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Abstract Docosahexaenoic acid (DHA) shows different anti-cancer effects on breast cancer (BC)

cell proliferation and progression; however, the underlying molecular mechanism yet still is blan-

keted in mystery. Herein, we aimed to reveal whether the inhibitory effects of DHA on BC prolif-

eration and migration are exerted, at least in part, through promoting the expression of miR-99a

and targeting mTOR signaling. DHA lessened the BC cell viability in a time- and concentration-

dependent manner. Besides, DHA-treatment significantly suppressed the proliferation and migra-

tion, while promoted BC cell apoptosis by regulating Bax and Bcl-2. We also demonstrated that

DHA activated caspase-3/7 in MDA-MB-231 BCE cells. Also, we determined that miR-99a was

upregulated in DHA-treated cells and mTOR was a direct and functional target of this miRNA,

verified by the ability of anti-miR-99a to rescue the suppressive effects of DHA on mTOR expres-

sion in BC cells. Furthermore, DHA was shown to inhibit the mTOR-HIF-1a-VEGF signaling via

regulating miR-99a in BC cells. DHA treatment caused a significant dose-dependent reduction of

VEGF secretion from BC cells. When miR-99a was knocked down, DHA did not inhibit the BC

proliferation and migration. We concluded that the anti-cancer effects of DHA can be attributed

to the up-regulation of miR-99a that ipso facto inhibit the mTOR-HIF-1a-VEGF axis in BC cells.

It is thought that DHA treatment might be considered as a promising supplement for BC therapy.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

As the most common cancer affecting females, breast cancer
(BC) is responsible for ~12% of the total of all cancers

(Ghaffari-Makhmalbaf et al., 2020; Tahmouresi et al., 2020;
Sanchez-Morillo et al., 2018). BC is notorious due to the high
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ability of metastasis to different organs to touch upon lung,
brain, and bones (Jin et al., 2018). This cancer is heteroge-
neously identified according to the status of hormone receptors

and human epidermal growth factor receptor 2 (HER-2)
expression (Jin et al., 2018). With a more aggressive with de
facto poor prognosis nature, triple-negative BC (TNBC)

expresses none of these three markers (Tsang and Tse, 2020).
The role of dietary omega-6 and omega �3 polyunsaturated

fatty acids (PUFAs), as essential nutrients, in BC pathology

remains to be further clarified. However, mounting in vitro
and in vivo studies have shown that high levels of omega-3
PUFAs such as eicosapentaenoic acid (EPA) and docosahex-
aenoic acid (DHA) have repressing effects on the development

and progression of BC, compared to omega-6 PUFAs(de
Lorgeril and Salen, 2012). Consistently, overconsumption of
omega-6 PUFAs and an increased ratio of omega-6 to

omega-3 PUFAs, which are common in Western diets, are
associated with a variety of malignancies, including BC.
Importantly, it was reported that omega-3 fatty acids from fish

origins displayed cancer-related preventive activity, with a
14% reduction in the risk of developing BC. In this regard,
preclinical studies have demonstrated the protective activity

of omega-3 PUFAs in BC development and the correlation
between omega-6 PUFAs and BC tumorigenesis. This contro-
versy might be explained by different effects of PUFAs on the
regulation of non-coding RNAs and their related signaling

pathways (Zanoaga et al., 2018; Freitas and Campos, 2019).
DHA is remarkably beneficial to inhibit the carcinogenesis

of mammary glands (Mouradian et al., 2015; Rahman et al.,

2013; Liu and Ma, 2014); however, there is a snippet of infor-
mation considering the underlying molecular mechanisms in
BC development. The angiogenesis process in solid tumors is

a sine qua non of tumor development which is then considered
as a mark whereby the tumor steps forward from being benign
toward malignancy (Fox et al., 2007); DHA can inhibit differ-

ent angiogenic mediators such as vascular endothelial growth
factor (VEGF) (Matesanz et al., 2010) and exert its anti-
angiogenic properties that in turn leads to the anti-cancer char-
acteristic (Yun et al., 2016). The up-regulated VEGF can per se

pave the way to BC invasiveness and metastasis (Wang et al.,
2012).

According to Dong et al., hypoxia-inducible factor-1a
(HIF-1a)-VEGF axis plays a crucial pro-angiogenic role under
hypoxic conditions (Dong et al., 2011). This axis also functions
in BC to induce angiogenesis (Dewangan et al., 2019). Hypoxia

and HIF-1a cut both ways because they take a center stage in
regulating angiogenesis and also play roles in invasion and
metastasis of different types of cancers (Vaupel and
Multhoff, 2020; Peng et al., 2018). By binding to the hypoxia

response element (HRE) within the promoter of VEGF,
HIF-1a predominantly induces both normal and pathophysio-
logical angiogenesis (Hoeben et al., 2004; Forsythe et al.,

1996). HIF-1a-mediated VEGF expression can regulate the
mammalian target of rapamycin (mTOR) in BC cells (Del
Bufalo et al., 2006). Consistently, it has been shown that

tumors with up-regulated mTOR signaling show a high degree
of angiogenesis (Land and Tee 2007).

MicroRNAs—also known as miRNAs—are a well-known

class of non-coding RNAs (~22 nt in length) that are endoge-
nously expressed in the cell nucleus and control gene expres-
sion at the level of post-transcription by suppressing
translation and/or clearing the way for mRNA degradation
(Razmara et al., 2019). Undeniably, miRNAs control a wealth
of biological processes embracing proliferation, differentia-
tion, and apoptosis in different cells (Annese et al., 2020).

Aberrant miRNA expression has been contributed to tumori-
genesis of different cancers, suggesting they may function as
both oncogenes or tumor suppressors (Poursheikhani et al.,

2020; Maminezhad et al., 2020). According to Aslan et al.,
DHA treatment downregulates some oncogenic miRNAs
(e.g. miR-21 and miR382), while it upregulates different candi-

date miRNAs with tumor suppressive activity such as miR-
101, miR-199, and miR-342 (Aslan et al., 2020).

Inspecting different functions of miRNAs, we hypothesized
whether the anti-cancer effects of DHA can be attributed to

miRNA-regulation of oncogenic pathways such as mTOR sig-
naling or not. Since miR-99a has been previously identified to
have a substantial role in mTOR regulation (Yin et al., 2018;

Tsai et al., 2018; Hu, Zhu, and Tang, 2014), we conducted
an investigation into this whether the suppressive roles of
DHA on BC cell proliferation and migration are due to the

up-regulation of miR-99a. This information can increase our
understanding of BC progression and may also pave ways to
use DHA in combination with other novel therapeutic strate-

gies against BC.
2. Materials and methods

2.1. Cell culture and chemicals

We used MDA-MB-231 and BT-20 as the human triple-
negative BC cell models and MCF10A— a human non-
tumorigenic breast epithelial cell line. The cells were main-
tained in DMEM containing 10% FBS and 1% penicillin–

streptomycin (Trace Scientific Ltd., Melbourne, VIC, Aus-
tralia). To prepare the DHA stock solution (Sigma-Aldrich,
USA), DHA with a purity of 99% was dissolved in ethanol

(30 mM) and immediately kept at �80 �C for further applica-
tions. In order to prepare the optimized solution (5 mM), we
diluted DHA by phosphate-buffered saline (PBS) containing

1.5 mM bovine serum albumin (BSA).

2.2. Cell viability and proliferation assay

In order to evaluate the cell viability, a tetrazolium-based col-

orimetric MTT assay was exploited. To this end, around
4 � 103 cells were incubated with different concentrations of
DHA (10, 25, 50, 100, and 150 mM) and the MTT assay was

performed at the time point of 24 and 48 h after DHA treat-
ment; subsequently, we measured the absorbance at 450 nm.
Besides, the viable cells were stained with trypan blue and

counted using a microscope at 12 and 24 h after DHA
treatment.

2.3. RNA extraction and quantitative real-time PCR

RNA was isolated from the cells using TRIzol� reagent (Invit-
rogen, Mulgrave, VIC, Australia). To cut down on the possible
DNA contaminations, the RNA samples were incubated with

RNase-Free DNase. The RNA purity and concentration were
determined by optical density measurements using a Nan-
odropTM 2000c (Thermo Fisher Scientific, Rockford, IL,
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USA). Approximately, 1 lg of extracted RNA was subjected
to turn into complementary DNA (cDNA) using the Prime-
Script RT Master mix (TAKARA). The quantitative real-

time PCR (RT-qPCR) was exploited to perform the expression
analysis on an ABI 7900 System (Applied Biosystems, CA,
USA). So as to evaluate the expression level of miR-99a,

RNA was polyadenylated and reverse transcription was done
using High-specificity miRNA first-strand cDNA synthesis
kit (Agilent Technologies, CA, USA); the expression of

miR-99a was measured by miR-99a-specific primer and
miRNA qPCR master mix kit (Sratagene, LaJolla, CA,
USA). The relative expressions of mRNA transcripts and
miR-99a were compared to GAPDH and U48 small nuclear

RNA (U48 snRNA), respectively. To calculate the fold change,
the 2�DDCt method was applied (Livak and Schmittgen, 2001).

2.4. Luciferase assay

In order to construct a reporter vector, the wild-type (WT)
3ʹ-untranslated region (3ʹ-UTR) sequence of mTOR was

amplyfied and cloned into the psi-CHECK2 luciferase repor-
ter vector. We co-transfected MDA-MB-231 cells with
mTOR-30-UTR luciferase reporter vector and 50 nM of

hsa-miR-99a precursor molecule (miR-155 mimics) to evalu-
ate whether miR-99a interacts with 30-UTR of mTOR or
not. After 48 h, the dual-luciferase assay was done using
DualGlo luciferase assay (Promega) which included two

specific reporters, ‘firefly’ and ‘renilla’ luciferases. The ratio
of firefly luciferase to renilla one (as an internal control)
was measured and normalized relative to the cells that were

transfected only by the mTOR-30-UTR luciferase reporter
vector.

2.5. Short-interference RNA was used to knock down mTOR

MDA-MB-231 BCE cells were maintained in a medium
without antibiotics and then were transfected with

50 nmol/L of synthetic short-interference RNAs (siRNAs)
against mTOR (si-mTOR) (sc-35409; Santa Cruz Biotechnol-
ogy, CA, USA) or silencing negative control (si-control)
(sc-37007; Santa Cruz Biotechnology, CA, USA) using Lipo-

fectamine RNAiMAX (Invitrogen) as per manufacturer’s
recommendation.

2.6. Immunoblotting analysis

The Immunoblotting analysis for the candidate proteins was
performed. In order to perform cell lysis, we used radio-

immunoprecipitation assay buffer (Thermo Fisher Scientific,
Clayton, VIC, Australia) that in turn contained a mixture
of different protease and phosphatase suppressors. We per-

formed protein electrophoresis on 10% sodium dodecyl sul-
fate–polyacrylamide and transferred the putative proteins to
the PVDF membrane (BD Biosciences). The membranes were
incubated with primary antibodies (1:1000) at 4 �C overnight;

washed by 1 � Tris-buffered saline (TBS) with 0.1% Tween-
20; and incubated with horseradish peroxidase-conjugated
secondary antibody. The protein bands were detected using

an enhanced chemiluminescence kit (ECL, Amersham, Buck-
inghamshire, UK) and the band intensities were analyzed
using ImageJ.
2.7. Enzyme-linked immunosorbent assay

The VEGF concentration was evaluated in the supernatant of
BC cells that were previously treated using different DHA con-
centrations (i.e. 10, 50, and 100 lM) for 48 h. This evaluation

was carried out using a human VEGF enzyme-linked
immunosorbent assay (ELISA) Kit (ab100662, Abcam, Cam-
bridge, USA). The optical density values were measured at
450 nm and the amount of the putative protein were evaluated.

The cells without DHA stimulation were used as the control
group.

2.8. Elevation of caspase-3/7 relative activities

The enzyme activity of caspase-3/7 was measured via Caspase-
Glo 3/7 assay kit (Promega). To this end, the cells were incu-

bated with the caspase substrate at 23 �C for 1 h, and the lumi-
nescence was assessed according to the instructions’ manual.

2.9. Wound healing assay

To assess the BC cell motility, the serum-starved cells were
grown to 80% confluency. Afterward, we used a 200 ml pipette
tip to scratch on the cells as single vertical scratches. To

remove debris or detached cells, the monolayer was washed
once with PBS. MDA-MB-231 BCE cells were stimulated with
25 mM DHA and incubated at 37 �C for 24 h. We monitored

and quantified the wound healing in duplicate wells at 24 h.

2.10. Transwell assay

So as to show the cell migration of BC cells, we carried out the
transwell assay based on the previous study (Ghaffari-
Makhmalbaf et al., 2020). Briefly, to check the cell migratory

capacity after DHA treatment, DHA-incubated cells were sus-
pended in serum-free medium. We added the cell suspension
into the upper chamber of the 24-well plates, while for the
lower chamber, around 600 lL complete medium was added

into. Using crystal violet, we stained the transferred cells and
counted them directly after incubation at 37 �C for 24 h. Light
microscopy was used to observe and photograph the cells and

also to count the cells to reflect cell mobility.

2.11. Statistical analysis

Data were depicted as mean ± standard deviation (SD) of at
least three independent assay. We utilized unpaired Student’s
t-test and ANOVA to evaluate the significance of the differ-

ence between two or multiple groups, respectively. We set
the level of statistical significance to a P-value less than 0.05.

3. Results

3.1. DHA decreases BC cell viability

We investigated whether DHA can induce cytotoxic effects on
BC cells or not. To answer, MDA-MB-231 and BT-20 cells
were incubated with various DHA concentrations including

10, 25, 50, 100, and 150 lM, followed by performing MTT
assay so as to evaluate BC cell viability. We determined that
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at 100 lM concentration, DHA decreased 64.22 and 42.32%
of MDA-MB-231 cell viability at 24 and 48 h after treatment,
respectively. Also, following 24 and 48 h treatment, the viabil-

ity of BT-20 cells treated with this same concentration of DHA
was estimated at 58.03 and 47.48%, respectively. The same
concentrations of DHA did not also cause significantly altered

viability of the normal human breast epithelial cell line
MCF10A. Accordingly, the concentration of DHA at 50 lM
was used for further experiments. In a nutshell, the findings

underscore that DHA significantly decreases the BC cell
viability in a concentration and time-dependent manner
(Fig. 1A–D).

3.2. DHA promotes apoptosis in BC cells

To show whether DHA-treatment can promote apoptosis in
BC cells, we carried out the caspase-3/7 activity assay by

means of a luminescence-based assay. We demonstrated that
treating MDA-MB-231 BCE cells with 50 mM of DHA caused
a significant augment of caspase-3/7 activity than the control

group (P < 0.0001; Fig. 2A). To better understand the
DHA apoptotic effects, we assessed the protein levels of Bax
and Bcl-2 in the DHA-stimulated MDA-MB-231 BCE cells

(Fig. 2B). Interestingly, the results revealed that the ratio of
Bcl-2 to Bax was considerably lowered in DHA-stimulated
MDA-MB-231 cells (P < 0.001, Fig. 2C), indicating the apop-
totic effects of DHA on BC cells.
Fig. 1 DHA decreases the BC cell viability in a specific and time-dep

BT-20) with gradient concentrations of DHA for 24 and 48 h showed th

of the cell viability assay were used to determine the IC50 values for
3.3. miR-99a functionally targets and suppresses mTOR

To verify whether mTOR can be directly targeted by miR-99a
in BC cells or not, we constructed luciferase reporter plasmids
that contained the renilla luciferase encoding gene fused to

either the 30-UTR of mTOR that contained miR-99a-5p bind-
ing site (WT) or mutated targeting site (Mut). We found that
miR-99a specifically suppressed the luciferase activity of a
reporter that included the 30UTR of WT mTOR in BC cells

(Fig. 3A, B). This suppression was particular to the predicted
miR-99a target sites, as no significant change was detected in
the relative luciferase activity of the Mut 30UTR mTOR repor-

ter. These findings fruitfully highlighted that miR-99a is cap-
able of binding to the specific target sites that were located
within 30-UTR of mTOR mRNA.

To answer this question that how miR-99a affects the
mTOR expression level, we transfected MDA-MB-231 BCE
cells with either miR-99a mimics or scramble; thence, the

mRNA levels of mTOR were analyzed immediately. Compat-
ible with the data of the reporter assay, by the time miR-99
mimics were transfected into BC cells, mTOR expression were
considerably reduced (P < 0.001; Fig. 3C). Consistently, by

using siRNA that was specifically designed for mTOR (si-
mTOR), mTOR mRNA levels were decreased (P < 0.001,
Fig. 3C).

In addition, to better grasp the functional importance of
mTOR, we measured the HIF-1a and VEGF transcripts after
endent manner. (A–D) Treatment of BC cells (MDA-MB-231 and

at DHA suppresses BC cell survival dose-dependently. The results

use in further experiments.



Fig. 2 DHA induces apoptosis in BC cells. (A) The findings show the increased caspase-3/7 relative activity after 48 h in response to

50 mM DHA treatment in MDA-MB-231 cells. (B) Immunoblotting of endogenous Bcl-2 and Bax protein levels in MDA-MB-231 cells

48 h after pretreatment with 50 mM DHA. (C) The ratio of Bcl-2 to Bax was considerably decreased (P < 0.001) in MDA-MB-231 BCE

cells that were treated with 50 mM DHA, suggesting the pro-apoptotic influences of DHA on MDA-MB-231 BCE cells. ***P < 0.001.
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transfecting the BC cells using miR-99a. Gene expression anal-
ysis that was carried out by RT-qPCR highlighted a consider-
able reduction of HIF-1a (P < 0.001) and VEGF (P < 0.01)
transcripts in MDA-MB-231 cells that were transfected with

miR-99a mimics than the cells that were transfected with
scramble (Fig. 3D). All in all, these data attribute an activator
role to mTOR whereby it induces VEGF signaling; We also

underscore a supporting model in which miR-99a adjusts
VEGF signaling by regulating mTOR.

3.4. DHA inhibits mTOR signaling in BC cells through miR-99a
regulation

Some scrapes of evidence bear out that DHA exerts its anti-

cancer functions through regulating different miRNAs (Sun
et al., 2013; Ghaffari-Makhmalbaf et al., 2020; Aslan et al.,
2020). Herein, we investigated how miR-99a could be affected
by DHA. For this purpose, the expression status of miR-99a in

cells that were pre-incubated with/without DHA was identi-
fied. The findings demonstrated that miR-99a was up-
regulated in 50 mM DHA-incubated BC cells, in comparison

to the control cells (the cells without DHA treatment)
(Fig. 4A); this per se substantiated that DHA can
up-regulate miR-99a expression in BC cells.
We also demonstrated that DHA-induced up-regulation of
miR-99a resulted in a significant decrease of VEGF mRNA
expression level time-dependently (Fig. 4B). In light of the fact
that HIF-1a is a vital regulator of VEGF(Forsythe et al., 1996)

and its activation is promoted by mTOR signaling (Land and
Tee, 2007), we conjectured that DHA-induced miR-99a up-
regulation may affect VEGF expression through modulating

the mTOR/HIF-1a. Expectedly, we verified that
DHA-induced up-regulation of miR-99a significantly sup-
pressed mTOR and HIF-1a mRNA expression levels in

MDA-MB-231 cells (Fig. 4C). We also investigated the effect
of DHA-induced up-regulation of miR-99a on the mTOR-
HIF-1a-VEGF pathway using BT-20 cells. We demonstrated

that miR-99a up-regulation significantly decreased the mRNA
levels of the mTOR-HIF-1a-VEGF axis in DHA-incubated
cells (Fig. 4D–F). Data obtained from were in line with these
findings and revealed the decreased levels of VEGF secreted

from both BC cell models with different concentrations of
DHA 48 h after treatment (Fig. 4G).

Moreover, to inspect whether DHA is capable of inhibiting

mTOR signaling by promoting the expression of miR-99a or
not, BC cells were transfected using the inhibitor of miR-
99a. Axiomatically, transfection of MDA-MB-231 cells with

miRNA inhibitor reduced the miR-99 expression than the



Fig. 3 mTOR is a direct and functional target for miR-99a. (A) Putative complementary sequences between the 30-UTR of mTOR and

miR-99a predicted by TargetScan 5.1. (B) Luciferase assay was done to show direct targeting of mTOR 30-UTR by miR-99a. Relative

luciferase reporter activity of MDA-MB-231 BCE cells at 48 h after co-transfection with wild-type (WT) or mutant (Mut) mTOR 30-UTR

luciferase reporter constructs and miR-155 precursor molecule (miR-155 mimics) are shown. miR-99a was identified to lessen luciferase

activity in the cells that were transfected with WT mTOR 30-UTR (P < 0.05), while no significant effect was detected in those cells

transfected with Mut mTOR 30-UTR. (C) mTOR expression at mRNA levels measured in MDA-MB-231 cells that were transfected with

either miR-99a mimics or scramble (sc). Transfection of miR-99a mimics led to a significant decrease of mTOR transcript levels in MDA-

MB-231 cells. mTOR mRNA levels in MDA-MB-231 cells transfected with either siRNA against mTOR (si-mTOR) or silencing negative

control (si-control) is also evaluated; siRNA inhibited mTOR expression. The assays were performed 48 h after transfection. (D) HIF-1a
and VEGF-A expressions evaluated by RT-qPCR in MDA-MB-231 cells, 48 h after transfection with either miR-99a mimics or scramble

(sc). In this figure: *P < 0.05, **P < 0.01, and ‘‘NS” means ‘‘no statistical significance”.
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control group (P < 0.01; Fig. 4H). Interestingly, we elucidated
that the miR-99a inhibitor rescued the suppressive effects of

DHA on mTOR expression, confirming the functional role
of miR-99a in exerting the regulatory effects of DHA on
mTOR signaling in BC cells (Fig. 4I).

3.5. DHA suppresses BC cell proliferation and migration by

promoting the expression of miR-99a

We also conducted an investigation into whether

DHA-mediated up-regulation of miR-99a suppresses BC cell
proliferation and migration. To this end, MDA-MB-231 cells
were incubated with DHA (100 lM); remarkably, DHA-

treated BC cells showed a somehow low rate of proliferation
than the control cells (Fig. 5A). To assess the possible interac-
tions between DHA and miR-99a that in turn can suppress BC

cell proliferation and migration, the BC cells were stimulated
with DHA and simultaneously co-transfected with either
anti-miR-99a or scramble. Consequently, we shed light on

the fact that the suppression of miR-99a can negatively affect
or reverse the suppressive impressions of DHA on mTOR
signaling (Fig. 4I), and consequentially extricated the BC cells
from the anti-proliferative impressions of this miRNA

(Fig. 5A).
Beyond that, BC cells that were incubated with 25 lM

DHA unveiled a lower capacity to migrate than control cells

after 48 h. Similarly, BC cell transfection with anti-miR-99a
significantly reduced the suppressive outcomes of DHA on
the BC cell migration (Fig. 5B, C). To wrap things up, these
findings can ipso facto show that DHA may impede the BC cell

proliferation and migration mainly through inducing the
expression of miR-99a.

4. Discussion

Notwithstanding the several attempts that have been made to
broaden the horizons toward better BC diagnosis and treat-

ment, the exact molecular mechanisms of BC development
and progression yet still remain unclear (Bray et al., 2018;
Nigdelis et al., 2020). TNBC embracing around 10–20% of

BC cases is the most aggressive BC subtype with little to no
beneficial standard therapeutic procedure (Baghi et al.,



Fig. 4 DHA modulates the mTOR-HIF-1a-VEGF axis through up-regulating miR-99a in BC cells. (A) DHA (50 mM) caused a

significant increase of miR-99a expression in MDA-MB-231 BCE cells time-dependently. (B) DHA treatment (50 mM) led to a decrease of

VEGF mRNA expression levels. C) mTOR and HIF-1a transcript levels at 48 h after treatment of MDA-MB-231 BCE cells with 50 mM
DHA. (D–F) RT-qPCR revealed that DHA-induced up-regulation of miR-99a considerably inhibited the expression of the mTOR-HIF-

1a-VEGF signaling in BT-20 BC cells. (G) significant dose-dependent effects of DHA on VEGF protein secretion were measured using

MDA-MB-231 and BT-20 BC cells that previously were treated with different concentrations of DHA (10, 50, and 100 mM). (H) Fold

change of miR-99a in MDA-MB-231 BCE cells after transfection with anti-miR-99a. miRNA level was measured. I) MDA-MB-231 cells

were pre-incubated with 50 mM DHA and transfected with anti-miR-99a (100 nM) for 48 h. The mRNA expression level of mTOR in

MDA-MB-231 cells transfected with anti-miR-100 along with either DHA or PBS was considerably much greater than those cells that

were only treated with DHA. *P < 0.05, **P < 0.01, and *** P < 0.001.
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2018). The fact of the matter is that among inconsistent BC
subgroups, TNBC shows divagated biological features that
make this type of BC to being more aggressive and justify its

increased relapse risk than other subgroups (Rodler et al.,
2011). A growing body of evidence has shown that mTOR sig-
naling is often dysregulated in TNBC patients (Miricescu et al.,

2021; Ortega et al., 2020; Janku et al., 2012; du Rusquec et al.,
2020; Gupta et al., 2020). It has been frequently identified that
mTOR signaling can promote tumor onset, metastasis, and
proliferation—particularly in TNBC (Massihnia et al., 2016).

Tumors that are formed as a result of heightened mTOR sig-
naling have been demonstrated to be highly vascularized, a
process that can in turn be imputed to the high rate of angio-
genesis in such cells. Indeed, angiogenesis can be regulated
through HIF-mediated transcription and also mTOR signaling
(Land and Tee, 2007; Pakravan et al., 2017).

DHA functions as an anti-cancer factor in different malig-
nancies, particularly BC; for instance, there are plenty of
reports showing the effectiveness of using DHA (alone or com-

binations with other omega-3 polyunsaturated fatty acids) so
as to prevent cancer or even provide a therapeutic strategy
(Berquin et al., 2008; Nabavi et al., 2015). Because of the fact
that DHA most likely promotes the cytotoxic effects of

chemotherapeutic drugs, it is usually combined with such
drugs in therapeutic strategies (Nabavi et al., 2015). DHA
can successfully suppress tumor angiogenesis in a BC nude



Fig. 5 Inhibitory effects of DHA on BC cell proliferation and migration are exerted by miR-99a up-regulation. (A) DHA (100 mM) has

inhibitory effects on the proliferation of MDA-MB-231 BCE cells at time points of 24 and 48 h. Transfection of anti-miR-99a abolished

the anti-proliferative effects of DHA in MDA-MB-231 cells. (B) anti-miR-99a could diminish the anti-migratory effects of DHA on

MDA-MB-231 BCE cells at 48 h after treatment. (C) The migration of MDA-MB-231 cells decreased after DHA treatment with a

concentration of 25 mM than those cells were treated with PBS after 48 h. Transwell migration assay revealed that the anti-migratory

effects of DHA on MDA-MB-231 cells were decreased following transfection with anti-miR-99a. **P < 0.01 and *** P < 0.001.

8 J. Zhang et al.
mouse model (Rose and Connolly, 1999) and further con-

firmed in murine mammary tumor models that were fed with
a fish oil diet (Mukutmoni-Norris et al., 2000). From molecu-
lar points of view, it was demonstrated that DHA can suppress
angiogenesis maybe through VEGF (Hannafon et al., 2015).

On the other hand, the exact molecular processes by which
DHA prevents breast tumor angiogenesis yet are shrouded in
mystery. The concentration of DHA ranging from 50 to

100 mM is commonly used in cancer cell studies and is physio-
logically attainable in vivo (Magalhaes et al., 2020; Collett
et al., 2001; Wang et al., 2014b; Thiebaut et al., 2009). Here,

the DHA concentration was selected to be achievable through
diet. In this regard, the tumor growth suppression of an empir-
ical tumor model that was fed with a fish oil-supplemented diet

suggests that omega-3 fatty acids are non-toxic in vivo when
used at an effective anti-cancer dose (Kang et al., 2010).

Caspase-3 is an apoptotic enzyme that can be induced using
different intrinsic and extrinsic pathways (Kiechle and Zhang,

2002). Herein, we demonstrated that DHA activates caspase-
3/7 (Fig. 2A). Caspase-3/7 contributes to the majority of cleav-
age that takes place during apoptosis (Slee et al., 2001). In the
intrinsic apoptosis pathway, Bax binds to Bcl-2 which in turn

results in releasing cytochrome C and ultimately kindling the
processes that will result in apoptosis (Gao and Dou, 2001).
Remarkably, our data showed that DHA down-regulates
Bcl-2, while up-regulates Bax protein (Fig. 2B, C). In other

words, DHA triggers apoptosis by regulating Bax and Bcl-2
in MDA-MB-231 BCE cells which is in line with other studies
(Chiu et al., 2004; Narayanan et al., 2001).

DHAmay exert its anti-tumor and anti-angiogenic activities
via modulation of various miRNAs (Ghaffari-Makhmalbaf
et al., 2020; Aslan et al., 2020; Javadian et al., 2020). In fact,

according to the previous studies, miRNAs are considering
an important target in cancer therapy since this fact that they
fundamentally play in tumorigenesis. Herein, we demonstrated

that DHA treatment can increase the expression of miR-99a in
BC cells (Fig. 4A, D). As a miRNA that inhibits cell growth,
miR-99a has been verified to modulate mTOR signaling
(Wang et al., 2014a; Li et al., 2016). Using luciferase assay,

we confirmed that miR-99a directly targets mTOR (Fig. 3A,
B). Additionally, RT-qPCR analysis of BC cells transfected
with miR-99a mimics confirmed miRNA-mediated repression
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of mTOR expression (Fig. 3C). Furthermore, due to the fact
that mTOR takes part importantly in HIF-1a-mediated expres-
sion of VEGF in BC cells (Del Bufalo et al., 2006), we drew a

conclusion that miR-99a might influence BC cells through
modulating the mTOR-HIF-1a-VEGF axis. Importantly, we
elucidated that after BC cell transfection with miR-99a mimics,

mRNA levels of HIF-1a and VEGF were reduced (Fig. 3E).
Using BC cell models, we also demonstrated that DHA regu-
lates the mTOR/HIF-1a/VEEGF signaling axis mainly

through up-regulating miR-99a (Fig. 4A-G). Besides, we shed
light on the inhibitory effects of DHA on the mTOR transcript
levels that were partially rescued by the time the BC cells were
transfected by anti-miR-99a (Fig. 4I). Besides, in the current

study, DHA was identified to reduce the BC cell proliferation
and migration capabilities. By the time anti-miR-99a was trans-
fected into BC cells, the suppressive effects of DHA on the pro-

liferation and migration of such cells were partially rescued
(Fig. 5), suggesting that DHA suppresses BC cell proliferation
and migration mainly through inducing the expression of miR-

99a as well as targeting mTOR signaling. Considering the
tumor-suppressive role of miR-99a in various tumors (Mei
et al., 2017; Wang et al., 2017; Shi et al., 2017; Liu et al.,

2019), we demonstrated that DHA-mediated anti-tumor activ-
ity in BC cells possibly might be attributed to regulating miR-
99a expression.

In sum, this study elucidates that DHA suppressed prolifer-

ation and migration, and triggered apoptosis in BC cells. The
anti-cancer activity of DHA on BC cells can be meaningfully
attributed to the up-regulation of miR-99a that ipso facto inhi-

bit mTOR-HIF-1a-VEGF axis. Regarding the significant
effects of DHA on the expression levels of miR-99a, it seems
that DHA treatment might be used as a useful supplement

for BC therapy.
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