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Abstract In the present investigation, ZnO nanoflakes was prepared via sonochemical synthesis

route. Effect of ultrasonic treatment time was studied based on structural, morphological and opti-

cal properties. X-ray diffraction (XRD) reveals the formation of wurtzite hexagonal crystalline

structure of ZnO nanoflakes. Ultrasonic treatments affected the crystallite size and the density of

dislocation, which is due to increased nucleation and growth rates of nanoflakes. The samples syn-

thesized at 40–50 min ultrasonic treatment showed a strong absorption band at 605 and 650 (cm�1)

versus other treatments, which is an indication of 2D nanostructure (nanoflakes). FE-SEM analysis
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further confirms the formation of 2D nanostructures of the ZnO. The composition and purity was

confirmed by the energy dispersive X-ray (EDX) analysis, which displays the occurrence of Zn and

O elements in the sample. Photocatalytic activity (PCA) of ZnO nanoflakes was studied for methyl

orange (MO) dye degradation under UV light exposure and up to 93.13 % dye degradation is

achieved within 90 min. Effect of various parameters (dye concentration, mass of photocatalytic

material) and kinetic study was also performed. Results revealed that the ultrasonic treatment

affected the optical and photocatalytic properties of the of ZnO nanoflakes, which could be

employed for the remediation of dyes in textile effluents.

� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

For the purification of water, nanostructures have been shown promis-

ing efficiency due to their unique properties. Due to their size at nanos-

cale, the nanostructures possess higher surface area, which have

promising application in different fields (Manohar and

Krishnamoorthi, 2017; Manohar et al., 2022). The water is the impor-

tant factor for sustaining lives and the water sources are reducing in

response of over utilization of water due to increasing the population,

industries and sewage water mixing with water resources without any

treatment, which is one of major issue worldwide. It is the global need

to improve the technologies for the water treatment and purification to

avoid negative impact on living organisms (Nazir et al., 2021; Khalid

et al., 2021; Iqbal et al., 2019).

The ZnO is a semiconductor with 60 meV of exciton binding energy

and 3.37 eV band gap energy, which has applications in different fields,

i.e., solar cells, optical, electronic, and audio devices, gas and chemical

monitors, films, catalysts, lasers, recording arrays and biological appli-

cations (Manohar et al., 2021; Salem and Awwad, 2022; Awwad et al.,

2020). To date, numerous approaches are developed for the fabrication

of ZnO nanostructures, i.e., sol–gel, electrochemical, hydrothermal,

soft chemical, sonochemical methods etc (Bukhari et al., 2022; Azam

et al., 2022; Ashar et al., 2021; Perveen et al., 2020; Noreen et al.,

2020; Mohsin et al., 2020; Ata et al., 2019; Ata et al., 2018). Among

all the approaches described, the sonochemical route is one of most

cost-effective, efficient, and simple way for synthesis of different

nanostructures (Askarinejad et al., 2011; Manohar et al., 2020).

The synthesis route affected the nanoparticles properties signifi-

cantly (Manohar et al., 2021; Manohar et al., 2022; Manohar and

Krishnamoorthi, 2017; Iqbal et al., 2020) and the concept of acoustic

cavitation is used in this sonochemical approach, which utilize pressure

pulses and ultrasonic energy, which causes physiochemical modifica-

tions in the materials exposed the ultrasonic energy. Ultrasonic treat-

ment can considerably improve the rate of exchange of precursor to

nanoscale size crystals without the use of high-temperature heating

or surfactants. Another advantage of adopting the sonochemical

approach is that the size and crystallinity of the synthesized structures

that may be precisely regulated (Banerjee et al., 2012).

ZnO and/or ZnO nanocomposites-based nanostructures have been

extensively used for as a catalyst for the removal of dyes. For instance,

Xu et al. reported that methyl orange could be degraded with 78 %

efficiency in 240 min using Co-ZnO NPs synthesized by a hydrother-

mal route (Xu et al., 2010). For instance, ZnO-TiO2 composite was

synthesized using sol–gel method with the aid of surfactant, sodium

dodecyl benzene sulfonate (DBS). The synthesized nanoparticles were

used for photo-degradation of MO (Liao et al., 2008). Furthermore,

the nanostructures were synthesized via surfactant-based synthesis

processes make the process costly. Therefore, surfactant free synthesis

of ZnO NPs synthesis by have not been studied, hence, the ZnO sur-

factant free synthesis can be performed under ultrasonic treatment.

Based on aforementioned facts, the effect of variation of ultrasonic

treatment (energy) on ZnO nanoflakes formation is studied in the pre-

sent investigation. The effect of ultrasonic treatment was studied on
the basis of structural, morphology, optical and photocatalytic proper-

ties. The PCA of ZnO was studied for MO dye degradation under UV

light exposure.

2. Material and methods

2.1. Synthesis procedure

The Zn(NO3)2�6H2O, NaOH was precured from Sigma-

Aldrich. Zn(NO3)2�6H2O (3 g) was dissolved in 100 mL water
and agitated for 15 min. Then, 20 mL of solution was subjected
to ultrasonic treatment using UC-D10 ultrasonic BMS of fre-

quency 35 kHz for 10 min. 1 M NaOH was added along with
ultrasonic treatment, which results in the white precipitates
formation. The sonicator was initially set to room temperature

while due to ultrasonic agitation its temperature rises to 50 �C.
The precipitates are rinsed with water, filtered and dried for
overnight at 60 �C. A total 5 samples were prepared for 10–

50 min ultrasonic treatments. The schematic ZnO synthesis is
depicted in Fig. 1.

2.2. Photocatalytic activity

The PCA of ZnO was appraised by MO degradation under
UV radiation. Initially, the dye solution was prepared by dis-
solving different concentrations of MO (30 mg, 40 mg and

50 mg) in 1000 mL of water. ZnO (0.2 g/L, 0.4 g/L and
0.8 g/L) was mixed to dye solution of MO and agitated at
room temperature for 1 h. The suspension was then put under

UV irradiation up to 60 min. At different ultrasonic treatment
time (50 min), 2 mL suspension was taken, fileted and residual
concentration was measured dye degradation was calculated
using Eq. (1).

Degradation rate %ð Þ ¼ A0 �A

A0

ð1Þ

where, A0 and A are the values of absorbances before and after

treatment, respectively.

2.3. Characterization

The Bruker D8 advance X ray diffractometer equipped with
Ni filter having CuKa (0.15406 nm) was used to analyze the
phase identification of prepared samples. The scanning range

and step size were 30–70� and 0.05� respectively. The FE-
SEM, FEI Nova NanoSEM equipped with EDX, was used
to obtain the morphology of prepared samples. Moreover,
the detailed observations were attained through 20 kV. The

http://creativecommons.org/licenses/by/4.0/


Fig. 1 Schematic presentation of ZnO synthesis by sonochemical route.
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FTIR Bruker Tensor II was used to examine the functional

groups. Also, by using Rock Solid Interferometer, spectrum
was recorded in 600–2000 cm�1 range having resolution
4 cm�1. UV–vis spectra was obtained from SPECORD 210

PLUS Spectrometer.
The crystallite size has been calculated by Scherer’s equa-

tion from full width half maximum (FWHM) of diffraction

peak (Eq. (2)) (Cullity, 1956).

D ¼ kk
Bcosh

ð2Þ

where, D, k and k are the crystallite size, constant, and wave-

length (CuKa), respectively. The (101) plane (the strongest) is
selected to determine the crystallite size. The number of dislo-
cations per unit volume is a dislocation density (d), which can

be estimated Eq. (3) (Barret and Massalski, 1980), Lattice
parameter ‘a’ for plane (100) was obtained using Eq. (4)
(Cullity and Stock, 2001), while the lattice constant ‘c’ was esti-
mated using Eq. (5) (Manohar and Krishnamoorthi, 2017).

d ¼ 1

D2
ð3Þ

a ¼ kffiffiffi
3

p
Sinh

ð4Þ

c ¼ k
Sinh

ð5Þ

The d-spacing is found out by using the Bragg law (Eq. (6))

(Manohar and Krishnamoorthi, 2017), d-spacing was esti-
mated using Eq. (7) (Cullity and Stock, 2001) and ZnO the
ZnAO bond length is given by Eq. (8) (Ahson et al., 2020).

d ¼ k
2Sinh

ð6Þ
1

d2hkl
¼ 4

3

h2 þ k2 þ l2

a2

� �
þ l2

c2
ð7Þ

L ¼
ffiffiffiffiffi
a2

3

r
þ ð1=2� lÞ2c2 ð8Þ

where, a, c, l are the lattice constants and measure of an atom
displacement to the neighboring atom along the ‘‘c” axis. l is

calculated using Eq. (9) (Ahson et al., 2020).

l ¼ a2

3c2
þ 0:25 ð9Þ
3. Results and discussion

3.1. XRD analysis

The XRD patterns of ZnO synthesized at 10, 20, 30, 40, and
50 min of ultrasonic treatments are analyzed for their crystal

structure and phase. With 10 min of ultrasonic treatment,
XRD pattern (Fig. 2a-c) reveals that the samples exhibit Zn
(OH)2 traces (JCPDS card No: 41-1359) along with ZnO phase

(JCPDS card No: 36-1451). After 40 min of ultrasonic treat-
ment, Fig. 2d revealed the formation of pure ZnO phase
because no additional peaks are appeared in the spectra, which
is an indication that Zn(OH)2 are changed into ZnO phase.

After 50 min of sonochemical treatment, sharp and well-
oriented peaks are seen. The reflection from the (100),
(002), (101), (102), (110) and (113) crystal planes of the

hexagonal wurtzite ZnO structure correspond to the diffrac-
tion peaks for final samples at angles 2h of 31.65168�,
34.33475�, 36.11539�, 47.39467�, 56.44974� and 62.04196�
(Ahson et al., 2020). Standard data showed that all peaks cor-
responded to the hexagonal phase of zinc oxide (JCPS card



Fig. 2 XRD patterns of ZnO nanoflakes prepared at different

ultrasonic treatment time (a) 10 mins, (b) 20 mins, (c) 30 mins, (d)

40 mins and (e) 50 mins: ‘‘*” indicates the ZnO peaks (JCPDS 36-

1451) and ‘‘” indicates the Zn (OH)2 (JCPDS-41-1359).
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No. 36-1451). The hexagonal wurtzite structure of ZnO pre-
pared over a range of ultrasonic time values are alike
(Fig. 2). These results indicate that pure zinc oxide nanoflakes
have been synthesized. Nanometer range is indicated by broad-

enings of diffraction peaks. ZnO prepared by the ultrasonic
treatment time shows that this variation in time has a signifi-
cant impact on particle size and structure. By increasing time

there is a decline in the intensity of peak of Zn(OH)2. ZnO
phase purity was observed at 40 and 50 min of ultrasonic treat-
ment due to the higher synthesis rate that was achieved using

this method as opposed to conventional stirring (Gharat and
Rathod, 2013). As the ultrasonic treatment time increases,
the FWHM decreases as well. ZnO nanoflakes growth has

been observed at higher ultrasonic treatment time. The growth
Fig. 3 Proposed formation me
rate change along the various crystallographic planes is
accountable for this phenomenon (Fig. 3). They used zinc
nitrate hexahydrate as precursor of Zn and NH4OH for pH

variation from 7 to 11 (neutral to basic). In current study,
pH of the solution is maintained to 7 (neutral). Neutral pH
normally results in 2D structures, i.e., nanoplates or nano-

flakes. The pH has significant effect on the morphology of
the nanoparticles. Few reports are available for formation of
nanoflakes by varying pH. Precursor selection is also very

important for morphology of the crystals and the findings of
the present investigation are also in line with previous studies.
Three mostly used precursors (nitrates, chlorides and acetates)
results in different morphology due to adsorption phe-

nomenon. Nitrates base precursors adsorption phenomenon
is stronger as compared to acetates and chlorides therefore
forms 2D structures (Barreto et al., 2013). Moreover, the

molar ratio of Zn+2 to OH-1 is also a main factor in the for-
mation of ZnO nanoparticles and the OH-1 value increases
as the reaction time increases. Fig. 3 represents the illustration

of ZnO nanoflakes. After 10 mins of ultrasonic treatment, Zn
(OH)2 crystals are nucleated. After 40 mins Zn(OH)2 decom-
poses and ZnO are produced. The effect of Zn2+ and OH– is

reported by Yamabi and Imai (Yamabi and Imai, 2002). As
reaction time increases, the surface of ZnO turned negative
due to OH– ions. Due to this electronegativity, more Zn2+are
attracted by ZnO and locally bounded at surface and this pro-

cess continued till all the OH– ions are utilized. Formation of
ZnO seeds involves consecutive reaction series of Zn(OH)2

-2.
When this solution subjected to ultrasound treatment, the

medium stimulates formation of OH– and H+ ions because
of regular conditions produced by implosion of the bubbles
by the ultrasonic cavitation phenomenon (Yamabi and Imai,

2002). Zn(OH)2
2– continuous to form Zn(OH)4

2- by reacting
with OH–. Zn(OH)4

2- is the basic growth unit for ZnO crystal.
Conversely, Unsi (Usui, 2009) revealed the generation H2O2

(Eq. (13)) in the ultrasonic treatment, which then react with
chanism of ZnO nanoflakes.



Fig. 4 Variation in the crystallite size ZnO nanoflakes prepared

at different ultrasonic treatments.
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zinc hydroxide (Eq. (14)) and ZnO are formed as a result of
ultrasonic treatment.

H2O !Ultrasonic
OH� þHþ ð10Þ

Zn OHð Þ2 þOH� ! Zn OHð Þ42� ð11Þ

Zn OHð Þ42� ! ZnOþH2O ð12Þ

OH� þOH� ! H2O2 ð13Þ

Zn OHð Þ2 þH2O2 ! ZnOþ 2H2O ð14Þ
The FWHM of (101) decreases with an increase in reaction

time. Five samples were taken at different times, and the cor-
responding ðhklÞ values are depicted in Table 1.

The experimentally determined values (from XRD data) of
respective parameters are depicted in Table 2 (Taha et al.,

2015). With increasing ultrasonic treatment time, the crystallite
size increases, the density of dislocations decreases, which is
due to increased nucleation and growth rates of nanostructures

(Fig. 4). Firstly, crystallite size increases with time and after
30 min it starts to decrease. This is due to fact that, variation
or transformation of nanostructures causes decrease in crystal-

lite size (Djurado et al., 2000). This variation or formation of
2D nanostructures, i.e., (nanoflakes) can be observed in scan-
ning electron microscopy images. The increase in ultrasonic
treatment time causes increase in temperature. This increased

temperature produce polarization, or the separation of sol-
vents, which accelerates growth and minimizes the likelihood
of agglomeration (Vinila et al., 2014). Furthermore, as trans-

formation in nanostructures has done, the ZnO phase
strengthened due to the coalescence of tiny nuclei, resulting
in an increase in crystallite size and a decrease in dislocation

density.
The decline is seen in d, demonstrating that the defects (mi-

cro) of the samples reduce with time and with temperature

because of changes in microstructure, scale and size, form,
Table 1 The 2h values versus ultrasonic treatment time.

Planes ðhklÞ 2h

10 min 20 min

100 31.380 31.756

002 34.507 34.516

101 36.184 36.080

102 47.439 48.879

110 56.538 –

103 62.541 62.475

Table 2 Lattice parameters calculated for ZnO nanoflakes versus u

Agitation time a (Å) c (Å)

10 min 3.2890 5.6967

20 min 3.2511 5.6309

30 min 3.3461 5.7956

40 min 3.2668 5.6583

50 min 3.2615 5.6491
bond length, and particle defects, as indicated in Table 2.
The lattice constants values ‘a’ and ‘c’ are same and highly
match with the previously reported studied (Iqbal et al.,
2018; Manikandan et al., 2018). Table 3 and Fig. 5 depicts

the values of d (braggs) and d (Formulae) calculated for
ZnO and Table 4 shows the bond length for ZnO samples.

3.2. FTIR analysis

The functional group of ZnO NPs was determined through
FTIR analysis. Fig. 6 shows the FTIR spectra of ZnO over

time ranging from 10 to 50 min during the sonochemical pro-
cess. Several bands can be found throughout the spectrum in
the 400–3000 cm�1 range. Specifically, peak at 433 cm�1 is
the characteristic absorption of Zn–O bond observed at rela-
30 min 40 min 50 min

30.831 31.599 31.651

33.961 34.284 34.334

35.997 36.128 36.115

47.546 47.458 47.394

– 56.417 56.449

62.205 61.935 62.041

ltrasonic treatment time.

c/a D(nm) d(nm)-2

1.7321 36.3793 0.00076

1.7321 57.5332 0.00030

1.7321 66.3827 0.00023

1.7321 17.1963 0.00338

1.7321 30.6444 0.00107



Fig. 6 FTIR analysis of ZnO nanoflakes prepared at different

ultrasonic treatments (a) 10 min, (b) 20 min, (c) 30 min, (d) 40 min

and (e) 50 min.

Table 3 D-spacing experimental versus theoretical values.

Agitation time d(Braggs) Å d(Formulae) Å

10 min 2.48043 2.737066

20 min 2.487391 2.721226

30 min 2.492936 2.760716

40 min 2.48417 2.727827

50 min 2.485043 2.72561

Fig. 5 Comparison of dBraggs and dFormulae of ZnO nanoflakes

prepared at different ultrasonic treatments.

Table 4 ZnAO bond length of ZnO nanoflakes prepared at

different ultrasonic treatment time.

Agitation time l L(Å)

10 min 0.444697 1.98486

20 min 0.44245 2.052293

30 min 0.44245 2.108125

40 min 0.44245 2.061575

50 min 0.44245 2.058455
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tively low reaction time (10, 20 and 30 min). For samples syn-
thesized at 40- and 50 min exhibit two strong absorption bands
at 605 and 650 cm�1. It is earlier reported that, for 1D mor-

phologies of ZnO, single peak at 433 cm�1 would appear, while
double peaks at 605 and 650 (cm�1) revealed the 2D structures
(Sowri Babu et al., 2013). The occurrence of double peaks is in

good agreement with the observed flakes like 2D morphologies
(50 min ultrasonic treatment). The CAO vibration is correlated
with the band found at 887 cm–1 (Kaur et al., 2018). The band

observed at 1400 cm�1 is only observed at relatively higher
ultrasonic treatment time (40 and 50 min). There are two pos-
sibilities of band observed at 1400 cm�1. (1) Formation of zinc

carboxylates (Aslinjensipriya et al., 2020). This band is rela-
tively intense at 40 min ultrasonic treatment. The intensity of
zinc carboxylate decreases after 50 min of ultrasonic treatment.
With increase in time higher energy produces and decomposi-
tion of carboxylates starts (Vieira et al., 2021). (2) In the region

of 1400–1600 cm-1C�vC stretching vibrations occur. For aro-

matic ring two or three bands occur in this region, i.e.
�1400 cm�1. The band observed at �1400 cm�1 is assigned

to ring C�vC. According to previous studies this band can also

be assigned to aromatic ring C�vC. An extremely weak peak at
2346 cm�1 was attributed to CO2 absorbed from air. The CAH
vibration is correlated with the band found at 2910 cm�1.

3.3. SEM and EDX analysis

The FE-SEM results revealed that the flakes morphology

dependent on synthesis method. The ZnO forms nanoflakes,
which were in the form of agglomeration (Fig. 7). This agglom-
eration may be due to fact that there is no surfactant was used
during synthesis and ZnO showed nanoflakes agglomeration

trend. The nanoflakes formation is good to photocatalytic
application due to enhanced surface area. Fig. 7a shows that
nanoflake length is 170 nm to 180 nm while thickness is 20–

30 nm. The EDS of ZnO nanoflake synthesized at 50 min of
ultrasonic treatment is shown in Fig. 7 and the characteristic
peaks are of Zn and O. The spectra revealed a strong signal

for zinc around (85 %) and a prominent oxygen peak with
13.49 % was observed. This EDX analysis of the sample was
also performed and results revealed the preparation of pure

ZnO by sonochemical treatment (Fig. 8).

3.4. Photocatalytic activity

The absorption spectra of ZnO nanoflakes at different ultra-

sonic treatment shows the absorption at 367 nm (Fig. S1),
which can be attributed to the intrinsically band-gap absorp-
tion of ZnO due to electron transfers from the fermi band to

the CB (Gharat and Rathod, 2013). For effective PCA, the
morphology of NPs plays an important role, especially 2D
nanostructure like nanoflakes. ZnO nanoflakes of 150–

170 nm was observed for sample treated at 50 min of ultra-



Fig. 7 FE-SEM images of ZnO nanoflakes prepared at 50 min ultrasonic treatment at different magnifications (a) 100 nm, (b) 500 nm,

(c) 1 mm and (d) 2 mm.

Fig. 8 EDX analysis of ZnO nanoflakes prepared at 50 min of ultrasonic treatment.
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sonic treatment. The photocatalytic mechanism of ZnO nano-
flakes were analyzed by degrading MO dye under UV light
irradiation.
To analyze the effect of UV on degradation activity a blank
experiment was carried out in the absence of ZnO powder. The
MO dye solution (30 mg/L) was prepared and subjected to UV



Fig. 9 The degradation of MO dye in control runs (Blank).

Fig. 10 Photocatalytic activity of ZnO nanoflakes against MO for dif

L.
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light, which furnished only 3 % MO dye degradation (Fig. 9).
This degradation rate is almost negligible. In the absence of
UV light, MO concentration remain almost same. In can be

concluded that UV illumination and presence of photocatalyst
is necessary for degradation of dyes.

3.4.1. Effect of initial dye concentration

ZnO nanoflakes (0.8 g/L) obtained after 50 min of sonication
was added in the MO dye solution and �93.13 % degradation
was achieved after 90 min of irradiation (Fig. 10a). Different

parameters e.g. dye concentration, mass of photocatalytic
material have been varied. Dye concentration is varied as
30 mg/ L, 50 mg/L and 100 mg/L. By keeping mass of the pho-

tocatalytic material constant maximum efficiency of MO for
30 mg/ L, 50 mg/L and 100 mg/L is obtained 93.13, 69.44
and 54.57 (%), respectively (Fig. 10a-c). Therefore, photocat-

alytic material efficiency can be enhanced by lowering the con-
centration of dye. Decreased efficiency is due to increased dye
adsorption over the surface of photocatalyst. Dye molecules
occupied active sites, thereby reducing the formation of radi-

cals. Moreover, UV light cannot reach the molecules due to
ferent dye concentrations (a) 30 mg/L, (b) 50 mg/L and (c) 100 mg/



Fig. 11 Comparison of degradation rate of MO at different dye

concentration.

Fig. 12 Photocatalytic activity of ZnO nanoflakes against MO for
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adsorption phenomenon of dye and thus initial concentration
reduced dye degradation rate (Mohsin et al., 2020). Degrada-
tion rate for different initial dye concentration with irradiation

time is shown in Fig. 11.

3.4.2. Effect of ZnO dosage

Fig. 12 represents the photocatalytic efficiency of MO (30 mg/

L) for various mass of photocatalytic material (0.2 g/L, 0.4 g/L
and 0.8 g/L) (Fig. 12a-c. Results show that efficiency of MO
degradation decreases with increase in dosage of ZnO. With

increase in photocatalytic material production of radicals
increases due to large surface active sites (Ashar et al., 2016).
Maximum efficiency (93.13 %) and saturation of dye degrada-

tion is achieved at 0.8 g/L of ZnO dose. Fig. 13 represents the
comparison of degradation rate for different dosage of ZnO.

3.4.3. Kinetic study

The kinetic study of sonochemically synthesized against MO
was studied by Langmuir–Hinshewood Kinetic model given
in Eq. (15) (Ghafoor et al., 2021).
different dosage of ZnO (a) 0.8 g/L, (b) 0.4 g/L and (c) 0.2 g/L.



Fig. 13 Comparison of degradation rate of MO at different

ZnO.
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ln
Co

C
¼ kt ð15Þ

where, Co = Initial conc. of MO, C = Conc. of dye after irra-

diation, t = Time and K = rate constant.

Fig. 14a-b representing the linear plot of ln Co

C
vs exposure

time for different dye concentrations and ZnO dosage respec-
Fig. 14 Pseudo-first order kinetics for ZnO, (a) effect

Table 5 Rate constants (k) and relative coefficients (R2) for photo

Factors variation

Dye concentration (mg/L) 30

50

100

ZnO dosage 0.8

0.4

0.2
tively. It can be seen that MO dye follow the pseudo-first order
rate constant. The value of linear regression coefficient (R) and
rate constant is given in Table 5. The minimum value of corre-

lation coefficient is achieved 0.90125 for higher concentration
of dye. All values are above 0.90125 confirms the well-fitting
of kinetic model. A comparison of previous related studies is

shown in Table 6 and the responses thus observed, revealed
that that the ZnO nanoflakes are highly efficient photocatalyst
and could be employed for the remediation of dye in the efflu-

ents, which is a one of major environmental issues (Jalal et al.,
2021; Chham et al., 2018; Ayach et al., 2017; Djehaf et al.,
2017).

3.4.4. TOC analysis

Next, the percentage variation in total organic carbon (TOC)
during photo-degradation of MO was also examined

(Fig. 15). The percentage TOC of the MO solution shows a
steep increase. Graph represents the up to 75 % degradation
after 90 mins. From Fig. 15, it can be interpreted that during
PCA intermediate degradation products produced first and

then, mineralization process occurs (Katsumata et al., 2013).

3.4.5. Degradation mechanism and catalyst stability

The MO dye degradation mechanism is presented in Eqs. (16)–
(28) and illustrated in Fig. 16 Photocatalysis is a dynamical
mechanism that generates a succession of oxidation reduction
events and is the most essential attribute of nano ZnO. Nano

ZnO absorbs the light and breaks down complex series organic
of dye concentration and (b) effect of ZnO dosage.

catalytic degradation of MO dye.

k (min�1) R2

0.04533 0.964

0.01413 0.95288

0.0084 0.90125

0.04533 0.964

0.01169 0.97422

0.00829 0.99618



Table 6 Comparison of ZnO PCA with literature with and without surfactant.

Catalyst Surfactant Dye concentration

(ppm)

Degradation time

(min)

Photo degradation

(%)

References

ZnO Pithecellobium dulce

peel

– 50 �63 (Madhumitha et al., 2019)

ZnO Ag-r-GO 20 120 95.0 (Liu et al., 2020)

ZnO – 10 50 80.8 (Lim et al., 2021)

ZnO Urea 10 30 92 (Jayakrishnan et al.,

2022)

ZnO – 30 90 93.13 Present Study

Fig. 15 Total organic carbon analysis during photo-degradation

of MO by ZnO.
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molecules (toxins) in to the smaller pieces, such as atoms, ions,
and radicals, in photocatalysis. The transformation of light
energy to electrical energy to make radicals as well as other
Fig. 16 Photo-degradation mechanism o
volatile chemical compounds. Hydroxyl radicals & superoxide
anions are the principal oxidizing species generated during
photocatalysis (Katsumata et al., 2013). Pure ZnO in the

hexagonal wurtzite crystalline form is widely employed in a
variety of industrial & practical applications. Electrons are
emitted when a photon with an energy larger than the energy

band gap of ZnO meets its surface. The liberated electron then
interacted with oxygen in the atmosphere to form a super oxi-
des anion (�O2

–). The surface which has lost one electron

absorbs another electron via moisture in order to fill the hole.
The moisture was transformed it into hydroxyl radical (�OH).
The hydroxyl radical (�OH) as well as the superoxide anion
(�O2

–) are both extremely reactive, and their tremendous oxida-

tive strength allows them to breakdown organic molecules that
pollutes. In a recent study, we analyzed the importance of reac-
tive oxygen species (ROS) in photocatalysis and found that

hydroxyl radicals (�OH) are the most important radical scav-
engers responsible for pollutant degradation (Katsumata
et al., 2013). Increased generation of reactive oxygen species

(ROS) on the photocatalyst surface improves their ability to
destroy contaminants. Also, the ZnO nanoflakes showed
promising stability up to four cycles without loss in PCA

(Fig. 17a-b). No significant difference in efficiency is observed
during recycling which indicates that ZnO not only having out-
standing PCA but also can be reused and recycled.
f MO by ZnO under UV irradiation.



Fig. 17 Stability and reproducibility of ZnO photocatalyst, (a) effect of dye concentration and (b) effect of ZnO dosage.
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ZnOnanoflakes + hv ! ZnOnanoflakes (e
� + hþ) ð16Þ

hþ + OH– !�OH ð17Þ

hþ + H2O !�OH + Hþ ð18Þ

e� + O2 !�O2
– ð19Þ

Hþ +�O2
– !HO2 ð20Þ

e� + �O2
– +2Hþ !H2O2 ð21Þ

e� + H2O2 !�OH + OH– ð22Þ

�O2
– + H2O2 !�OH + OH– + O2 ð23Þ

�O2
– + H þ !�OH2 ð24Þ

e� + �OH2 ! HO2
– ð25Þ

HO2
– + Hþ !H2O2; ð26Þ

2 �OH2 ! O2 + H2O2 ð27Þ

1/2 O2 + 2Hþ + 2e� !H2O ð28Þ

�OH + MO ! CO2 + H2O and inorganic ions ð29Þ
4. Conclusions

Ultrasonic assisted approach was employed successfully for the fabri-

cation of ZnO nanoflakes. The effect of ultrasonic treatment was

applied on the basis of photocatalytic application along with structural

and morphological properties. The ZnO revealed the formation of

hexagonal wurtzite structure. The crystallite size was increased and dis-

location density was decreased with ultrasonic treatment. The PCA of

ZnO nanoflakes was evaluated against MO dye under UV light irradi-

ation. The ZnO nanoflakes degraded the MO dye up to 93.13 % after

90 min of irradiation. The ZnO nanoflakes, prepared via ultrasonic

assisted route is highly photoactive and have potential application

for the removal of dyes in effluents.
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