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Abstract Research work on the synthesis, designing and characterization of nanostructures has

been extensively documented in the last decades. This in-depth documentation not only enabled

researchers to understand the relationship between the nanostructure properties, size, shape, and

composition but also have given them immense control over their manufacturing. This enhanced

knowledge, cemented the switching of academic nanotechnology research into industrial products.

However; despite the recent accomplishment in synthesis, characterization and application of the

nanostructure materials, a complete knowledge/information of their interactions with biological

systems is still not available. Hence, it is difficult to forecast the injurious biological responses of

these novel nanostructures to humans, animals, insects and plants. Due to this hesitancy, safety reg-

ulatory authorities and general public have raised their concerns to the manufacturing and use of

nanostructure-based products. Consequently, it is vital for the researchers to concentrate more

on safe designing, manufacturing and characterization of nanostructures before these could meet

human and communal needs. This review is taking an overview of the increasing investments in

nanotechnology, designing, synthesis and characterization of nanostructures and their in vitro

and in vivo toxicities.
ª 2012 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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1. Introduction

In the past decades, extensive research has been carried out

and documented on the synthesis and characterization of
nanoscale materials, which has not only enabled researchers
to have an in-depth knowledge of the relationship between
the properties, size, shape, and composition, but also immense

control over the manufacturing of materials ranging from 1 to
100 nm etc. Early investment in nanotechnology research with
serious intentions begun in the period of 1997–2002 (Table 1),

which rose to 8.6 billion US$ in 2004 (Medintz et al., 2005;
Caruthers et al., 2007) and by 2007 more than 300 nanostruc-
ture based products (Fig. 1a), that accounted for 147 billion

US$, were available in the market (Project on Emerging Nano-
technologies Consumer Products Inventory, 2008). By 2012,
the increase in investment is forecasted to reach 1 trillion

US$. An array of engineered nanostructures (Fig. 1b) such
as carbon nanotubes (CNTs), fullerene and fullerene deriva-
tives, polymer electrospun nanofibers membranes, zinc oxide
(ZnO) nanofibers, gold (Au), silver (Ag), iron oxide (Fe3O4),

titanium oxide (TiO2), silicon oxide (SiO2, quantum dots
(QDs), etc., were produced. Beside this novel processes such
as discharge method, chemical vapor deposition (CVD) and la-

ser ablation (CNTs), electrospinning (polymer and metal oxide
nanofibers), microemulsions (Pileni et al., 1993), and polymeric
coatings (Au-nanoparticles (NPs)) (Suslick et al., 1996), chem-

ical reduction (Leopold and Lendl, 2003; Caswell et al., 2003;
Pillai and Kamat, 2004; Yin et al., 2002; Zhu et al., 2004; Cha-
ki et al., 2004; Sun et al., 2003; Sun and Xia, 2002; Chen and
Huang, 2002; Wang et al., 2005), template method (Faure

et al., 2003; Chen and Carroll, 2002; Mandal et al., 2003;
Malandrino et al., 2004; Behrens et al., 2004; Morley et al.,
2002), electrochemical and/or ultrasonic-assisted reduction

(Johans et al., 2002; Zhang et al., 2002; Ma et al., 2004; Yin
Table 1 Global research and development spending (US $ in

millions) (Borm et al., 2006).

Country/region 1997 2002

USA 432 604

Western Europe 126 350–400

Japan 120 750

South Korea 0 100 pa (for 10 yrs)

Taiwan 0 70

Australia 0 40

China 0 40

Rest of World 0 270
et al., 2003; Cheng and Yao, 2005), photo-induced reduction
(Socol et al., 2002; Shchukin et al., 2003; Zhang et al.,
2003a; Junior et al., 2003; Jin et al., 2003; Mallick et al.,

2004; Kryukov et al., 2003; Cozzoli et al., 2004), microwave-
assisted synthesis (Liu et al., 2004; Yamamoto et al., 2004;
Komarneni et al., 2002; Yin et al., 2004; Qin et al., 2002;

Hornebecq et al., 2003), irradiation reduction (Choi et al.,
2003; Xin et al., 2004; Tsuji et al., 2003; Zheng et al., 2004), mi-
cro-emulsion (Zheng et al., 2003; Zhang et al., 2003b; Maillard

et al., 2003; Maillard et al., 2002; McLeod et al., 2003; Egorova
and Revina, 2002; Naik et al., 2002), biochemical reduc-
tion (Gardea-Torresdey et al., 2003; Shankar et al., 2003;
Kowshik et al., 2003; Ahmad et al., 2003; Bhainsa and DSou-

za, 2006; Shankar et al., 2004) (Ag-NPs), solution precipitation
(Fe3O4-NPs) (Omer et al., 2011), hydrolysis and calcinations,
reactor flame and furnace synthesis (Jang, 2001), sol–gel meth-

od (TiO2 NPs) (Jiu et al., 2007), hydrolysis and condensation
of tetraethylorthosilicate (TEOS) (Corradi et al., 2006), and
two-stage hydrolysis in aqueous medium (SiO2-NPs) (Guo

et al., 2008), were also developed, which opened a new world
of innovative possibilities. These novel materials and methods
are anticipated to have a substantial impact on a variety of

sectors i.e. energy (e.g., solar cells, fuel cell and energy storage
devices, etc.), electronics (e.g., light emitting diodes, silicon
chips, etc.), aerospace (e.g., light weight superior strength
materials, radar absorbing coatings, jet and rocket fuel, etc.)

and medicine (e.g., diagnostic imaging, photodynamic therapy
(PDT) agents, actuators, gene and drug delivery devices,
photothermal treatment triggers, etc.).

As the transition of these novel nanostructures from aca-
demic research findings to industrial products (Maynard
et al., 2006; Tsuji et al., 2006) accelerated (according to a re-

port of Royal Society and Royal Academy of Engineering,
the production of nanomaterials for use in structural, sink care
products and environmental applications will increase in the
range of 10–105 tons/year (Table 2) (Royal Society and Royal

Academy of Engineering, 2004)), the potential direct and indi-
rect threats posed by these products to environment and hu-
man health have begun to surface (Tsuji et al., 2006;

Raviraja and Kandikere, 2007). At present an inclusive knowl-
edge of the interactions of nanostructures with biological sys-
tems is not available (John, 2007). Therefore it is foggy to

predict the harmful biological responses of these novel nano-
structures to humans, animals, insects and plants (Colvin,
2003). Hence, it is obligatory for researchers to concentrate

more on gaining inclusive knowledge of the size, shape, com-
position, and aggregation dependent interactions of nanostruc-
tures with biological system; which would lead to human and



Figure 1 Summary of nanostructures; (a) products and application area (Hansen et al., 2008; Hristozov and Malsch 2009) and

(b) classification.
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communal safety (Royal Society and Royal Academy of Engi-
neering, 2004).

1.1. Nanostructures and their synthesis

The synthesis of nanostructures is as versatile as the materials
themselves e.g., fullerenes, which is an allotrope form of car-

bon (exist as hollow spheres (buckyballs), ellipsoids (closed
quadric surface), and nanotubes (single-walled carbon nano-
tubes (SWCNTs) and Multi-walled carbon nanotubes

(MWCNTs)) occur naturally as combustion products.
Synthetically fullerenes are fabricated by vaporization of
graphite via resistive heating (Krätschmer et al., 1990), com-

bustion of simple hydrocarbons in fuel-rich flames (Howard
et al., 2001) and UV laser irradiation of geodesic polyarenes
(Scott et al., 2002; Scott, 2004). Momentous synthetic chal-

lenges are yet to be overcome to prepare higher order fuller-
enes and their derivatives e.g., 13C-labeled fullerenes,
heterofullerenes, azafullerenes, etc. CNTs were prepared in
1991 via the arc evaporation of graphite (Govindaraj and
Rao, 2002). Soon after, this breakthrough, CNTs were ob-
tained as an end product of ethylene and/or acetylene pyrolysis
over iron (Fe) and cobalt (Co), etc. (Iijima, 1991; Teng et al.,

2010; Ivanov et al., 1994; Faraji and Wipf, 2009). The pres-
ences of metals significantly influenced CNTs size profile
(Sen et al., 1997). MWCNTs were synthesized by the pyrolysis
of metallocenes (ferrocene, cobaltocene, and nickelocene) un-

der reducing conditions; metallocene acted both as a carbon
and metal source (Jang and Yoon, 2003). Pyrolysis of nickelo-
cene at 1100 �C in benzene produced MWCNTs. Replacing

benzene with acetylene, while keeping the rest of conditions
the same, primarily yielded SWCNTs. This change in size
was attributed to the availability of a lesser number of carbon

atoms per molecule (Iijima, 1991). Apart from the aforemen-
tioned techniques, SWNTs were also synthesized from the mix-
tures of dilute hydrocarbon-organometallic (Satishkumar

et al., 1998; Suslick et al., 1996). Owing to the high aspect ra-
tio, strength, electrical conductivity, electron affinity, and
structure versatility, both CNTs and buckyballs have shaped
prospective academic and commercial interests (Bruchez



Table 2 Global production of nanostructure materials (Royal Society and Royal Academy of Engineering, 2004).

Application Nanomaterial device Estimated global production (tons/year)

2003/04 2010 2020

Structural application Ceramics, catalysts, film & coating, composites, metal 10 103 104–105

Sink care products Metal oxides (e.g., TiO2 and ZnO) 103 103 103

Information and

communication

technologies

SWCNT, nanoelectronics and optoelectronics materials

(excluding CMP slurries), organic light emitters

10 102 >103

Biotechnology Nanocomposite, encapsulates, target drug delivery,

diagnostic marker, biosensors

<1 1 10

Environmental Nanofiltration membranes 10 102 103–104
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et al., 1998). Metals (Au, Ag, etc.) and metal oxides (ZnO,

TiO2, SiO2, Fe3O4, etc.) and metal composites (QDs), are the
inorganic functional materials with exceptional optical, electri-
cal and magnetic properties (Frens, 1973; Ullman, 1996). Au

NPs are frequently synthesized via the chemical reduction of
Au salts in aqueous, organic, or mixed solvent systems in the
presence of stabilizers (citrate (http://www.bccresearch.com/

editors/RGB-290.html; accessed July 03, 2011) and thiol-con-
taining organic groups (Medintz et al., 2005). In the process
stabilizers attach to the surface and prevent aggregation via
favorable cross-linking and charge properties), micro-emul-

sions (Suslick et al., 1996), polymer coatings (Moyer, 1965),
etc. Ag existed even before Neolithic revolution; Greeks used
Ag for keeping the drinking water safe and for cooking (Wang

et al., 2005). A variety of techniques have been employed to
synthesize Ag NPs, these include Ag ions chemical reduction
in aqueous (Project on Emerging Nanotechnologies Consumer

Products Inventory, 2008; Pileni et al., 1993; Suslick et al.,
1996; Leopold and Lendl, 2003; Caswell et al., 2003; Pillai
and Kamat, 2004; Yin et al., 2002; Zhu et al., 2004) or non-

aqueous solutions (Chaki et al., 2004; Sun et al., 2003; Sun
and Xia, 2002), template method (Chen and Huang, 2002;
Wang et al., 2003; Faure et al., 2003; Chen and Carroll,
2002; Mandal et al., 2003; Malandrino et al., 2004), electro-

chemical/ultrasonic-assisted reduction (Malandrino et al.,
2004; Behrens et al., 2004; Morley et al., 2002; Johans et al.,
2002; Zhang et al., 2002), photo-induced reduction (Ma

et al., 2004; Yin et al., 2003; Cheng and Yao, 2005; Socol
et al., 2002; Shchukin et al., 2003; Zhang et al., 2003a;
Junior et al., 2003; Jin et al., 2003), microwave-assisted synthesis

(Mallick et al., 2004; Kryukov et al., 2003; Cozzoli et al.,
2004; Liu et al., 2004; Yamamoto et al., 2004; Komarneni
et al., 2002), irradiation reduction (Yin et al., 2004; Qin
et al., 2002; Hornebecq et al., 2003; Choi et al., 2003), mi-

cro-emulsion (Xin et al., 2004; Tsuji et al., 2003; Zheng
et al., 2004; Zheng et al., 2003; Zhang et al., 2003b; Maillard
et al., 2003; Maillard et al., 2002), biochemical reduc-

tion (McLeod et al., 2003; Egorova and Revina, 2002; Naik
et al., 2002; Gardea-Torresdey et al., 2003; Shankar et al.,
2003; Kowshik et al., 2003), etc. Ag NPs have found their

application in drug determination techniques as sensor. TiO2

NPs are the other valuable and mostly used NPs, which are
prepared via low-pressure spray pyrolysis (LPSP) of organic

precursors (Kim and Kim, 2002), hydrolysis and condensation
of titanium tetra ethoxide (TEOT), vaporized water using a
continuous aging tube reactor (Mahshid et al., 2007), hydroly-
sis of titanium isopropoxide (Dreesen et al., 2009), reactive di-
rect-current magnetron sputtering (Figgemeier et al., 2007),

laser pyrolysis of titanium tetrachloride-based gas-phase mix-
tures (Prasad et al., 2010), modified sol–gel technique, etc.
(Jang, 2001). SiO2 was synthesized by the oxidation of tetra-

ethylorthosilicate (TEOS) in the bench-scale diffusion flame
rector (Corradi et al., 2006), hydrolysis and condensation of
TEOS using continuous microwave process (Rao et al.,

2005), two-stage hydrolysis of silicon powder in aqueous med-
ium (Chang et al., 2008), ultrasonic sol–gel process (Gupta and
Gupta, 2005), flame pyrolysis, etc. (Guin and Manorama,
2008). Quite a few iron-based oxides, alloy, heterodimers and

core shell materials not only exist in nature but could also be
efficiently synthesized in various size. One of the most eco-
nomic and environment-friendly method is co-precipitation.

This method involves the co-precipitation of Fe2+ and Fe3+

ions in strong basic aqueous media. Beside co-precipitation,
these could be also synthesized via in situ approach at room

temperature in the presence of modifier. Highly dispersible a-
Fe2O3 NPs were synthesized in the presence of oleic acid/tolu-
ene mixture at atmospheric pressure, low temperature, and at

an ultra-dense reagent concentration using basic media (e.g.,
aqueous ammonia solution) (Iijima et al., 2008). Iron-based
nanostructures (Fig. 2I) due to their better biocompatibility
compared to other magnetic oxides or pure metals are fre-

quently used in biomedical investigation (Fig. 2II) (Iijima
et al., 2008).

QDs are metalloids e.g., CdSe/ ZnS in which the crystal-

line CdSe is the core and ZnS is the shell. The core is usually
composed of a noble transition metal or semiconductor metal
complex whereas the shell is formed during synthesis. The

shell as discussed shields the core by making a hydrophobic
layer around the core hence reduces QDs use in biological
fields. To utilize QDs in biological fields these need to be bio-
compatible. Therefore, these are usually coated with hydro-

philic materials, which improve the water wetting ability/
solubility of QDs. Due to the quantum constraints imposed
on electrons by the finite size, QDs display a fine fluorescence

band (Wiesner and Bettero, 2007), which, make them optimal
fluorophores for in vivo biomedical imaging (Aillon et al.,
2009; Alivisatos, 2004). Fluorescent QDs with bioactive moi-

eties (e.g., antibodies, receptor ligands) were not only used for
the labeling of neoplastic cells, peroxisomes, deoxyribonucleic
acid (DNA), and cell membrane receptors, but could also be

used as target specific delivery device that could deliver gene
and drugs to site-specific targets. Beside biomedical applica-
tions, QDs have also been used in the manufacturing of ad-
vance light-emitting diode (LED) and ultrahigh-density data

http://www.bccresearch.com/editors/RGB-290.html
http://www.bccresearch.com/editors/RGB-290.html


Figure 2 (I) Schematics of iron-based nanostructures (a) Fe3O4 NPs,(b) FePt alloy,(c) Fe3O4–Au heterodimers, (d) or FePt–Au, (e)

yolk–shell nanostructures with FePt core and CoS2 shell, (f) or Pt–Fe2O3,(g) Fe3O4 and/or (h) Fe2O3 hollow nanocrystals. (II) Different

approaches for achieving therapeutic effect using NPs. In the first instance, degradation of the FePt NPs releases iron ions or iron and

platinum ions simultaneously (partial (top left) or complete (lower left,) whereas in the second instance, NPs are loaded with cisplatin

either by grafting the drug onto the surface of the Au domain in Au–Fe3O4 dumbbells (top right) or by embedding the drug in the inner

regions of the hollow Fe3O4 NP (lower right). All reported systems are responsive to the decrease of the pH. The drug was released in the

controlled manner (Figuerola et al., 2010).
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storage and quantum information processing (Hardman,
2006).

1.2. Nanostructures and characterization techniques

Biological properties of nanostructures are sensitive to both

physical characteristics (such as size, shape, surface area to vol-
ume ratio, agglomeration, dissolution rate, etc.) and chemical
composition of the nanostructure surface. These could impart
unique mechanisms of toxicity to nanostructures (Lanone and

Boczkowski, 2006). Surface composition in particular deter-
mines the nature of chemical interactions of nanostructures
with the target whereas the limited bulk volume is hidden

(Powers et al., 2006). It is therefore essential for nanostructures
to be compatible to a particular system. This could be done by
proper surface functionalization e.g., in biological use nano-

structures could be functionalized to alter their biological func-
tions, improve their biocompatibility, interactivity with
biological materials, breaking into cells, etc. Non-degradable
nanostructures gather in organs and in intra-cellular vicinity

and cause detrimental effects (e.g., lysosomal storage diseases)
to the cell (Garnett and Kallinteri, 2006). Biodegradable nano-
structures containing transition metals, on the other hand

could discharge toxins to the biological environment. These
toxins might generate highly unstable species (free radicals),
which would result in cellular damage (Lanone and Boczkow-
ski, 2006; Fischer and Chan, 2007). Another major cause of

nanostructure toxicity is their aggregation. Aggregation arises
from size, intrinsic high dispersion and surface energy, and af-
fects colloidal stability, homogeneity, cell or bacterial uptake/

targeting, etc. It is therefore critical to perform sizing and
aggregation stability assays of the nanostructures in biological
solution, before studying their colloidal stability, homogeneity,

cell or bacterial uptake/targeting, etc. The methods used more
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recently for the determination of particle sizes and their aggre-
gation are; direct imaging techniques (Transmission Electron
Microscopy (TEM), Scanning Electron Microscopy (SEM),

Atomic Force microscopy (AFM), etc.), spectroscopic tech-
niques (Energy Dispersive X-ray Spectroscopy (EDS), Optical
Spectroscopy, Ultra violet and visible (UV–vis) Spectroscopy,

X-ray absorption spectroscopy, Surface Plasmon Resonance
(SPR), etc.), fluorescent techniques (Time-Resolved Fluores-
cence Polarization Anisotropy (TRFPA)), light scattering

technique (Dynamic Light Scattering (DLS)), etc. However,
these methods have their limitations and do not often come
with significant results in complex systems. These could only
produce best results either in pre-experimental characterization

or when corroborated with other techniques. TEM is a con-
ventional direct electron imaging technique used to study mor-
phology, shape, size distribution and aggregation of non-

metallic (Fig. 3d–e) and metallic nanostructures (Fig. 3f–h)
(Tian et al., 2006; Soto et al., 2007; Jones and Grainger,
2009; Davoren et al., 2007; Wilson et al., 2002; Geiser et al.,

2005), though in the former case Emission Field Transmission
Electron Microscope (EFTEM) was used due to the energy fil-
tering variation. However, having said this ex-situ particle

aggregation information provided by TEM does not essen-
tially represent the in situ aggregation states. The main cause
for this limitation is the sample artifacts, produced in the sam-
ple during its preparation. To avoid the formation of artifacts,
Figure 3 SEM micrographs of (a) MWCNTs, (b) chitosan nanofibers

of f-MWCNTs/caprolactone composite nanofibers, (f) Ag NPs, (g) ma

cyclodextrin coated magnetic NPs (Haider et al., 2007; Haider and Park
flash freezing and desiccation techniques could be used during
sample preparation. This is quite tiresome and needs a lot of
practice. For this very reason, TEM should be corroborated

by other methods, e.g., zeta-potential, gel electrophoresis,
etc. (Jones and Grainger, 2009). Sometimes, TEM are also
equipped with EDS for obtaining elemental analysis, X-ray

absorption spectroscopy for determining three dimensional
structures and AFM for measuring particle surface morphol-
ogy in three dimensions. Despite its limitations, TEM is widely

used and still considered a potent apparatus to discriminate
between crystalline , amorphous particulate and aggregation
(e.g., distinguishes fullerene aggregate from fullerene crystal-
line in resin-fixed and freeze-dried cells) (Jones and Grainger,

2009; Davoren et al., 2007; Wilson et al., 2002; Geiser et al.,
2005; Soto et al., 2006). SEM is another potent technique,
mainly used for studying the surface features of materials; be-

side this it has also been used for particles sizing and aggrega-
tion studies. Traditional SEM requires ultra-high vacuum
conditions (UHV) and dried samples (Fig. 3a–c) (Jones and

Grainger, 2009) and has its limitation in getting accurate data
in situ. This problem has been solved and more recently the li-
quid (water) surface and objects in the vicinity of liquid surface

could be imaged under the same UHV conditions using Emis-
sion Scanning Electron Microscopy (ESEM). Furthermore, a
modification in the standard ESEM protocols (to utilize a Pel-
tier element (to control evaporation)) and transmission mode
, (c) freeze-dried chitosan nanofibers, (d) and (e) TEM micrographs

gnetic NPs coated with oleic acid and (h) maleic anhydride-co-b-
, 2009; Saeed et al., 2006; Alothman et al., 2010; Omer et al., 2011).
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of the instrument (wet scanning transmission electron micros-
copy (STEM)) expanded the abilities of ESEM to micro-image
emulsions and particle suspensions (Bogner et al., 2005).

SPR optical effects are shape, diameter, surface adsorbates
and inter plasmonic particles distance dependent. Metals
and metal NPs show size-dependent absorption and scattering

of light through excitation of the metal’s plasmon band elec-
trons. Binding of adsorbate to metal could modify the surface
interband electronic states, which could result in the change of

surface plasmon band extinction. Au/Ag NPs are frequently
sized by measuring their extinction wavelength (Jones and
Grainger, 2009). As the average diameter of metal NPs in-
creases, the plasmon peak shifts from red to higher optical

and extinction wavelengths. The shift in the absorption and
extinction wavelengths differentiates between clean and ligand
adsorbed NPs (e.g., contaminants, stabilizing layers, proteins,

DNA, etc.) (El-Sayed, 2004). On the contrary a shift in absor-
bance from red to blue color, when the inter-NP distance is
smaller than average NP diameter, could be used as a particle

aggregation indicator, e.g., a shift from red to blue color for
Au colloidal solution indicates aggregation. However, this
technique has its limitation for application in biological envi-

ronment, because in such an environment non-specific adsorp-
tion induces particle aggregation; therefore it is difficult to
distinguish the effects of particle surface adsorption and the
resulting aggregation. DLS is used extensively for the measure-

ment of NPs hydrodynamic size in solution, aggregation
(Fig. 4a and b) and polydispersity studies (Omer et al., 2011;
Lin et al., 2006). However, NPs sizing analyses by DLS need

a high level of expertise in calibrating the instrument, under-
standing positive and negative controls, purities and optical
data modeling algorithms for predicting size distribution. A

large number of particle size distribution studies (for spanning
metals, metal oxides and polymers) use this technique blindly
as an automated method with default scattering models and

curve fitting assumptions; that are neither described, justified
or validated. Unwanted adsorbates and solutes in NP systems
could be removed via dialysis or centrifugation and aggregates
could be broken up in sonication bath (Tian et al., 2006). How-

ever, care must be taken during sonication (bath or probe)
Figure 4 (a) Schematic of DLS setup and (b) hydrodynamic radii m

et al., 2011).
since it is hard to standardize their density, dose, power, local
heating, etc. These parameters every so often have unnecessary
effects on the sample, e.g., the shedding of metal particles from

the probe tip and oxidation of surface active sites. (Castner,
2008). Theoretically DLS is better applied in micro-scale size
regimes in which particles scatter much more light compared

to nano-size regimes. The presence of small amounts of con-
taminants easily tilt DLS data; beside this NP solutions are
very sensitive to small changes in salt (increasing salt concen-

tration decreases colloid stability) and protein (charge stabi-
lized particles aggregate rapidly in the presence of protein
(oppositely charged)) (Jones and Grainger, 2009).

Therefore, it is essential to design DLS studies of NPs care-

fully. Sample calibration could be carried out with sizing stan-
dards appropriate to the experiment. A number of standards
are accessible, which could aid researchers; these are; Ameri-

can society for testing and materials (ASTM) standard for
determination of NP size distribution in suspension using pho-
ton correlation spectroscopy (ASTM E2490-08) and the na-

tional institute of standards and technology (NIST), ‘‘gold
standard’’ (NIST RM8011, NIST RM8012 and NIST
RM8013), etc. In case of the biological environment (which

is sensitive to ionic strength, polymer, surfactant, peptide, pro-
teins, etc.), researchers are hunting for more precise tech-
niques, which would enable them to acquire highly
reproducible data. TRFPA could determine the NP size from

1 to 10 with 0.1 nm resolutions by correlating fluorescence
polarization decay time to fluor or particle size (hydrodynamic
radius). TRFPA utilizes sub-nanosecond-resolution laser

pulses and detectors to excite fluors in assay environment.
The decay of fluorescence polarization distinguishes particle
or fluor binding to receptors from assay components. TRFPA

has the potential to track the pathways of toxicity by relating
labeled NPs fluorescence anisotropy to NPs-cell receptor inter-
actions and by correlation with toxicity endpoints (Jones and

Grainger, 2009). So far this method has not found ample appli-
cation in nano size distribution assays. Besides the above tech-
niques, large angle X-ray diffraction (XRD) (Omer et al., 2011;
Castner, 2008), multi-angle laser light scattering (MALLS) in

combination with UV–vis spectroscopy, small angle X-ray
easurement of poly (NIPAAm)–MNPs in aqueous medium (Omer
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scattering (SAXS) and small angle neutron scattering (SANS)
have also been used for regularly sizing nanostructures.

2. Nanostructures as a potential toxic hazard

With numerous nano products already in the market, the de-
bate on their potential threats and societal implications has

gained moment. A worldwide 1.5–2 million human deaths
per annum attributed mostly to indoor nano-particulate air
pollution show the severity of the problem. A careful review

of nanotoxicity will not only aid in determining environmental
and health risks of the marketed nanostructures but will also
facilitate industry to develop safer nano-products. These mea-

sures will help improve the public trust of the nanotechnology
industry (Hoet et al., 2004; Usenko et al., 2007). The unex-
plored risks associated with nanostructures, as discussed in

the previous section, lead to complication when used in biolog-
ical system. Hence it is imperative to take into account nano-
structures’ agglomeration (coagulation and coalescence),
sedimentation and diffusion at relevant physiological concen-

trations while performing their quantitative studies in biologi-
cal systems. Additionally, it is also essential, to evaluate the
risk posed by nanostructures to ecology and conclude their

environmental gravity. In the ecosystem the fate of nanostruc-
tures is controlled by solubility/dispersability, agglomeration
(coagulation and coalescence), natural/anthropogenic chemi-

cals, etc. Alumina (Al2O3), TiO2 and ZnO NPs are commonly
used in the preparation of the UV protection products such as
scratch-resistant transparent coatings and sunscreen lotions.
Among these Al2O3 have been observed to retard the root

growth of the corn, cucumber, soybean, cabbage and carrot
(phytotoxicity). At present only TiO2 NP based sunscreen fil-
ters are the only authorized (on the European Union directive

on cosmetics list of permitted UV filter) sunscreen filters (Sal-
vador and Chisvert, 2005). Fullerene-C60, affects the ecosystem
by elevating lipid peroxidation (LPO) in aquatic species
Table 3 Toxicity of some selected nanostructures (Wiesner et al., 2

Nanomaterial

Fullerene C60 water suspension

C60 encapsulation in poly(vinyl-

pyrrolidone), cyclodextrin, or

poly(ethylene glycol)

Hydroxylated fullerene

Carboxyfullerene (malonic acid

derivatives)

Fullerene derivatives with

pyrrolidine groups

Other alkane derivatives of C60

Metallofullerene

Silicon dioxide (SiO2)

Titanium dioxide (TiO2) (Anatase)

Zinc oxide (ZnO)

Silver (Ag)

Molybdenum trioxide (MoO3)
(Daphnia and Pimephales) and gene expression associated to
inflammatory response and metabolism in CYP2 family.

Having discussed NPs toxicity, it must be right to say that

all NPs are not hazardous. The toxicity assay of SiO2 NPs car-
ried out on mice (used as model) showed that SiO2 NPs are
harmless and could be used in vivo. Furthermore, the environ-

mental risks associated with the manufacturing of SWCNTs,
C60, QDs, alumoxane (Al2O3 based particles, analogous to
poly-siloxanes) and TiO2 NPs were reasonably low as com-

pared to those common industrial manufacturing processes.
However prolonged exposure to these materials may cause
chronic toxicity. Today, the need has aroused to categorize re-
gimes to protect human resource involved in the manufactur-

ing and utilization of NPs for cosmetic, medical and
agricultural purposes (Royal Society and Royal Academy of
Engineering, 2004). However, this should not be the end of

search for ecologists, further work is needed to draw conclu-
sion about the toxicity threshold and determine whether or
not a particular NP has toxic effect to ecology. Cytotoxicity

associated NPs exposure is somewhat particle specific (Table 3)
some cases are discussed in the below sections (Wiesner et al.,
2006; Braydich-Stolle et al., 2005).

2.1. In vitro assessment of nanostructures toxicity

The toxicity of carbonaceous NPs has been widely studied and
numerous cellular interaction/cytotoxicity mechanisms (Fig. 5)

for SWCNTs and MWNCTs are reported in the literature.
SWCNTs containing iron traces (unrefined) exerted oxidative
stress and caused cellular toxicity in human epidermal kerati-

nocytes in the concentration range of 0.6–0.24 g mL�1 and
exposure of 2–8 h (Shvedova et al., 2003) and purified
SWCNTs inhibited cell reproduction and decreased cell adhes-

ability in human embryo kidney cells (HEK293) in the
concentration range of 0.8–200 lg mL�1 (Cui et al., 2005),
whereas functionalized SWCNTs caused cytotoxicity in the
006).

Toxicity

Antibacterial; cytotoxic to human cell lines; taken up by

human keratinocytes; stabilizes proteins

Damages eukaryotic cell lines; antibacterial

Oxidative eukaryotic cell damage

Bactericidal for gram-positive bacteria; cytotoxic to

human cell lines

Antibacterial; inhibits cancer cell proliferation; cleaves

plasmid DNA

Anti mutagenic; cytotoxic; induces DNA damage in

plasmids; inhibits protein folding; antibacterial;

accumulates in rat livers

Accumulates in rat livers

Pulmonary inflammation in rats

Antibacterial; pulmonary inflammation in rodents

Antibacterial (micrometer scale); pulmonary effects in

animals and humans

Most toxic to spermatogonial stem cell line in the male

germ line

Least toxic to spermatogonial stem cell line in the male

germ line



Figure 5 Schematic shows two mechanisms for nanomaterial

interactions with cell; (1) endocytosis/phagocytosis and (2) nano-

penetration. Endocytosis is the engulfing of extracellular particles

of 100 nm in size through the creation of a vesicle. The vesicle is

then included into the cell. Phagocytosis is analogous to endocy-

tosis; however, involves large particles (such as bacteria (1 lm)

uptake and is characteristic to a subset of immune cells/phagocytes

(e.g., neutrophils, macrophages, dendritic cells) (Firme and

Bandaru, 2010).
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human dermal fibroblasts (Lewinski et al., 2008). Further-
more, SWCNTs with a trace amount of metal catalysts (other

than iron) showed a more toxic response to alveolar macro-
phages isolated from guinea pigs compared to MWCNTs,
quartz and fullerene and could prove to be a potential occupa-
tional health hazard when inhaled (Davoren et al., 2007). Pris-

tine MWCNTs in the concentration of 0.1, 0.2, and
0.4 mg mL�1 and exposure of 1–48 h, decreased the viability
of human osteoblastic lines and human epidermal keratino-

cytes. MWCNTs after oxidation were observed to be more
cytotoxic toward Jurkat T leukemia cells (Monteiro-Riviere
and Inman, 2006). The results of the cytotoxicity studies car-

ried out in the bacterial system using pristine and physico-
chemical modified MWCNTs (i.e., decapped, exfoliated,
small, and highly dispersed in solvent) showed maximum tox-
icity in the latter case. These results concluded that the physi-

cochemical characteristics are vital in toxicity caused by CNTs.
Hence it is imperative to take into account the physicochemical
characteristics of CNTs while documenting their toxicity.

Contrasting reports about the toxicity caused by fullerenes
(C60) are available/documented in the literature, e.g., in one re-
port the viability of bovine and human alveolar macrophages

reduced and the levels of cytokine mediators of inflammation
(i.e., IL-6, IL-8 and TNF) increased when exposed to sonicated
C60, while in another, no toxicity of C60 and raw soot was

found. This inconsistency between the two results could be
attributed to the two different analyzing techniques e.g., in
the former case viability assay based on metabolic activity
was used while in the latter TEM was used to micro-image
the distributions of C60 within the macrophages. Furthermore
dose-dependent cytotoxicity of C60(OH) and C60-phenylala-
nine resulted in the decrease of cell density and lactate dehy-

drogenase (LDH) release in human umbilical vein
endothelial cell cavity and cell viability of human epidermal
keratinocytes (no contribution was attributed to phenylalanine

group). The toxicity caused by QDs is mainly affected by its
composition, size, surface charge and outer surface coating.
Cadmium selenide (CdSe)/zinc sulfide (ZnS) QDs coated with

dihydrolipoic acid (DHLA) showed toxicity to mammalian
cells, whereas CdSe/ZnS QDs coated with albumin showed ad-
verse effects on mouse lymphocytes. QDs also showed size,
light and temperature dependent cytotoxicity e.g., under the

same conditions, positively charged small (i.e., 2.2 ± 0.1 nm)
QDs exhibited stronger cytotoxicity compared to large (i.e.,
5.2 ± 0.1 nm) ones. The exposure of DNA to CdSe/ZnS in

the presence of ultraviolet (UV) light caused 56% damage to
DNA compared to the 29% in the absence of UV light. Simi-
larly CdSe/cadmium sulfide (CdS) showed toxicity to cancer

cells at 37 �C, whereas at 4 �C no toxicity was observed at
all. Metal NPs such as Ag is an effective bactericide against
S.epidermidis; it effectively kills E. coli bacteria too. Whereas

exposure of immortalized rat lung epithelial cells to
520 lg cm–2 Zn NPs for 1 h increased the production of
LDH levels (an indicator of inflammation). Metal oxide NPs
such as Anatase TiO2, SiO2, and coated Fe3O4 killed human

dermal fibroblast (HDF) cells at a lethal concentration
(LC50) of 3.6 lg mL�1, decreased the viability of human lym-
phoblastoid cells (at the concentration of 0–130 lg mL�1 and

exposure time of 6–48 h), significantly inhibited replication
and transcription in human epithelial HEp-2 cells (at the con-
centration of 25 lg mL�1 exposure time of 24 h), and de-

creased the viability of human monocyte macrophages,
respectively (Hristozov and Malsch, 2009).

2.2. In vivo assessment of nanostructures toxicity

Nanostructures have shown dose, size and functional group
dependent in vivo toxicity. The carbonaceous nanostructures

such as SWCNTs have shown interstitial inflammation and le-
sions in mice and rats at the concentration of 0–0.5 mgÆkg�1

and exposure of 7 to 90 days (Lam et al., 2006). SWCNT soot

was also found to cause pulmonary granulomas in rats at con-
centration of 1 and 5 mgÆkg�1 and exposure of 24 h to
3 months. The first study was dose dependent whereas the lat-

ter was dose independent. The eco-toxicity study carried out
on a rainbow trout exposed to SWCNTs (sonicated in the con-
centrations of 0.1, 0.25 and 0.5 mg L�1 with surfactant (so-
dium dodecyl sulfate (SDS)) for 24 h to 10 days showed not

only a dose-dependent increase in ventilation rate, gill pathol-
ogies (edema, altered mucocytes, hyperplasia), and SWCNT
precipitated mucus secretion but also substantially decreased

thiobarbituric acid reactive substances (TBARS) in gill, brain
and liver (Hristozov and Malsch, 2009; Smith et al., 2007;
Warheit et al., 2004). On the other hand MWCNTs showed

size and morphology dependent acute toxicity in rats with
the lethal dose (LD90) of 5 mgÆkg�1 (e.g., lengthy MWCNTs
caused substantial inflammation and tissue damage in mice

compared to shorter MWCNTs). Furthermore MWCNTs sol-
uble in aqueous medium did not show strong inflammatory ef-
fects in mice. Functionalized C60 e.g., hydroxylated C60 (C60

(OH)) caused acute oxidative stress in living organisms e.g.,
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substantial increase in lipid peroxidation (LP) was observed
when C60 (OH) at the concentration of 1 mg kg�1 was admin-
istrated intravenously in male mongrel dog. Likewise, high LP

was also found in the brain and gills of daphnia magna on
exposure to C60 (OH) and in tetrahydrofuran (THF) dispersed
C60 (no contribution of THF was observed). Metal and metal

oxide NPs provoke harsh lung toxicity in mice compared to bulk
materials of the same type (Li et al., 1999). Zn NPs showed tox-
icity to humans at higher concentration (e.g., the exposure to a

concentration of 5 mg m�3 Zn NPs for 2 h, causes sore throat,
chest tightness, headache, fever, chills, etc.) whereas at low con-
centration (i.e., 500 lg m�3) no such effect was observed. Zn
NPs were also observed to cause lethargy, anorexia, vomiting,

diarrhea, loss of body weight and even death in mice when
administered gastro intestinally whereas a decreased effect was
noted for micro-scale Zn at equal concentrations. Al NP admin-

istration of 2 mg mL�1 for 24 h inhibited the growth of Zea mays
(corn), glycine max (soybean), Brassica oleracea (cabbage), and
Daucus carota (carrot). Metal oxide NPs such as TiO2 and SiO2

also caused size dependent toxicity (e.g., smaller TiO2 and SiO2

NPs caused severe pulmonary damage in mice and severe lung
inflammation in rats, respectively) compared to their larger

counterparts. Administration of a single-dose intravenous bolus
of NPs at concentrations of 20 and 200 mg kg�1 caused hypoac-
tivity, ataxia, emesis, exophthalmos, salivation, lacrimation, dis-
colored and mucoid feces, injected sclera, and yellow eyes in

dogs and a substantial increase in fetal skeletal malformations
in rats and rabbits (Hristozov and Malsch, 2009).

3. Conclusion

Investment in nanotechnology is on the rise and a variety of
engineered nanostructures and processes has emerged. Despite

the increased investment and improved knowledge in the de-
sign and synthesis of nanostructure materials, an in-depth
knowledge of their size, shape, composition and aggregation
dependent interactions with humans, animals, insects and

plants are still foggy. Beside, this, the characterization methods
need be to carefully calibrated and used. The toxicity testing
protocols should be made more specific as it is not wise to gen-

eralize it for all NPs. At the present rate of research and devel-
opment in nanotechnology, we may require quite a few years
to understand the health and environmental risks and then

form an environmentally safe protocol to protect human re-
source involved in the manufacturing and use of NPs. To
achieve this goal a comprehensive and collaborated strategy

between industrialists, government, toxicologists and material
scientists will be very helpful.
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