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Abstract Data-driven machine learning (ML) methods are extensively employed for modeling and

simulation of highly complicated processes. ML techniques confirmed their great predictive capa-

bility compared to conventional techniques for modeling and management of non-linear relation-

ships between input and output parameters. Biofuels as renewable sources of energy are a

significant potential alternative to fossil fuels. Due to the non-linearity and complexity of biofuels

production processes and increasing energy conversion, accurate and fast modeling tools are neces-

sary for design and optimization of these processes. Hence, in this research, ML modeling tech-

niques were developed for simulation of biofuel production from energy conversion of Papaya

oil through transesterification process. In order to simulate and optimize the content Papaya oil

methyl ester (POME) production, Gaussian Process Regression (GPR), Multilayer perceptron

(MLP), and K-nearest neighbor (KNN) regression models, as well as adaptive boosting for ampli-

fication, were employed. The temperature of reaction, catalyst quantity, time of process, and metha-

nol to oil molar ratio were considered as the inputs of models while the POME yield was the model

output. The obtained results showed that the R2-score of 0.988, 0.993, and 0.994 were obtained for

Boosted MLP, Boosted GPR, and Boosted KNN, respectively, which demonstrate the high predic-

tive ability of these models. Also, the RMSE metric error rates of 9.8071, 4.8150, and 6.5180 cor-

responded to Boosted MLP, Boosted GPR, and Boosted KNN, respectively. We examined

performance using another metric, MAE: 8.38008, 2.3184, and 5.21954 errors were observed for

Boosted MLP, Boosted GPR, and Boosted KNN, respectively. The optimized POME production
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yield of 99.89% was observed at temperature of 62.5 �C, 6.47 min of reaction, catalyst quantity of

0.8125 wt% and methanol to oil molar ratio of 10.33. The obtained results of this study show that

the ML techniques are highly recommended for prediction of biofuels production as cost and time

saving methods.

� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Currently, more than 80% of the energy requirements are supplied by

fossil fuels all over the world (Johnsson et al., 2019; Abas et al., 2015).

Fossil fuels like natural gas, coal, and petroleum have some disadvan-

tages that limited their usage (Aghbashlo et al., 2021). Not only the

amount of these non-renewable energy resources are gradually reduced

but also the emissions of greenhouse gases lead to the global tempera-

ture rising (Deng et al., 2020; Shine et al., 2005). Therefore, there has

been a large deal of attention to alternative energy resources. Biofuels,

especially the biodiesel (fatty acid methyl ester (FAME)) have been

used as a good alternative because of advantageous like being non-

toxic, renewable, eco-friendly and biodegradable (Chopade et al.,

2012; Knothe, 2009; Ramı́rez-Verduzco et al., 2012). These promising

fuels can be produced in a transesterification reaction of a triglyceride

with an alcohol, which is catalyzed by a catalyst. Biofuels can be pro-

duced from different renewable oil sources such as animal fat, and veg-

etable oil (palm, papaya, corn. . .) (Liu and Zhang, 2023; Kamal

Abdelbasset et al., 2022; Sumayli and Alshahrani, 2023). The global

production of Papaya is at over 10 million tons per year, therefore,

underutilized seed oil from Papaya can be a very good source for bio-

fuel production (Agunbiade and Adewole, 2014. 2014.; Fuentes and

Santamarı́a, 2014).

Different homogeneous and heterogeneous catalysts can be used in

this process. Although homogeneous catalysts are more active, but

they are not very useful due to problems like separation complexity

and equipment corrosion (Liu et al., 2012; Tariq et al., 2012;

Georgogianni et al., 2009). In comparison, heterogeneous catalysts

are nontoxic and can easily separate from the reaction media. Apart

from the type and amount of catalysts, different parameters affect

the yield of transesterification process such as temperature, pH value,

time of reaction and the methanol to oil ratio (Pardal et al., 2010;

Sinha et al., 2008; Leung and Guo, 2006). Due to the nonlinearity

and complexity of these processes, from physical and chemical point

of view, an accurate, fast, and efficient modeling approach is required

for design, control, and optimization of these systems (Mackenzie,

2015; Saldana et al., 2012; Weichert et al., 2019; Zhang et al., 2020).

Data-driven machine learning (ML) methods can be useful tech-

nique for modeling and optimization of complex, multivariate, and

nonlinear systems which effectively reduce the quantity of tests and

the overall time and cost of processes. ML is a collection of tools

and techniques that automatically discover patterns from data with

no assumptions about the data’s structure. Neural networks, linear

models, support vector machines, decision trees, and randomized trees

are examples of ML approaches which had been used for data predic-

tion in many different areas. One of the strengths of machine learning

is that its strategies can develop non-linear correlations in data and

interactions between predictors. One fundamental application of

machine learning is regression tasks, and such a problem has been

defined in this study (Senders et al., 2018; Cherkassky and Ma,

2003). Adaboost is a boosting model as a subcategory of ensemble

model, like AdaBoost (Hastie et al., 2009) and gradient boosting

(Friedman, 2001), which are built on an ensemble of weak estimators

that are systematically appended to the ensemble (e.g., Neural net-

works, decision trees or other models). A weighted average of all the

base estimator’s outputs was used to estimate what kind of result to

expect. All of the remaining training samples are used to train the weak

learners that have gone before it, and the weighted average of all of
their outputs is used to teach them. The updated prediction error of

the developed model is calculated after incorporating each weak lear-

ner in order to determine the weight coefficient given to each weak

learner, which represents the contribution of that base learners to

the final prediction. (after adding the weak learner) (Friedman,

2001). A Gaussian Process (GP) is a random variable set where some

of them follow Gaussian distributions that are integrated together

(Sumayli and Alshahrani, 2023; Grbić et al., 2013). Gaussian Process

(GP) is commonly used as a fundamental stochastic process in geo-

statistics. It is used to directly represent Gaussian data and also serves

as a base for non-Gaussian methods like linear regression models. GP

regression is known for being both easy to implement and highly accu-

rate with high generality for small datasets (Rasmussen, 2003; Daemi

et al., 2019; Wang et al., 2019). MLPs are the most commonly

employed model of neural networks for making predictions in the

paradigm of supervised learning (Prechelt, 1996). The discussed neural

network structure is a crucial type among various artificial neural net-

works. It is comprised of multiple neuron units, where each unit serves

a distinct function. In contrast, a huge number of linked neurons can

solve nonlinear and challenging problems. It was typically composed

of input, output, and hidden layers. Through adjustment of the param-

eters and weights, these models can classify how inputs impact the out-

puts of the model (Zahavi and Levin, 1997). The kNNmethod is a type

of supervised learning approach. In supervised learning, a function

(the learner) is inferred from training data, which consists of a collec-

tion of examples (data points) (Bishop, 2006). Every individual data

point comprises of an input vector (instance) along with the corre-

sponding intended output value. The learner attempts to accurately

identify the output for unseen cases after learning from the training

set (Sumayli and Alshahrani, 2023).

In this study, the transesterification process for production of bio-

fuel from non-edible Papaya oil was analyzed using machine learning

method. The effect of different operating factors including methanol to

oil molar ratio, the reaction temperature, time of process, and catalyst

amount were evaluated on the production Papaya oil methyl ester

(POME) efficiency. Three different models (MLP, KNN, and GPR)

were used for modeling and simulation of this process. Previous study

indicated that these models are great tools for biodiesel optimization

(Sumayli and Alshahrani, 2023). Here, the models are boosted com-

pared to the neat models to implement them for the process optimiza-

tion. Also, the Adaboost was performed to improve these modeling

methods to better study the biodiesel production from Papaya oil from

computational point of view. The obtained results were compared, and

the optimum condition were evaluated for maximum production of

biofuel.

2. Dataset of process

Here we used a dataset on biodiesel production with values of
various operational parameters for predicting POME produc-

tion yield. It is crucial to note that these values were chosen
based on preliminary testing conducted prior to the major
experiments as reported by the source of data (Nayak and
Vyas, 2019). The data used in this study are the same as those

used in previous studies such as (Nayak and Vyas, 2019). In
this regression problem, four input variables were selected as

http://creativecommons.org/licenses/by-nc-nd/4.0/
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follows: temperature (represented by X1), the catalyst amount
(represented by X2), time (represented by X3), and methanol-
to-oil molar ratio (represented by X4). Also, the only output of

our regression problem is POME (Papaya oil methyl ester)
yield (represented by Y) (Sumayli and Alshahrani, 2023). In
this dataset, there are 30 data points, which are shown in

Fig. 1, the distribution of input and output variables.

3. Methodology

3.1. Gaussian process regression

The premise behind Gaussian processes regression (GPR)
models is that neighboring observations should exchange data
about one another. Gaussian processes are a way of defining a

prior probability distribution over functions in function space.
They extend the concept of a Gaussian distribution, with a
covariance matrix and a mean vector, to the setting of func-
tions. Gaussian processes are able to make predictions on

new data without the need for a validation step, as they incor-
porate past information about the data and functional rela-
tionships. This makes Gaussian process regression models

capable of finding the predictive distribution that corresponds
to a new test input. The Gaussian process is just a multivariate
Gaussian distribution (Rasmussen, 2003).

With respect to a given finite dataset consisting of n obser-

vations, D ¼ ½xi; yi�time
n
i¼1, xi is the input vector of the ith

instance and yi denotes the observation value of the ith
Fig. 1 Scatter plot of
instance, respectively. The random variables
fðx1Þ; fðx2Þ; :::; fðxnÞ follow a joint Gaussian distribution, as
depicted in equation (1):

fðxÞ GPðmðxÞ; kðx; x0ÞÞ ð1Þ
Here, mðxÞ denotes the mean function and kðx; x0Þ denotes

the kernel function, both of which have the mathematical

expressions in equations (2) and (3) (Huang et al., 2018):

m xð Þ ¼ E f xð Þ½ � ð2Þ

kðx; x0Þ ¼ E½ðfðxÞ �mðxÞÞðfðx0Þ �mðx0ÞÞ� ð3Þ
A general model of the GPR problem (equation (4)) can be

created by taking into account the noise in the measurements.

y ¼ fðxÞ þ f ð4Þ
3.2. Multilayer perceptron

The MLP model, short for Multilayer Perceptron, is a sort of
artificial neural network commonly employed for supervised
learning tasks such as classification and regression analysis

(Jain et al., 1996). The MLP algorithm has been widely applied
to address various machine learning problems in different
fields due to its ability to predict categorical and continuous

variables with high accuracy (Soltani Fesaghandis et al.,
2017). The MLP consists of layers of neurons, which are the
primary components. Each layer is made up of clusters of neu-

rons that take inputs from the layer below, process them using
data distribution.
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their activation function, and then transfer the output to the
layer above (Kamal Abdelbasset et al., 2022; Noriega, 2005).

Neurons are arranged in layers in the MLP algorithm,

where the input layer receives input, and the output layer gen-
erates output. To achieve optimal performance, certain param-
eters in a neural network must be adjusted, such as the solver

functions, activation functions, and the size of hidden layers
situated between the output and input layers (Kamal
Abdelbasset et al., 2022). These are considered hyper-

parameters and require fine-tuning. In the case of the MLP
model with a single output and single hidden layer, equation
(5) shows the output formula.

y
� ¼ d2ð

Xm
i¼1

ðwð2Þ
i d1ðXÞÞ þ bð2ÞÞX ¼

Xn

j¼1

ðxjw
ð1Þ
xj Þ þ bð1Þ ð5Þ

The predicted vector of the MLP model is represented by

the symbol y
�
, and it is determined based on the input feature

vectors, represented by xj. The weights linking the output layer
to the hidden layer are represented as w(2), whereas the weights
for the inputs linked to the hidden layer are indicated by w(1).
The output layer utilizes an activation function labeled as d2.
Also, m and n are the count of instances and characteristics
in the dataset correspondingly (Zhou et al., 2018). Neurons
in the hidden layer are activated by the d1 activation function,

and the b(1) and b(2) symbols stand for the bias vectors used in
the hidden layer and output layer, respectively. (Yang et al.,
2008).

Changes are made to the weights between each link in a
neural network to make it more accurate at predicting what
will happen. Backpropagation and batch gradient descent,

two popular learning methods, are used during training
(Hecht-Nielsen, 1992).

3.3. K-nearest Neighbor

The K-Nearest Neighbors (KNN) regression model is an easy
to understand method and utilizes the K nearest data points
(most similar in input features) in the training dataset to esti-

mate the value of a new observation. KNN regression is com-
monly used in a variety of applications, such as predicting
stock prices, estimating housing prices, and forecasting

weather patterns (Naghibi and Dashtpagerdi, 2017).
The KNN regression model operates by determining the

distance between a new observation and all the observations

present in the training data. The most common distance metric
used is the Euclidean distance, which is calculated as displayed
in equation (6).

d xi; xjð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp

k¼1 xik � xjk

� �2q
ð6Þ

Where, p stands for the count of input features, xik denotes
the value of the kth input feature for the ith observation, and xjk
stands for the value of the kth feature for the jth observation.

Once the distances are calculated, the KNN algorithm
selects the K neighbors that have the shortest distances. The
predicted value of the new observation is then calculated as

the average (or median) of the target variable values of these
K nearest neighbors.

One of the main advantages of KNN regression is its sim-

plicity and interpretability. However, selecting a suitable value
for K is crucial, as choosing too small or too large values may
result in over-fitting or under-fitting, respectively. Further-
more, the performance of KNN regression may suffer in
high-dimensional data or when the data has a complex struc-

ture (Bishop and Nasrabadi, 2006).

3.4. Adaptive boosting

As previously stated, the AdaBoost (Schapire, 2013) algorithm
is the most commonly used ensemble learning algorithm. Ada-
Boost’s distinguishing feature is that it builds a weak estimator

using the initial training data, then modifies the training data
distribution depending on prediction performance for the next
round of weak estimator training. It’s worth noting that in the

next step, the training samples with low forecasting perfor-
mance in the prior step will be given greater attention. Finally,
the weak estimators are combined with a strong estimator
using varied weights. The following is a description of the

mathematical basis and implementation method. Both classifi-
cation and regression can be done with AdaBoost. In the con-
text of a general regression task, the training data set H can be

written as shown in equation (7) (Strecht et al., 2015):

H ¼ X1;Y1ð Þ; X2;Y2ð Þ; � � � ; Xm;Ymð Þf g ð7Þ
where Xi;Yið Þði ¼ 1; � � � ;mÞ denotes the ith instance in the data-
set (training phase), also the variable m is the quantity of sam-

ples, Xi stands for the input data vector, and Yi represents the
output data value.

Then, using some special learning techniques, it may be uti-

lized to train a weak estimators (or weak estimator) G(X), and
the relative prediction error ei on each sample input can be rep-
resented in equation (8):

ei ¼ L Yi;G Xið Þð Þ ð8Þ
here, L reflects the loss function, which typically comes in three

flavors: square, linear, and exponential. The linear loss func-
tion, specifically, is used for simplicity (equation (9)).

ei ¼ Yi � G Xið Þj j
E

ð9Þ

where E ¼ max Yi � G Xið Þj j is the total sample’s greatest abso-
lute prediction error. The accuracy of only one base estimator
will obviously be bad, so the goal of AdaBoost is to create a

succession of weak learners Gk Xð Þ; k ¼ 1; 2; � � � ;N and then
mix them to create a robust strong estimator H(X) (equation
(10)) via some sort of combination approach. The combination

approach is used to solve regression problems.

H Xð Þ ¼ m
XN
k¼1

ðln1=a kÞgðXÞ ð10Þ

where k is the weak learner’s weight Gk(X); g(X) is the med-
ian of all the akGk Xð Þ; k ¼ 1; 2; � � � ;N; m 2 0; 1ð � is the learning

rate that is used to prevent overfitting problem.

4. Results and discussions

Now, after reviewing the essential hyper-parameters of
boosted models, the final findings are generated and analyzed.
The effectiveness and accuracy of each model was evaluated

according to statistical factors. The coefficient of determina-
tion (R2, equation (11)), mean absolute error (MAE, equation
(13)), and root mean square error (RMSE, equation (12)) can



Table 1 Final hyper-parameter selection.

Models Number of estimators Loss function Learning rate Base Model Parameters

Boosted MLP 40 linear 0.12 Size of Hidden layers = 217

solver=’lbfgs’

activation=’relu’

tol = 0.0254

Boosted GPR 60 square 0.80 alpha = 4.468e-07

Num of restarts optimizer = 3

Boosted KNN 11 exponential 0.76 Number of neighbors = 3

weights=’distance’

algorithm=’brute’

Development of advanced machine learning models 5
be obtained as the following equations (Reiff, 1990; De
Myttenaere et al., 2016; Karch and van Ravenzwaaij, 2020;

Pelalak et al., 2021):

R2 ¼ 1�
Pm

i¼1ðTi � PiÞ2Pm
i¼1ðTi � T

�
Þ
2

ð11Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1 Ti � Pið Þ2
m

s
ð12Þ

MAE ¼
Pm

i¼1 Ti � Pij j
m

ð13Þ

To fine-tune the hyper-parameters of the chosen algo-

rithms, their various combinations were examined, resulting
in approximately 2,000 individual runs of these values being
optimized. Table 1 outlines the final set of hyper-parameters
that were selected for the models. The term ‘‘number of estima-

tors” in this table refers to the maximum number of base esti-
mators at which boosting is ended. In the event of a perfect fit,
the learning operation is terminated early, and each regressor
Fig. 2 Predicted and Actual POME values comp
weight at each boosting iteration is what is meant by learning
rate. A faster learning rate boosts each regressor’s contribu-

tion. Another parameter of adaptive boosting is loss function.
To modify the weights after each boosting iteration, the loss
function comes into play.

Also in this table, for MLP model hidden layer sizes repre-
sent the number of neurons in the hidden layers and the hidden
layer’s activation function is set to ’relu’ which returns f

(x) = max (0, x) when the rectified linear unit function is used.
In addition, the solver for weight optimization in boosted
MLP decided to be ‘lbfgs’ which is an optimizer belongs to
the category of quasi-Newton methods. The alpha value cho-

sen for GPR is 4.468e-07, and the optimizer is restarted three
times to obtain the kernel’s parameters that maximize the log-
marginal likelihood. In the final model, the number of neigh-

bors for KNN was three. In addition, the model will perform
a brute-force search to determine the nearest neighbors and the
’distance’ weight function will be used in prediction. In the

context of the algorithm being discussed, ’distance’ refers to
the manner in which points are given weight, which is based
on the inverse of their distance. This means that points that
arison using Boosted MLP Model (test data).
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are closer to a query point will have more of an impact than
points that are farther away.

The observed and predicted POME values according to the

Boosted MLP method for test and predicted data are depicted
in Figs. 2 and 3, respectively. The boosted MLP model has
shown high score and accuracy in the learning phase. The same
Fig. 3 Predicted and Actual POME values comp

Fig. 4 Predicted and Actual POME values comp
thing can be seen in Fig. 3, so that in this diagram, most of the
data points in the learning phase are completely on the line
graph. However, in the test phase of this model, the distance

between the predicted values and the actual values has
increased to some extent, which is clearly shown in Fig. 2.
arison using Boosted MLP Model (train data).

arison using Boosted GPR Model (test data).
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Similarly, the observed and predicted POME values accord-
ing to the Boosted GPR method for test and predicted data are
displayed in Figs. 4 and 5, respectively. For Boosted GPR

model as shown in Fig. 5, the learning step is performed with
high accuracy. Compared to the same figure for the boosted
Fig. 5 Predicted and Actual POME values comp

Fig. 6 Predicted and Actual POME values comp
MLP model (Fig. 3), the learning steps of both models had a
large extent. Although in both models the in training step
the predicted and test data are close to each other, the boosted

GPR model showed a more accurate learning phase. The sub-
ject is more different than the test diagrams in Fig. 2 and
arison using Boosted GPR Model (train data).

arison using Boosted KNN Model (test data).



Table 2 Recorded performances of final optimized models.

Models MAE R
2

RMSE

Boosted MLP 8.38008 0.9882 9.8071

Boosted GPR 2.3184 0.9938 4.8150

Boosted KNN 5.21954 0.9948 6.5180

8 A. Sumayli
Fig. 4. The boosted GPR model made a more accurate predic-
tion in the test phase and the deviation of the values (Fig. 4)
was much less.

Figs. 6 and 7 depict the predicted and actual POME values
using the Boosted KNN method for test and predicted data,
respectively. By comparing the KNN model to the prior two

models (Figs. 3 and 5), Fig. 7 shows that the KNNmodel, after
being trained, achieves higher accuracy in terms of observed
and predicted values. However, upon comparing Fig. 6 and

Fig. 4, it can be inferred that the Boosted KNN method per-
formed inferiorly during the test phase as compared to the
boosted GPR.

Table 2 reports the calculated values of R2, RMSE, and

MAE for Boosted MLP, Boosted GPR, and Boosted KNN
models. As can be seen in this Table, the regression coefficient
for Boosted MLP, GPR, and KNN models were attained as

0.9882, 0.9938, and 0.9948, respectively. It is an established
fact that a higher R2 value is indicative of a superior fit for
the model. Thus, it can be unequivocally inferred that the

Boosted GPR model is capable of fitting the data with greater
precision than the other two models that were studied. The R2

of 0. 9938 means 99.38% of the variation in the output vari-

able can be elucidated by the input variables. The values of
the RMSE for the Boosted MLP, Boosted GPR, and Boosted
KNN models were achieved as 9.8071, 4.8150, and 6.5180,
respectively. Moreover, the MAE values of 8.38008, 2.3184,

and 5.21954 were related to Boosted MLP, Boosted GPR,
and Boosted KNN models, respectively. These outcomes con-
firmed that the Boosted GPR model more properly predict the

POME data compared to the Boosted MLP, and Boosted
KNN model. Based on recent facts in this section, although
the developed models are very close to each other, the Boosted

GPR model can be considered as the most accurate and pow-
erful model for prediction of POME yield in this study. Fig. 8
Fig. 7 Predicted and Actual POME values compa
supports this claim by displaying the residuals of the Boosted
GPR model.

In order to provide more in-depth information about the
effect of different operational factors on the POME produc-
tion yield, the study of 3D diagrams can be very effective.

Therefore, the 3D graphs in Figs. 9-14 were obtained from
the Boosted GPR model to show the effect of different opera-
tional parameters on the yield of fatty acid methyl ester pro-

duction from Papaya oil. In each 3D diagram, the dual
effect of factors on the fuel production yield was examined
while the other two parameters remained constant. Figs. 9-11
show the expected results of POME (Y) yield vs. reaction tem-

perature for various parameters such as catalyst dose, treat-
ment period, and methanol to Papaya oil molar ratio,
respectively. As can be seen by raising the temperature of the

reaction (X1) the yield of fuel preparation increases however
increasing the reaction temperature more than about 62.5 �C
lead to rapid decrease in the POME. This fact is obvious in

Fig. 9 and there should be an optimum value for temperature
of the reaction. A similar pattern was found when the amount
of catalysts was increased (X2). By rising the catalysts mass,
the fuel preparation yield (Y) is also increased but as can be

seen higher amount of catalysts led to decrement in the pro-
duction yield (Sumayli and Alshahrani, 2023). Fig. 10 illus-
trates the effect of reaction temperature on the efficiency of
rison using Boosted KNN Method (train data).



Fig. 8 Boosted GPR Residuals.

Fig. 9 The prediction surface displayed alongside the X1 and X2 projections in optimized Boosted GPR model. X3 = 5.5 and X4 = 12.

The optimal value is 98.87 for X1 = 63 and X2 = 0.814.

Development of advanced machine learning models 9
POME production by changing the time of process between

0.5 and 10.5 min, while the catalysts amount and methanol
to oil molar ratio were kept constant. Based on obtained
results in this figure, increasing the reaction time to roughly

6.0 min enhanced the reaction yield, however the exact amount
of optimum time of reaction should be obtained. When the



Fig. 11 The prediction surface displayed alongside the X1 and X4 in optimized Boosted GPR model. X2 = 1 and X3 = 5.5. Optimal

value is 98.93 for X1 = 62 and X4 = 9.46.

Fig. 10 The prediction surface displayed alongside the X1 and X3 in optimized Boosted GPR model. X2 = 1 and X4 = 12. Optimal

value is 97.11 for X1 = 63 and X3 = 5.77.

10 A. Sumayli
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reaction temperature is elevated from 50 ⁰C to 60 ⁰C, there is a
possibility for an increase in POME yield. This may occur as a
result of the rapid dipole rotation generating heat (Hong et al.,

2016). Higher increment in the reaction temperature had a
reverse effect of the POME production yield, therefore, the
optimum amount of temperature should be obtained to

achieve the maximum production of biodiesel. The impact of
the molar ratio of methanol to papaya oil (X4) and the reac-
tion temperature on POME production yield is demonstrated

in Fig. 11. The results indicate that lower values of tempera-
ture and molar ratio of methanol to papaya oil resulted in
lower POME production yield. By raising the molar ratio,
the yield of POME production was increased significantly,

and the optimum value for highest POME production yield
should be determined. On the other hand, in temperatures
more than 70 ⁰C the POME production yields were reduced

which can be due to the vaporization of methanol in the reac-
tion media (Nayak and Vyas, 2019).

In order to evaluate the effect of catalyst amount on the

POME production yield, the 3D plots of catalyst amount ver-
sus reaction time (min) and methanol to Papaya oil molar
ration were studied. The obtained results are depicted in

Figs. 12 and 13. As can be inferred from Fig. 12 while the
two other parameters remained constant (X1 = 60 and
X4 = 12), at low catalyst loading, increasing the time
improved the interaction of triglycerides with methanol and

increase the POME production yield. But by increasing the
amount of catalyst had revers effect on the production yield
which can be due to the uninvited soap formation of fatty acid
Fig. 12 The prediction surface displayed alongside the X2 and X3 in

value is 95.05 for X2 = 0.892 and X3 = 4.66.
which lead to entrainment of biodiesel (Dharma et al., 2016).
Fig. 14 depicts the effect of catalyst concentration (X2, NaOH)
and methanol to Papaya oil molar ratio (X4) on POME effi-

ciency while two other parameters (reaction temperature and
time) were kept constant (Sumayli and Alshahrani, 2023).
Obviously, when the molar ratio and catalyst amount are very

small, lower POME production yields were obtained which
can be due to the fast consumption of methanol and catalyst
during the reaction (Liu and Zhang, 2023). By increasing these

amounts the POME production yields will increase however
the production yield reach to a maximum and after that start
to reduction. The reason for this could be attributed to the
possibility of side reactions that result in the consumption of

both the catalyst and methanol. As a consequence of the
increased content of the catalyst and methanol, there is a
decrease in POME efficiency.

Fig. 14 shows the dual effect of reaction time and methanol
to Papaya oil molar ratio on the POME production yield while
the temperature of reaction and amount of catalyst kept con-

stant. Accordingly, lower POME efficiency (Y) is observed at
low ratio of methanol to Papaya oil (X4) and short reaction
time (X3). By increasing the time and molar ration the POME

production yield was increased. As can be realized, increasing
the molar ratio up to 10.3 resulted in a modest improvement in
POME efficiency, but after that, POME production yield was
declined. This could be attributed to the increased solubility of

methanol in both phases, leading to greater difficulty in their
separation (Liu and Zhang, 2023; Nayak and Vyas, 2019).
optimized Boosted GPR model. X1 = 60 and X4 = 12. Optimal



Fig. 13 The prediction surface displayed alongside the X2 and X4 in optimized Boosted GPR model. X1 = 60 and X3 = 5.5. Optimal

value is 99.63 for X2 = 0.928 and X4 = 9.92.

Fig. 14 The prediction surface displayed alongside the X3 and X4 in optimized Boosted GPR model. X1 = 60 and X2 = 1.25. Optimal

value is 84.6 for X3 = 4.5 and X4 = 9.6.
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Fig. 15 Trends for X1 on the POME production yield.

Fig. 16 Trends for X2 on the POME production yield.

Development of advanced machine learning models 13
Figs. 15-18 depict the impact of each parameter on the
POME production yield through 2D diagrams. Each diagram

displays the effect of one operating factor while keeping the
other three constant. As illustrated in Fig. 15, an increase in
the reaction media temperature resulted in an increase in

POME yield. This can be explained by the reduction of oil vis-
cosity and increase of the reaction rate. Also, the higher tem-
perature can lead to higher solubility of oil in alcohol phase.
The trend persisted until the temperature hit 62 �C, beyond
which the POME production yield declined due to methanol
vaporization, consistent with the 3D diagrams discussed ear-
lier. Fig. 16 displays the individual effect of catalysts amount

on the yield of POME production in the transesterification
process. Increasing the amount of catalyst leads to improve-



Fig. 17 Trends for X3 on the POME production yield.

Fig. 18 Trends for X4 on the POME production yield.
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Table 3 The optimum point where the parameters produce

their maximum effect.

X1 X2 X3 X4 Y

62.5 0.8125 6.469 10.33 99.89

Development of advanced machine learning models 15
ment in production yield which is due to higher formation of
methoxy radicals and more interaction with triglyceride which

produces the final product as biofuel. However, as can be seen
in this figure, a higher amount of catalyst had the revers effect
and reduced the POME production yield. As mentioned

before, a higher amount of catalyst lead to side reactions which
are undesired.

The individual effect of time and the molar ration of metha-

nol to Papaya oil on the process efficiency are presented in
Figs. 17 and 18, respectively. Based on the results, it can be
said that by increasing the molar the ratio up to around 10
the POME yield was increased but higher value of methanol

to Papaya oil reduced the process efficiency. The reason can
be explained by dilution of the amount of catalyst due to
higher amount of methanol which reduces the reaction rate

and POME production yield.
The optimal values of operating parameters molar ratio

play an important role in improvement of the POME produc-

tion yield. Therefore, in this study the optimization of the
POME production yield was performed by applying the final
boosted GPR model to the range of accessible data. The best
output values and the matching inputs are displayed in Table 3.

It is clear that the maximum POME production yield of
99.89% was attained under with optimized condition of tem-
perature of 62.5 ⁰C, catalyst amount of 0.8125 wt%, reaction

time of 6.469 min, and methanol to oil molar ratio of 10.33.

5. Conclusion

In this research, ML methods were employed to successfully model the

biodiesel production process from Papaya oil through the transesteri-

fication reaction. In machine learning problems, model selection is

extremely crucial. The approaches employed in this study were chosen

after a thorough examination and preliminary analysis of various cur-

rent regression models. To predict the production of Papaya oil methyl

ester, the multilayer perceptron (MLP), Gaussian Process Regression

(GPR), and K-nearest neighbor (KNN) regression models were used,

also adaptive boosting was applied for amplification. To produce the

final models with ideal configurations, the basic hyperparameters of

all selected models were modified depending on accuracy and general-

ity. The catalyst amount, methanol to Papaya oil molar ratio, reaction

temperature, and time were considered as input features of models

while the POME production yield were set as the model output. The

higher value of R2-scores (0.993) together with the lowest values of

RMSE (4.8150) and MAE (2.3184) values for Boosted GPR model

suggested that could predict the experimental results with high accu-

racy. The obtained results showed that all the studied operating

parameters had a key effect on POME production yield. Optimization

of these biodiesel production process, suggested that within the range

of the given operating parameters, the ideal temperature, catalyst

amount, duration, and methanol to oil molar ratio were 62.5 �C,
0.8125 wt%, 6.47 min, and 10.33, respectively, with an output of

99.89. Overall, the proposed ML strategy can be performed for predic-

tion, modeling, and optimization of production of different biodiesel.
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