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Abstract Diabetes is a chronic endocrine metabolism disorder that leads to hyperglycaemia. As

the most common diabetic type, type 2 diabetes mellitus accounts for 90% of all diabetic disease

with a key feature of insulin resistance. Mulberry leaves are commonly used in traditional Chinese

medicine, and many studies confirm that mulberry leaves have positive effects on alleviating the

pathological conditions of type 2 diabetes. However, its anti-diabetic effects and active ingredients

are not completely understood. Compared with time- and cost-consuming experiments, network

pharmacology provided a convenient method to systematically investigate the interactions between

compounds in mulberry leaves and diabetes-related genes. Although similar network pharmacolog-

ical studies were performed for mulberry leaves, only compounds sourced from public database or

volatile components in the mulberry leaves were examined. In this study, we initially analysed the
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bioactive compounds from ethanol extract of mulberry leaves via liquid chromatography coupled

with mass spectrometry, which generated a total of 248 components. A total of 14 active compo-

nents and 49 potentially functional compounds were identified from TCMSP and PharmMapper

database, respectively, which worked on 37 target proteins directly involved in the pathogenesis

of T2DM. Kaempferol was shown to be the most influential active compound while androgen

receptor was most widely regulated by compounds in the ethanol extract of mulberry leaves. More-

over, protein–protein interaction and target-pathway network analysis revealed that AKT1 was

most important in the 37 target proteins in terms of its functions in different pathways and inter-

actions with other target proteins. Moreover, pathway analysis showed that ethanol extract of mul-

berry leaves alleviated type 2 diabetes mellitus through pathways such as TNF signaling pathway,

NF-jB signaling pathway, and insulin resistance pathway. In sum, this study provided a complete

overview of the working mechanisms for the ethanol extract of mulberry leaves, the results of which

could be used as a practical guidance for further experimental investigation of the functions of mul-

berry leaves during the treatment of type 2 diabetes mellitus.

� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Background

Diabetes mellitus (DM) is a complex metabolic disorder, which

is mainly divided into two types, that is, Type 1 Diabetes Mel-

litus (T1DM) caused by insulin secretion defects and Type 2

Diabetes Mellitus (T2DM) due to insulin resistance. One of

the common features of diabetes is the long-term chronic

hyperglycaemia that will finally develop into end organ failures

(Tsalamandris et al., 2019). In China, diabetes was first

recorded in an ancient Chinese medical book The Yellow

Emperor’s Classic of Internal Medicine (Yu et al., 2018). Since

then, traditional Chinese medicine (TCM) has been used to

treat the disease for over 2000 years. As an integral part of

TCM, herbal medicines are widely used in the treatment of dia-

betes, such as Radix rehmanniae andMomordica charantia, etc.

(Wang et al., 2013). Herbs function differently when used to

alleviate the conditions of diabetes, some of which decrease

blood glucose level through enhancing carbohydrate utiliza-

tion while others aim to reduce inflammation and increase

insulin sensitivity via certain signaling pathways (Yu et al.,

2018;Tian et al., 2019).

Mulberry leaf (Morus alba L., abbr. ML) is an important
TCM herb and has been used to treat a variety of diseases

since ancient China (Tian et al., 2019). Previous studies have
revealed that ingestion of ML is effective in the treatment of
T2DM. For example, a 3-month clinical trial conducted by

Riche et al. showed that mulberry leaf extract (MLE) could
significantly decrease post-prandial self-monitoring blood glu-
coses (SMBG) between MLE group and baseline group (Riche

et al., 2017). Tian et al. studied the molecular mechanisms of
MLs in T2DM therapy and found out that aqueous extracts
of mulberry leaf (AEML) mitigates high blood glucose, insulin

resistance (IR), and inflammation through the interactions
among Toll-like Receptor 2 (TLR-2) signaling pathway, insu-
lin signaling pathway, and tumour necrosis factor-a (TNF-a)
(Tian et al., 2019). However, due to the sophisticated compo-

sition of compounds in MLs, it is rather difficult to elucidate
all the mechanisms for ML effects on diabetes.

In recent years, network pharmacology has been gaining

more and more attentions due to its convenience in the con-
struction of compounds-proteins (genes)-diseases relationships
and its effectiveness in understanding the regulation principles
of small molecules in a high-throughput manner (Zhang et al.,

2019). Thus, the new approach has the potential to transform
TCM from an experience-based to evidence-based medicine
through a better understanding of the interactions among bio-

logical systems, drugs, and diseases. Although a couple of pre-
vious studies explored the effects of MLs on diabetes via
network pharmacology, it is either using mulberry data from

public database or focusing on volatile components of MLs
(Ge et al., 2018; Wu and Hu, 2020). In this study, we analysed
the components of the ethanol extract of mulberry leaves
(EEML) via liquid chromatography coupled with mass spec-

trometry (LC-MS), which identified a total of 248 compounds.
Compound-modulated targets and relevant diseases were then
sourced from public databases such as TCMSP, PharmMap-

per, GeneCards, and Online Mendelian Inheritance in Man
(OMIM), etc. (Safran et al., 2010; Ru et al., 2014). A complete
network in terms of EEML treatment of T2DM was con-

structed, together with the function and pathway enrichment
analyses. Based on the network pharmacology approach, this
study elucidated the specific targets and molecular signaling

pathways that EEML modulated in terms of T2DM. A sche-
matic illustration of the methodologies used in this study is
present in Fig. 1.

2. Methods and materials

2.1. Compositions of mulberry leaves

Mulberry leaves were sourced from a local traditional Chinese
medicine market in Bo-Zhou, Anhui Province, China. The

plant was identified by Prof. Dao-Quan Tang from the School
of Pharmacy at Xuzhou Medical University and the specimen
was deposited in the Laboratory of Pharmaceutical Analysis at

Xuzhou Medical University. 2 kg well-dried mulberry leaves
were extracted twice with 10 kg of 70% ethanol for 90 min,
which was then concentrated at 60 ℃ under vacuum condition

(-0.05Mpa) to generate a total of 135 g powder through spray-
drying. The powder of mulberry leaves was detected by Agilent
1100 high-performance liquid chromatography (HPLC) sys-
tem (Agilent Technologies Inc., California, USA), together

with Waters Xevo G2XS QT of mass spectrometry (MS) sys-
tem (Waters Corporation, Milford, MA, USA). A Waters

http://creativecommons.org/licenses/by/4.0/


Fig. 1 Schematic illustration of all the procedures based on network pharmacology. Based on the results of LC-MS, a set of

computational tools were used for further analyses of important components in the ethanol extract of mulberry leaves and their target

proteins.
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BEH C18 column (2.1 mm � 50 mm, 1.7um) was used for the
separation. The mobile phase consisted of 0.1% formic acid in

water (solvent A) and acetonitrile (solvent B). The gradient
program started with 95% A-5% B:0–1 min, followed by
0% A-100% B:1–8 min, 0% A-100% B:8–11 min, 95% A-
5% B:11–12 min. The column temperature was at 40 �C.
The sample injection volume was 2 lL and the flows rate
was set at 0.3 mL/min. The analytes were determined in a pos-
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itive ion mode. Mass spectrometer electrospray capillary volt-
age was 3.0 kV, sample cone 40 V, source temperature 100 �C,
desolation temperature 400 �C, cone gas 50 L/h, and desola-

tion gas 800 L/h. A total of 248 chemical compounds were
identified. A complete form of all the compounds was available
in Supplementary Table S1. The corresponding total ion chro-

matogram was present in Supplementary Figure S1.

2.2. Compound target of EEML

We first searched traditional Chinese medicine systems phar-
macology database (TCMSP, http://tcmspw.com/tcmsp.php)
by using chemical name, InChIKey, and CAS Number of all

the compounds identified in the ethanol extract of mulberry
leaves via LC-MS. Oral bioavailability (OB, > 30%) and drug
likeness (DL, > 0.18) were used as selection criteria for active
ingredients and the corresponding targets of each active com-

pound were recorded. A total of 18 compounds, together with
96 target genes were collected. Due to the limitations of the
TCMSP database, we then searched the PubChem database

by using chemical names in order to obtain the two-
dimensional structure of each compound, which were further
searched in the online database PharmMapper http://lilab-

ecust.cn/Pharmmapper/ in terms of diabetes-related targets.
Top 30 predicted targets for each compound were kept for fur-
ther analysis. In sum, a total of 58 compounds and 327 target
genes were collected.

2.3. Targets of T2DM

Target genes related to T2DM were collected through search-

ing GeneCards and OMIM database by using the keyword
Type 2 Diabetes Mellitus. 9952 candidate genes were identi-
fied. All the gene names were matched to corresponding Uni-

Prot IDs, gene names, and protein names by using ID
mapping tool in the protein database UniProt (http://www.
uniprot.org/). In order to construct the network between

genes related with T2DM and the compounds in the ethanol
extract of mulberry leaves, we pooled all the target genes and
used the online tool venny (https://bioinfogp.cnb.csic.es/tools/
venny/) to generate the Venn diagram (Supplementary

Figure S2), which revealed that a total of 37 targets were
directly associated with T2DM and targeted by 63 com-
pounds in the ethanol extract of mulberry leaves (Table 1).

Among the 63 compounds, 14 were identified from TCMSP
with confirmed functions in T2DM (Table 2) while other 49
were sourced from sourced from PharmMapper (Supplemen-

tary Table S2). According to the number of interactions for
the 14 components, we identified the top 5 compounds that
had the highest number of interactive targets (denoted as n

in parentheses for each compound) that were responsible
for T2DM, which were Kaempferol (n = 23), Licoricone
(n = 7), Herbacetin (n = 6), Morin (n = 5), and Lobelani-
dine (n = 4).

2.4. Concentration quantification of representative compounds

In order to confirm the presence of chemical components

detected via LC-MS, we measure three representative com-
pounds via ultra-performance liquid chromatography-
tandem mass spectrometry (UPLC-MS/MS), which were
kaempferol, licoricone ad morin. All experiments were carried
out on a Thermo Fisher TSQ LC-MS/MS system (Thermo
Fisher Scientific Co., San Jose, CA, USA) consisting of an

Accela Autosampler, an Accela pump, and a Quantum
Access triple quadrupole mass spectrometer. All system con-
trol, data acquisition, mass spectral data evaluation and data

processing were performed using XCalibur software version
2.0.7 (Thermo Fischer, San Jose, CA, USA) and Thermo
LCquan software version 2.5.6 (Thermo Fischer, San Jose,

CA, USA).
The Agilent ZORBAX SB C18 column (2.1 mm � 150 m

m, 3.5 lm) was used for separation. The mobile phase con-
sisted of 0.1% formic acid in water (solvent A) and metha-

nol (solvent B). Using a gradient program started with 60%
A, a step to 90% A until 8 min, then with a isocratic elution
of 90% A until 10 min, and re-equilibration from 10.01 min

to 15 min with 60% A at a flow rate of 0.30 mL/min and
column temperature at 40 �C. MS conditions were as fol-
lows: ESI in negative mode, vaporizer temperature at

280 �C, capillary temperature at 320 �C, sheath gas pressure
at 40 psi, auxiliary gas pressure at 20 psi and spray voltage
at 3000 V. Quantification was accomplished in multiple reac-

tion monitoring (MRM) by monitoring the transition of m/z
301.2 ? 151 for morin, 381.4 ? 323 for licoricone and
285.2 ? 241 for kaempferol. LC-MS/MS chromatogram
with mixed surrogate standards for kaempferol, morin and

licoricone was present in Supplementary Figure S3. This
developed method was applied for the detection and quan-
tification of the three compounds (Kaempferol, Morin,

Licoricone) in the ethanol extract of mulberry leaves with
calculated linear regression models (Supplementary

Table S3).
2.5. Protein-protein interaction (PPI) network

The 37 identified T2DM targets were imported into the online

platform STRING https://string-db.org/, and the organism
was set to Homo sapiens (Supplementary Figure S4). High-
confidence protein interactions with enrichment P-value<1e-
16 were selected, which included 37 nodes and 138 edges with

an average node degree of 7.46. A TSV file of PPI network was
automatically generated via STRING, which included param-
eters such as nodes1, node2, and combined_score, etc.

(Supplementary Table S4). The file was then input into CytoS-
cape, an open-source software platform for visualizing com-
plex networks https://cytoscape.org/, during which node1

column was set as Source Node, node2 column was set as Tar-
get Node, while the remaining columns were set as default
parameters. Protein-protein interactions was present in CytoS-
cape as an enrichment network (Fig. 2A). During the analysis,

the NetworkAnalyzer plug-in was used to calculate the values
of node degrees (Assenov et al., 2008), according to which, the
higher the degree value was, the more important the node was

in the network. Molecular Complex Detection (Mcode) Clus-
tering ftp://ftp.mshri.on.ca/pub/BIND/Tools/MCODE of
T2DM targets in the protein–protein interaction network

was then performed with Mcode_Score set to greater than or
equal to 6, from which the most highly interconnected regions
in a network were identified. According to the analysis, only

one sub-network was identified, which was presented in
Fig. 2B.
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Table 1 Interaction information of 37 target proteins (genes) and 63 active components in the ethanol extract of mulberry leaf.

UniProt

ID1

Gene

Name1
Protein Name1 No.2 Interactions with Active Components3

P22303 ACHE Acetylcholinesterase 9 13-Hydroxy-9,11-hexadecadienoic acid, 20-Hydroxy-4,40,60-
trimethoxydihydrochalcone, 2-Hydroxy-5-methoxy acetophenone, 6-

Gingerol, Dibutyl sebacate, Heptadecylamine, Herbacetin, Kaempferol,

Lupinifolin

P08588 ADRB1 Beta-1 adrenergic receptor 3 6-Gingerol, Morusimic acid B, Salsoline

P07550 ADRB2 Beta-2 adrenergic receptor 8 1,7-Bis(4-hydroxyphenyl)-hepta-4E,6E-dien-3-one, 6-Gingerol, Bis(2-

ethylhexyl) phthalate, Lobelanidine, Morusimic acid B, N-cis-Feruloyl

typamine, Salsoline, Zederone

P31749 AKT1 RAC-alpha serine/threonine-

protein kinase

5 13-Hydroxy-9,11-hexadecadienoic acid, 4,7-Didehydroneophysalin B,

Ganoderenic acid B, Isosamarcandin, Kaempferol

P09917 ALOX5 Polyunsaturated fatty acid 5-

lipoxygenase

9 13-Hydroxy-9,11-hexadecadienoic acid,20-Hydroxy-4,40,60-
trimethoxydihydrochalcone,3-(20-Carboxyphenyl)-4(3H)-quinazolinone,

Ciwujiatone, epi-Kansenone, Ganoderenic acid B, Kaempferol, Morin,

Paristerone

P10275 AR Androgen receptor 9 12S-Hydroxyandrographolide,3,7-Dimethyloctane-1,3,6-triol,4,7-

Didehydroneophysalin B, Bigelovin, Campesterol acetate, Coronaric acid,

ent-Kauran-16a,17-diol, epi-Kansenone, Herbacetin

P10415 BCL2 Apoptosis regulator Bcl-2 5 13-Hydroxy-9,11-hexadecadienoic acid, 6-Gingerol, Catenarin, Kaempferol,

Methyl lucidenate P

P00918 CA2 Carbonic anhydrase 2 6 13-Hydroxy-9,11-hexadecadienoic acid, 6-Gingerol, Catenarin, Kaempferol,

Methyl lucidenate P

P20309 CHRM3 Muscarinic acetylcholine

receptor M3

5 Bis(2-ethylhexyl) phthalate, Jangomolide, Lobelanidine, Tenuifoliside D,

Zederone

Q16678 CYP1B1 Cytochrome P450 1B 6 1-Methoxy-3,7-dimethyl-2,6-octadiene,20-Hydroxy-4,40,60-
trimethoxydihydrochalcone, Catenarin, Kaempferol, Maglifloenone

(Denudatone), Ophiopogonanone B

P00742 F10 Coagulation factor X 6 4,7-Didehydroneophysalin B, Licoricone, Methyl lucidenate P, Morusimic

acid A, Sanjoinenine, Schininallylol

P00734 F2 Coagulation factor II 8 12S-Hydroxyandrographolide,4,7-Didehydroneophysalin B,6-Feruloyl

catalpol, Bigelovin, Herbacetin, Heterodendrin, Isoxanthanol, Kaempferol,

Licoricone

P08709 F7 Coagulation factor VII 3 Kaempferol, Paristerone, Picrasinoside H

P14867 GABRA1 Gamma-aminobutyric acid

receptor subunit alpha-1

4 Herbacetin, Kaempferol, Schininallylol, Zederone

P00390 GSR Glutathione reductase 2 Maokonine, Morin

P09601 HMOX1 Heme oxygenase 1 2 Isoxanthanol, Kaempferol

P05362 ICAM1 Intercellular adhesion molecule

1

2 Kaempferol, Maglifloenone (Denudatone)

O14920 IKBKB Inhibitor of nuclear factor

kappa-B kinase subunit beta

4 13-Hydroxy-9,11-hexadecadienoic acid, Isoxanthanol, Kaempferol,

Morusimic acid B

Q12809 KCNH2 Potassium voltage-gated

channel subfamily H member 2

4 4,7-Didehydroneophysalin B, Licoricone, Morusimic acid A, Morusimic acid

E

P35968 KDR Vascular endothelial growth

factor receptor 2

9 Asterinin B, Asterinin C, Bufotalin, Catenarin, Coronaric acid, Dibutyl

sebacate, Licoricone, Methyl lucidenate P, Ophiopogonanone B

P03956 MMP1 Matrix metalloproteinase-1 9 4,7-Didehydroneophysalin B, Asterinin B, Asterinin C, Asterinin D,

Chloranoside A, Isoxanthanol, Kaempferol, Kihadanin B, Lupinifolin

P08253 MMP2 Matrix metalloproteinase-2 9 20-Hydroxy-4,40,60-trimethoxydihydrochalcone,3-(20-Carboxyphenyl)-4(3H)-

quinazolinone,4,7-Didehydroneophysalin B, 6-Gingerol, Coronaric acid,

Ganoderenic acid B, Isosamarcandin, Methyl lucidenate P, Picroside III

P14780 MMP9 Matrix metalloproteinase-9 9 3-(20-Carboxyphenyl)-4(3H)-quinazolinone, 6-Gingerol, Asterinin B,

Asterinin C, Asterinin D, Bletilol B, Ganoderenic acid B, Isosamarcandin,

Isoxanthanol

P35228 NOS2 Nitric oxide synthase 9 3,7-Dimethyloctane-1,3,6-triol, Campesterol acetate, epi-Kansenone,

Ganoderenic acid B, Isoxanthanol, Kaempferol, Licoricone, Maglifloenone

(Denudatone), Methyl lucidenate P

P29474 NOS3 Nitric oxide synthase 2 3,7-Dimethyloctane-1,3,6-triol, Kaempferol

Q14432 PDE3A cGMP-inhibited 30,50-
cyclic phosphodiesterase A

4 6-Gingerol, Maglifloenone (Denudatone), N-cis-Feruloyl typamine,

Schininallylol

P06401 PGR Progesterone receptor 9 14-Deoxyandrographolide,3,7-Dimethyloctane-1,3,6-triol, Andrograpanin,

Bufotalin, epi-Kansenone, Ganoderenic acid B, Isoxanthanol, Kaempferol,

Methyl lucidenate P

(continued on next page)
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Table 1 (continued)

UniProt

ID1

Gene

Name1
Protein Name

1
No.

2
Interactions with Active Components

3

P37231 PPARG Peroxisome proliferator-

activated receptor gamma

9 1,7-Bis(4-hydroxyphenyl)-hepta-4E,6E-dien-3-one, 13-Hydroxy-9,11-

hexadecadienoic acid, Coronaric acid, Herbacetin, Kaempferol, Lupinifolin,

Morin, N-Isobutyl-(2E,4E)-octadecadienamide, Saurufuran A

P17612 PRKACA cAMP-dependent protein kinase

catalytic subunit alpha

4 1,7-Bis(4-hydroxyphenyl)-hepta-4E,6E-dien-3-one,20-Hydroxy-4,40,60-
trimethoxydihydrochalcone, Indigotin, Kaempferol

P07477 PRSS1 Serine Protease 1 5 6-Feruloyl catalpol, Bigelovin, Herbacetin, Kaempferol, Licoricone

P16581 SELE Selectin E 2 Kaempferol, Maglifloenone (Denudatone)

P23975 SLC6A2 Solute carrier family 6 member 2 5 1-Methoxy-3,7-dimethyl-2,6-octadiene, 6-Gingerol, epi-Kansenone,

Kaempferol, Salsoline

Q01959 SLC6A3 Solute carrier family 6 member 3 8 1-Methoxy-3,7-dimethyl-2,6-octadiene, 6-Gingerol, epi-Kansenone,

Isoxanthanol, Lobelanidine, Morusimic acid B, Paristerone, Salsoline

P31645 SLC6A4 Solute carrier family 6 member 4 5 1-Methoxy-3,7-dimethyl-2,6-octadiene, 6-Gingerol, epi-Kansenone,

Paristerone, Salsoline

P01375 TNF Tumour necrosis factor 8 Asterinin B, Asterinin C, epi-Kansenone, Ganoderenic acid B, Kaempferol,

Lupinifolin, Methyl lucidenate P, Paristerone

P11387 TOP1 DNA topoisomerase 1 6 Asterinin B, Asterinin C, Chloranoside A, epi-Kansenone, Morin,

Picrasinoside H

P47989 XDH Xanthine dehydrogenase/

oxidase

2 Catenarin, Kaempferol

Note: 1UniProt ID, gene name, and protein name were sourced from the online database https://www.uniprot.org/. 2Number of interactive

components identified in the ethanol extract of mulberry leaves. 3Active components were obtained through searching TCMSP and

PharmMapper databases.
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2.6. Compound-target network construction

The interactional relationships between 63 active components
in the ethanol extract of mulberry leaves and 37 correspond-
ing targets were imported into CytoScape. Then, the active

components and target genes were drawn into circle by using
the function of Degree Circle Layout within the plug-in Lay-
out. Moreover, components collected from TCMSP were

coloured in blue while those predicted by PharmMapper were
coloured in red. In addition, all target genes were in green
colour. NetworkAnalyzer function in the plug-in Tools was

used to generate the degree values of each node in the entire
network graph, and then the Generate Style from Statistics
function was used to draw the component-target network

graph based on the degree values. That is, the sizes (diame-
ters) of the nodes in the network were determined by degree
values. The greater the degree value is, the larger the node
diameter is, and the more important the node is in the whole

network.

2.7. Gene ontology (GO) enrichment analysis

In order to clarify the functions of target compounds in the
ethanol extract of mulberry leaves and their role in signal
transduction, we used the Database for Annotation, Visualiza-

tion and Integrated Discovery (DAVID) to carry out GO func-
tional enrichment of all the identified target proteins.
According to the analysis, molecular function (MF), cellular

component (CC) and biological process (BP) of target proteins
were respectively described. GO analysis also returned a P-
value for each GO term with a small P-value indicating that
most different genes were enriched. According to the hyperge-

ometric distribution relationship, a small P-value (<0.05) indi-
cates enrichment of differential gene in the GO analysis. In
addition, the smaller the P-value, the more significant the dif-
ferential enrichment is. Since small P-value is not well present,
we performed the -log10 (P-value) conversion. Thus, the larger

the -log10 (P-value), the more significant the differential
enrichment is, which is convenient for intuitive understanding
of the meaning of the data during visualization.

2.8. KEGG pathway enrichment analysis

Target genes were imported into the Ensemble database

(http://asia.ensembl.org/index.html). BioMart function in
Ensemble was then used to convert the gene IDs into Entrez
Gene IDs, which were entered into KOBAS (http://kobas.
cbi.pku.edu.cn/kobas3/?T=1). Gene-List Enrichment function

in KOBAS was used, Species was set to Homo Sapiens, Input
Type was set to Entrez Gene ID, Input was set to Intersection
Genes, while Database was selected as KEGG Pathway (K) in

PATHWAY. To further verify that whether the biological pro-
cesses related to the target protein are associated with the type
2 diabetes mellitus, a total of 30 pathways filtered with P-

value < 0.05 were selected for further KEGG pathway analy-
sis while the corresponding -log10(P-value) of each pathway
was visualized. After the analysis of KEGG pathway enrich-

ment, both bar plot and bubble plot were generated. It was
noteworthy that -log10(P-value) had the same meaning as sta-
ted in Section 2.7.

2.9. Target pathway analysis

KEGG Mapper Tool was used to construct the pathway map-
ping in terms of the ethanol extract of mulberry leaves for the

treatment of type 2 diabetes mellitus. The pathway map
showed that ethanol extract of mulberry leaves was involved
in the treatment of diabetes through pathways such as PI3K-

AKT signaling pathway, NF-jB signaling pathway, and
MAPK signaling pathway, etc.

http://asia.ensembl.org/index.html
http://kobas.cbi.pku.edu.cn/kobas3/?T=1
http://kobas.cbi.pku.edu.cn/kobas3/?T=1
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Table 2 Specific information of 14 identified anti-diabetic components in the ethanol extract of mulberry leaves.

Mol ID1 Compound PubChem

CID
2

Molecular

Formula

No.3 Target4 OB

%
5

BBB6 DL7 Structure8

MOL000074

1,7-Bis(4-

hydroxyphenyl)-hepta-

4E,6E-dien-3-one

10613719 C19H18O3 3

ADRB2,

PPARG,

PRKACA

67.92 �0.42 0.24

MOL008226
14-

Deoxyandrographolide
11624161 C20H30O4 1 PGR 56.3 �0.55 0.31

MOL002787 6-Feruloyl catalpol 44566578 C24H30O12 3
CA2, F2,

PRSS1
31.38 �2.09 0.84

MOL008219 Andrograpanin 11666871 C20H30O3 1 PGR 56.3 �0.55 0.31

MOL001490
Bis(2-ethylhexyl)

Phthalate
8343 C24H38O4 2

ADRB2,

CHRM3
43.59 0.68 0.35

MOL002823 Herbacetin 5280544 C15H10O7 6

ACHE, AR, F2,

GABRA1,

PPARG,

PRSS1

36.07 �0.65 0.27

MOL001781 Indigotin 10215 C16H10N2O2 1 PRKACA 38.2 0.02 0.26

MOL000422 Kaempferol 5280863 C15H10O6 23

ACHE, AKT1,

ALOX5, AR,

BCL2,

CYP1B1, F2,

F7, GABRA1,

HMOX1,

ICAM1,

IKBKB,

MMP1, NOS2,

NOS3, PGR,

PPARG,

PRKACA,

PRSS1, SELE,

SLC6A2, TNF,

XDH

41.88 �0.55 0.24

MOL004855 Licoricone 5319013 C22H22O6 7

AR, F10, F2,

KCNH2, KDR,

NOS2, PRSS1

63.58 �0.14 0.47

MOL012207 Lobelanidine 442646 C22H29NO2 4

ADRB2,

CHRM3, F2,

SLC6A3

60.53 0.31 0.32

MOL000737 Morin 5281670 C15H10O7 5

ALOX5, AR,

GSR, PPARG,

TOP1

46.23 �0.77 0.27

(continued on next page)
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Table 2 (continued)

Mol ID
1

Compound PubChem

CID2

Molecular

Formula

No.
3

Target
4

OB

%5

BBB
6

DL
7

Structure
8

MOL000483
N-cis-Feruloyl

Typamine
6440659 C18H19NO4 2

ADRB2,

PDE3A
118.35 �0.27 0.26

MOL001539 Sanjoinenine 14729078 C29H35N3O4 1 F10 67.28 �0.24 0.79

MOL011931 Vitetrifolin E 11143042 C22H36O4 1 PGR 31.41 �0.04 0.3

Note: 1Mol ID: Molecule ID used in the TCMSP database https://tcmspw.com/browse.php?qc=herbs. 2PubChem CID: Chemical compound

ID used in the PubChem database https://pubchem.ncbi.nlm.nih.gov/. 3No.: Number of interactions with targets. 4Target: names of target

proteins. 5OB: Oral bioavailability. 6BBB: Blood-brain barrier. 7DL: Drug-likeness. 8Structure: all the compound structures were sourced from

PubChem database.

Fig. 2 Schematic illustration of the enrichment of protein–protein interactions between target proteins (P-value < 1e�16). Network

nodes represent proteins, and the edges represent protein–protein associations. (A) PPI enrichment analysis through online STRING

platform version 11.0. (B) Highly inter-connected region through Mcode analysis.
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3. Results

3.1. Identification of anti-diabetic components and target genes

According to the LC-MS analysis, a total of 248 components
were identified in the ethanol extract of mulberry leaves, which

were all searched in the TCMSP database and a total of 86
compounds were found (Ru et al., 2014). Through using
OB � 30% and DL � 0.18 as criteria for filtering, 18 com-
pounds were selected, which were considered as active compo-
nents and were linked with 96 target genes. As for other

compounds (n = 162) that were not found in TCMSP data-
base, we used PubChem to generate their two-dimensional
structures (Kim et al., 2016). These structures were then

imported into the PharmMapper server to predict whether
they were associated with any disease (Liu et al., 2010). A total
of 58 compounds were identified to be associated with 633 dis-
eases via 328 target proteins, the names of which were then

https://tcmspw.com/browse.php?qc=herbs
https://pubchem.ncbi.nlm.nih.gov/
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mapped through the Gene-Disease Association Database to
get the names of target genes in TCM-Mesh server (Zhang
et al., 2017). Moreover, the two databases, GeneCards and

OMIM, were thoroughly searched for target genes that have
been linked with diabetes by using the keyword diabetes-type
2. A total of 9948 target genes were collected. In order to find

out the most relevant genes associated with both type 2 dia-
betes and components of mulberry leaves, the intersection of
targets from TCMSP, PharmMapper, and GeneCards/OMIM

were obtained. A total of 37 targets were identified, the details
of which were recorded in Table 1. UniProt ID, gene names,
protein names, and the interacted compounds of the targets
were all included in the table.

Further analysis showed that the 37 targets interacted with
63 compounds of mulberry leaves. 14 compounds were identi-
fied from TCMSP with confirmed biological activity toward

T2DM and their PubChem CID, molecular formula, oral
bio-availability, blood–brain barrier, drug likeness, and 2-
Dstructure were all present in Table 2. Among the 14 bioactive

compounds, we quantified the concentration of three represen-
tative chemical components (Kaempferol, Licoricone and
morin) via LC-MS/MS, according to which, content of morin

was 1.58 ± 0.05 mg/g, kaempferol 7.28 ± 0.12 mg/g, and
licoricone 0.31 ± 0.02 mg/g. The results were obtained with
repetition in triplicates. As for the other 49 compounds, they
were potentially bioactive in T2DM treatment and their infor-

mation was collected from PharmMapper. The details of these
compounds were recorded in Supplementary Table S2.

3.2. Network of target protein–protein interactions

All target proteins were imported into the online database
STRING https://string-db.org/ version 11.0 to construct the

protein–protein interaction network (Szklarczyk et al., 2019).
According to the result, the network has significantly more
interactions (n = 138) than expected (n = 41), which means

that these proteins have more functional and physical interac-
tions among themselves and could be biologically connected as
a group (Supplementary Figure S4). In order to better illustrate
the interactions between proteins, the network was then visual-

ized in CytoScape (Fig. 2A), in which larger nodes means
greater degrees (more connections with other nodes), hence
pivotal roles in the network. As for the line thickness, it is cal-

culated based on the combined score generated through
STRING database. The thicker the line is, the stronger the
connections are between the two nodes. Mcode clustering of

the network in Fig. 2A was performed, from which the most
highly inter-connected regions in a network were identified
(Fig. 2B). According to the results, AKT1 is the core target
gene in the network while 13 target genes (AKT1, TNF,

MMP9, ICAM1, NOS3, MMP2, KDR, SELE, NMP1,
NOS2, HMOXX1, PPARG, and ALOX5) were tightly linked
together.

3.3. Interactions between anti-diabetic compounds and target

genes

Generally speaking, a target can be modulated by multiple
compounds while a compound could act on multiple targets.
To better understand the interactions between 63 anti-

diabetic compounds and 37 target genes, we constructed a net-
work by using CytoScape 3.8.2, which included 100 nodes and
233 edges (Fig. 3). In the network, the degree of a node repre-
sents its connections with other nodes, which was reflected by

the diameter of the node. That is, the nodes with more connec-
tions play pivotal roles in the entire interaction network, which
indicates that the nodes could be key target genes during the

treatment of type 2 diabetes or compounds that play important
anti-diabetic roles in the ethanol extract of mulberry leaves. In
specificity, the green circles represent 37 target genes (pro-

teins), the blue circles represent 14 compounds collected from
TCMSP database, while the pink circles represent 49 com-
pounds predicted in the PharmMapper database. Grey lines
connect circles together, indicating the interactions between

the components and the targets. In addition, according to
the diameters of the nodes, kaempferol (n = 23) and methyl
lucidenate P (n = 11) are the two key important compounds

from TCMSP and PharmMapper that have the highest num-
ber of interactions with target genes, respectively. In contrast,
multiple target genes were modulated by the same number of

compounds, which included acetylcholinesterase, polyunsatu-
rated fatty acid 5-lipoxygenase, androgen receptor, vascular
endothelial growth factor receptor 2, interstitial collagenase,

72 kDa type IV collagenase, matrix metalloproteinase 9, nitric
oxide synthase, MORF4 family-associated protein 1, and per-
oxisome proliferator-activated receptor gamma.

3.4. GO and KEGG pathway enrichment analysis

GO describes gene products with three independent categories,
which include biological process, cellular component, and

molecular function (Consortium, 2019). GO enrichment anal-
ysis was performed in order to find out which GO terms are
over- or under-represented by using annotations for a specific

gene set. In this study, 37 target proteins were analysed
through DAVID (Dennis et al., 2003) and top 10 GO entries
for each category were selected according to false discovery

rate (FDR, < 0.05) as shown in Fig. 4.
A total of 30 pathways filtered from KEGG analysis with

P-value < 0.05 were selected and visualized as bar plot with
the number of target proteins in each of the KEGG pathways

(Fig. 5A) while the corresponding -log10(P-value) of each
pathway was shown as bubble plot in Fig. 5B. Various inflam-
matory signaling pathways such as TNF signaling pathway,

calcium signaling pathway, cGMP-PKG signaling pathway,
cAMP signaling pathway, regulation of lipolysis in adipocytes,
NF-jB signaling pathway, insulin resistance pathway, and

sphingolipid signaling pathway were associated with type 2
diabetes mellitus. Thus, according to the GO and KEGG path-
way enrichment analyses, components from the ethanol extract
of mulberry leaves were involved in a variety of signaling, sig-

nal transduction, and lipolysis pathways associated with
T2DM.

In order to elucidate the interactions of target proteins with

all the identified KEGG pathways, CytoScape was used to
construct a target-pathway network (Fig. 6). According to
the diagram, the target proteins involved in the TNF signaling

pathway included inhibitor of nuclear factor kappa-B kinase
subunit beta (IKBKB), RAC-alpha serine/threonine-protein
kinase (AKT1), E-selectin (SELE), tumour necrosis factor

(TNF), matrix metalloproteinase 9 (MMP9), and intercellular
adhesion molecule 1 (ICAM1). The target proteins involved in

https://string-db.org/


Fig. 3 The interaction network among components from the ethanol extract of mulberry leaves and T2DM-related target proteins. All

the compounds were labelled with PubChem ID in order to avoid compound-name overlapping. The diameters of circles reflect the

number of interactions. Green circles: target genes (proteins). Blue circles: 14 compounds collected from TCMSP database. Pink circles: 49

compounds collected from PharmMapper database. Grey lines: connections between circles.
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the calcium signaling pathway included muscarinic acetyl-
choline receptor M3 (CHRM3), nitric oxide synthase 2

(NOS2), nitric oxide synthase 3 (NOS3), Beta-1 adrenergic
receptor (ADRB1), Beta-2 adrenergic receptor (ADRB2),
and cAMP-dependent protein kinase catalytic subunit alpha

(PRKACA). The target proteins involved in the cGMP-PKG
signaling pathway included NOS3, cGMP-inhibited 30

(PDE3A), AKT1, ADRB1, and ADRB2. The target proteins

involved in the cAMP signaling pathway included PDE3A,
AKT1, ADRB1, ADRB2, and PRKACA. The target proteins
involved in the regulation of lipolysis in adipocytes included
AKT1, ADRB1, ADRB2, and PRKACA. The target proteins

involved in the NF-jB signaling pathway included IKBKB,
apoptosis regulator Bcl-2 (BCL2), TNF, and ICAM1. The tar-
get proteins involved in the insulin resistance pathway included

IKBKB, NOS3, AKT1, and TNF. The target proteins
involved in the sphingolipid signaling pathway included
NOS3, BCL2, AKT1, and TNF.

3.5. Target path analysis

The 37 selected targeted genes were submitted to the Ensemble

database by BioMart, through which the gene names were con-
verted to Entrez Gene ID. KOBAS database was then used for
KEGG pathway analysis, and target genes in the given
analysis results were arranged in ascending order based on

the P-values. The statistically significant target genes in
pathways were highlighted in red and present in Fig. 7. The
pathway map showed that ethanol extract of mulberry leaves

was involved in the treatment of diabetes through regulating
specific pathways, including PI3K-AKT signaling pathway,
NF-jB signaling pathway, and MAPK signaling pathway, etc.

4. Discussion

The philosophy of traditional Chinese medicine has been con-

sidering a patient as an integrative system. With the long-term
development of TCM, it has many effective herbal formulae to
treat a variety of chronic diseases such as nephritis and dia-

betes, etc. (Li and Zhang, 2013). However, due to the complex-
ity of TCMs, it is rather difficult to elucidate their molecular
mechanisms. For the past twenty years, network pharmacol-
ogy, as an interdisciplinary science through integration of

pharmacology, bioinformatics, and other related scientific dis-
ciplines, has been widely used in the discovery of novel disease
targets and active drug compounds (Hopkins, 2008). Since the

essential idea of network pharmacology focuses on the ‘‘multi-
target, multi-drug” paradigm, it intrinsically matches with the
principle of traditional Chinese medicine (Li and Zhang, 2013).

Mulberry leaves have been used as an effective TCM to com-
bat inflammation and reduce hypertension for a long time in
Asian countries (Thaipitakwong et al., 2018). In addition,

many studies reported the beneficial effects of mulberry leaves
in lowering blood glucose level and alleviating the conditions



Fig. 4 GO enrichment analysis of target proteins. (A) Bar plot of

the number of GO entries in the functional categories of biological

process (BP, blue bar), cell composition (CC, green bar), and

molecular function (MF, orange bar). (B) Bubble plot of GO

entries filtered with -log10(P-value < 0.05). Fig. 5 Target protein KEGG pathway analysis. (A) Bar plot of

the number of target proteins in each of the KEGG pathways. (B)

Bubble plot of KEGG pathways. All the KEGG pathways were

filtered with P-value < 0.05.
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of diabetic diseases (He et al., 2019; Li et al., 2019; Tian et al.,
2019; Li et al., 2020). Recently, some studies have used net-
work pharmacology to investigate the molecular mechanisms

of mulberry leaves in treating diabetes (Ge et al., 2018; Wu
and Hu, 2020). However, only components sourced from pub-
lic database or volatile components in the mulberry leaves were
examined.

In this study, we explored the component compositions of
ethanol extract of mulberry leaves via LC-MS, which was then
systematically searched in a variety of public databases in

order to identify potentially effective components, target
genes, and important pathways for the treatment of T2DM.
According to the result, a total of 63 compounds and 37 target
proteins were identified (Table 1), among which 14 compounds

sourced from TCMSP database were biologically active
(Table 2). As for the 37 target proteins, PPI analysis revealed
that all of them formed an integrative network except for

one target potassium voltage-gated channel subfamily H mem-
ber 2 (KCNH2). It was previously reported that the mutations
of KCNH2 gene could cause the rare syndrome congenital
long QT syndrome (LQTS) that carries an increased risk of

cardiac arrhythmias (Oshiro et al., 2010) while a recent study
revealed LQTS patients with KCNH2 mutations display an



Fig. 6 Schematic illustration of the network of pathway-target interactions. Blue-circle nodes represent the pathways involved in the

target protein while pink-circle nodes represent target proteins. The diameter of the circle node represents the number of connections

(interactions) with other nodes.
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increased insulin release with an increased risk of hypogly-
caemia (Marstrand et al., 2019). Clusters in the PPI network
are normally protein complexes or belong to the same path-
way. Compared with the non-interacting protein pairs, we

found that the predicted PPIs tend to be in the same or related
pathways (PPI enrichment P-value < 1.0e-16), which indi-
cated that our predicted PPIs were reliable.

Further Mcode analysis of the PPIs revealed that 13 targets
were highly inter-connected, which included AKT1, ALOX5,
HMOX1, ICAM1, KDR, MMP1, MMP2, MMP9, NOS2,

NOS3, PPARG, SELE, and TNF. AKTs have three different
isoforms (AKT1, AKT2, and AKT3), in which AKT1
expresses ubiquitously while its blocking in pancreatic b-cells
and peripheral tissues lead to hyperglycaemia and diabetes
(Huang et al., 2018). As for ALOX5 gene, it encodes
5-lipoxygenase and is implicated in chronic inflammatory dis-
ease, the polymorphism of which has also been identified to

confer genetic susceptibility to type 2 diabetes (Nejatian
et al., 2019). HMOX1 is the coding gene of heme oxygenase
1 that is essential for haem degradation, a risk factor in the

progression of type 2 diabetes and obesity-associated meta-
bolic disturbances (Moreno-Navarrete et al., 2017). Intercellu-
lar adhesion molecule 1 (ICAM1) is a cell surface glycoprotein

express, both genetic polymorphism and gene expression level
of which are correlated with diabetes and diabetic nephropathy
(Gu et al., 2013). As for KDR, it encodes vascular endothelial
growth factor receptor 2, which plays important roles in medi-
ating vasculogenic and angiogenic processes that involves dia-
betic retinopathy (Sassa et al., 2004). Collagenases (MMP1)
and gelatinases (MMP2 and MMP9) belong to the protein

group of matrix metalloproteinases and function as zinc-
binding proteolytic enzymes, increased activities of which are
responsible for a variety of diseases such as tumour growth,

arthritis and cardiovascular disease (Lewandowski et al.,
2011). In addition, it was also revealed that MPPs were
involved in tissue remodelling, maintaining an integral role

in diabetic wound healing (Ayuk et al., 2016). NOS2 gene
encodes the inducible nitric oxide synthase while NOS3 genes
encodes endothelial nitric oxide synthase gene, both of which

have been proved to play important roles in the susceptibility
to type 2 diabetes mellitus (T2DM) and diabetic nephropathy
(Chen et al., 2016). Peroxisome proliferator-activated receptor
gamma (PPARG) could increase the systemic insulin sensitiza-

tion through complex mechanisms involving multiple path-
ways when activated (Lv et al., 2017). As for SELE, it
encodes endothelial adhesion molecule 1 and its increased con-

centration was associated with both insulin-dependent and
non-insulin-dependent diabetes mellitus patients (Cominacini
et al., 1995). In terms of TNF, it is a tumour necrosis factor

that acts as one of the most important pro-inflammatory medi-
ators in the development of insulin resistance and pathogenesis
of T2DM (Akash et al., 2018).



Fig. 7 Pathway map of ethanol extract of mulberry leaves in the treatment of type 2 diabetes mellitus. The main target proteins that are

involved in diabetes-related pathways are highlighted in red. Arrows represent the activation effect, T-arrows represent the inhibition

effect, and segments show the activation effect or inhibition effect.
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In order to understand the interactions among compounds
and targets, we constructed a multi-layer network, which pro-

vided insights into compound-target relationships (Fig. 3).
According to the results, 14 active compounds from the etha-
nol extract of mulberry leaves were found in TCMSP database.

Among them, three representative compounds were quantita-
tively measured in terms of their concentrations, including
Kaempferol (n = 23), Licoricone (n = 7), Morin (n = 5),
all of which were interplayed with multiple targets related with

T2DM. For example, the natural flavanol kaempferol has the
highest number of connections with target proteins. Thus, it
indicates that kaempferol may be a key component in the etha-

nol extract of mulberry leaves and plays important roles in the
treatment of diabetes. In fact, many studies have reported the
anti-diabetic effects of the compound. In particular, An et al.

(2011) studied kaempferol extracted from Ginkgo biloba and
found that it could reduce hyper-glycemia syndrome and
enhance glucose uptake through mimicking the action of insu-

lin. Ishaq et al. (2019) summarized the anti-diabetic effect of
kaempferol, according to which the compound could systemat-
ically alleviate diabetic conditions such as increasing produc-
tion and secretion of insulin, enhancing synthesis of new
glucose transporters, and suppressing hepatic gluconeogenesis,
etc. Morin is another natural dietary flavonoid compound that

has been found in different herbs, fruits and wine (Gallyas
et al., 2012). According to Paoli et al. (2013), morin could inhi-
bit gluconeogenesis and enhances glycogen synthesis, which

has the potential to be developed into an low-molecular-
weight antidiabetic drug. Another study by Lin et al. (2017)
revealed that morin could decrease blood glucose level by
increasing plasma insulin secretion in diabetic rats by acting

as an agonist of imidazoline I-3 receptor, which also indicated
that develop morin had the potential as a drug for the treat-
ment of diabetic disorders. Multiple studies also reported the

anti-diabetic functions of other bioactive compounds in
the ethanol extract of mulberry leaves, which validated the
methodology of network pharmacology used in this study

for the discovery of the interactions between compounds, tar-
gets and type 2 diabetes mellitus. However, it was noteworthy
that, although licoricone was identified as a meaningful com-

pound to combat T2DM, there were very rare experimental
studies confirming its anti-diabetic roles, which indicated that
more efforts should be devoted to this drug in the study of
T2DM.
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As for the 49 compounds identified through PharmMapper
prediction, compounds such as methyl lucidenate P, isoxan-
thanol, and epi-Kansenone diabetes, etc. have functions in

the treatment of diabetic pathogenesis. Methyl lucidenate P
has impacts on 11 target proteins while epi-Kansenone inter-
acts with 9 target proteins. However, literature analysis

showed that there are few reports of these compounds in dia-
betic treatment, which suggested that these compounds were
worthy of further investigations in terms of their anti-

diabetic functions. As for the compound-target interactions,
ACHE (acetylcholinesterase), ALOX5 (polyunsaturated fatty
acid 5-lipoxygenase), AR (androgen receptor), KDR (vascular
endothelial growth factor receptor 2), MMP1 (matrix

metalloproteinase-1), MMP2 (matrix metalloproteinase-2),
MMP9 (matrix metalloproteinase-9), NOS2 (nitric oxide syn-
thase), PGR (progesterone receptor), and PPARG (peroxi-

some proliferator-activated receptor gamma) are among the
highly connected proteins with compounds, all of which have
9 connections. For example, androgen receptor with reduced

insulin sensitivity is associated with poor glycaemic control
in men with type 2 diabetes while acetylcholinesterase is asso-
ciated with the apoptosis of b cells, which contributes to the

pathogenesis of insulin-dependent diabetes mellitus (Zhang
et al., 2012).

According to the KEGG pathway analysis, protein tar-
gets regulated by the ethanol extract of mulberry leaves were

involved in pathways such as pathways in cancer, TNF
signaling pathway, NF-jB signaling pathway, and insulin
resistance pathway, etc. It has been reported that there is a

cross-talk between the multiple pathways at the interface of
the diabetes–cancer link, which may explain why target pro-
teins for diabetes fall in to the pathways in cancer

(Tudzarova et al., 2015). In TNF signaling pathway, TNF-
a is considered as a causative factor in insulin resistance
and the pathogenesis of type 2 diabetes (Moller, 2000),

which is also interacted with insulin signaling pathway
through mechanisms such as phosphorylation of IRS-1 (in-
sulin receptor substrate 1) (Alipourfard et al., 2019). As
for NF-jb signaling pathway, NF-jb is a potential target

for the vascular complications in diabetes because hypergly-
caemia activates NF-jb, leading to the increased expression
of cytokines, chemokines and cell adhesion molecules

(Suryavanshi and Kulkarni, 2017). In the target-pathway
analysis (Fig. 6), RAC-alpha serine/threonine-protein kinase
(AKT1) was identified as the most important target that

was present in 22 different pathways. AKT belongs to the
PI3K/AKT signalling pathway that is required for normal
metabolism of glucose, the imbalance of which could lead
to the development of type 2 diabetes mellitus (Huang

et al., 2018). It was followed by inhibitor of nuclear factor
kappa-B kinase subunit beta (IKBKB) and apoptosis regula-
tor Bcl-2 (BCL2), which were involved in 15 and 13 pathways,

respectively. The metabolic disorders of insulin resistance and
type 2 diabetes are normally associated with chronic inflamma-
tions while IKBKB encoding IKK-b is a central coordinator of

inflammatory responses that is correlated with the activation of
NF-jb (Arkan et al., 2005). In terms of BCL2, it is essential in
controlling the mitochondrial pathway of b-cell apoptosis

(Gurzov and Eizirik, 2011). In addition, it is also important
in regulating glucose metabolism (Gurzov and Eizirik, 2011).
Thus, BCL2 is closely associated with the pathogenesis of type
2 diabetes mellitus.
5. Conclusion

This study systematically examined the effects of chemical
components identified in the ethanol extract of mulberry leaves

via LC-MS on the treatment of type 2 diabetes mellitus. A
total of 14 active components and 49 potentially functional
compounds were identified from TCMSP and PharmMapper

database, respectively, which worked on 37 target proteins
directly involved in the pathogenesis of T2DM. Kaempferol
was shown to be the most influential active compound while
androgen receptor was most widely regulated by compounds

in the ethanol extract of mulberry leaves. Potentially effective
components were also identified through compound-target
network analysis. Protein-protein interaction and target-

pathway network revealed that AKT1 was most important
in the 37 target proteins in terms of its functions in different
pathways and interactions with other target proteins. More-

over, pathway analysis showed that ethanol extract of mul-
berry leaves alleviated type 2 diabetes mellitus through
pathways such as TNF signaling pathway, NF-jB signaling

pathway, and insulin resistance pathway, etc. In sum, network
pharmacology provided a systematic view of the functions of
the ethanol extract of mulberry leaves in the treatment of type
2 diabetes mellitus, which theoretically validated the effects of

mulberry leaves at molecular level. In addition, candidate tar-
get proteins and compounds were identified for further exper-
imental studies in terms of their roles in diabetic pathogenesis

and treatment.
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