Structure of Cop-
per Oxide Cu,O[m, n, ] and Titanium Difluoride TiF;[m,n, 1.

In future, we want to extended this idea other chemical
structures which explore the new direction of researcher in this
field.
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