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Abstract Previous breakthroughs in biosensor diagnostics stem from engineering and nanocom-

posites. Accurately detecting low-abundance compounds such as methotrexate in complex biospec-

imens (e.g. serum) is an important clinical challenge. To address this issue, a MWCNTs-doped

MXene-based multi-spiral-channel field-effect transistor (MMSFETs) biosensor was constructed

for ultrasensitive quantification of methotrexate. Our integrated biosensor exhibited following mer-

its: a) The synergetic performance of MXene and MWCNTs for enhanced transconductance (0.63

mS) and detection capability (methotrexate, linear range of 0.001–100 lM and LOD down to

0.352 nM); b) Favorable selectivity, stability (one month), reproducibility (RSD = 0.99%,

n = 7) for biosensing of methotrexate; c) Acceptable clinical performances on comparisons of

MMFETs against commercial Abbott automatic immunoluminescence instrument (ARCHITECT

I1000): favorable linearity and correlation coefficient (YMMSFETs = 1.4305 � Xtargeted concentra-

tion + 4.3791 with R2 = 0.949), significant p value (7.68E-12 < 0.001) and diagnosis capability

of AUC (0.9907). Those advantages are anticipated to pave an avenue to design of the FETs-

based biosensor towards the point-of-care diagnostics applications.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The methotrexate, formerly amethopterin, working as an anti-folate

chemotherapy and antimetabolite medicine, which has been used to

manage various cancer disorders, including but not limit to lymphoma

leukemia throphoblastic neoplasm as well as inflammatory agent to

cure lupus, rheumatoid (Guo et al., 2021; Le Bras, 2019; Li et al.,

2021; Tajik et al., 2022). Nevertheless, disadvantages such as cardio-

toxicity, hypoalbuminemia, and myelosuppression have restricted the

wide clinical applications under its high doses (El-Said et al., 2019;

Jandaghi et al., 2020; Karami et al., 2019; Li et al., 2021; Tajik

et al., 2022). Meanwhile, due to its limited presence in complex biosam-

ples, devising an effective approach for the precise and sensitive detec-

tion of methotrexate remains a desirable yet formidable task. Accurate

determination of methotrexate levels is paramount in furnishing

healthcare providers with essential clinical insights.

A variety of techniques including the UV–visible spectrometry

(Castro-Puyana et al., 2011), capillary electrophoresis (Cheng et al.,

2010), liquid chromatograph mass spectrometer (Wu et al., 2015)

and electrochemical biosensor (Castro-Puyana et al., 2011; El-Said

et al., 2019; Jandaghi et al., 2020) have been applied for the quantifica-

tion of methotrexate. In the field of immunosensors, ZnO nanocom-

posite, multi-walled carbon nanotubes, vanadium oxide have been

integrated with glassy carbon electrode or screen-printed electrode

for the determination of methotrexate (Chen et al., 2019; Deng

et al., 2020; Li et al., 2021; Wang et al., 2014). Nonetheless, there

remains scope for enhancement pertaining to its detection capability,

encompassing expansion of the detection range and minimization of

its lower limit of detection. Nowadays, field effect transistors (FETs)

strategy has gain intensive attentions because of its unique merits,

including portability & miniaturization, quick response, amplified sen-

sitivity, and high ratio signal ratio (Ji et al., 2018; Kim et al., 2020; Le

Gall et al., 2020; Liu et al., 2021; Perera et al., 2013; Xu et al., 2016),

resulting in numerous applications in the fields of biosensing (Bischak

et al., 2020; Macchia et al., 2020; Sarkar et al., 2014; Sengupta and

Hussain, 2021; Seo et al., 2020; Wang et al., 2022). In principle, the

intrinsic properties of semiconducting and the architecture of elec-

trodes decide the amplification performance of FETs-based biosensor

(Kim et al., 2022; Zamzami et al., 2022b). Therefore, it’s desirable to

tailor specific semiconducting nanocomposites and property transis-

tor’s structure to maximize the quantification capability.

The semiconducting MXene (Eom et al., 2020; Liu et al., 2018;

Umrao et al., 2019; Y. Z. Zhang et al., 2020), a typical multiple two-

dimensional (2D) nanocomposites with favorable electronic, semicon-

ducting and transport properties. Additional, in practice, intercalation

and delamination structures in MXene provide wide spatial possibility

for doping of semiconductor (Bai et al., 2020; Chen et al., 2021;

Mojtabavi et al., 2019; Xu et al., 2016; Z. Zhang et al., 2020; Zhu

et al., 2020), which would further enhance the quantification perfor-

mance. The multi-wall carbon nanotubes (MWCNTs) is one of

carbon-based nanomaterials with favorable conductivity and biocom-

patibility (Liang et al., 2020; Türk et al., 2018; Wang et al., 2020),

which were also widely used in the field of biosensing. The interdigi-

tated architecture of source-drain electrodes has been intensively

reported for enhance the transconductance (Gm) (Paterson et al.,

2020; Wu et al., 2019, 2018) of FETs-based biosensor due to the

improved efficient semiconducting nanomaterials on the channel.

Rational design of the multi-spiral configuration represents a promis-

ing approach to amplify the efficacy of field-effect transistor-based

biosensors. In light of this, we have devised a biosensor utilizing

MWCNTs-doped MXene-based multi-spiral-channel field-effect tran-

sistors (MMSFETs) to detect methotrexate with remarkable sensitiv-

ity. The novelty of this research lies in the amalgamation of

nanocomposite optimization and the intricately tailored design of a

multi-spiral configuration, which has yielded outstanding quantifica-

tion capabilities for the biosensing of methotrexate. Furthermore, we

have systematically fine-tuned various pertinent parameters, such as
pH, temperature, and aptamer concentration, to optimize the perfor-

mance of our biosensor. Furthermore, we undertook a comprehensive

assessment of the clinical feasibility of FETs-based biosensors in terms

of their future applications. Our biosensor, based on FETs, exhibited a

highly favorable linear correlation with targeted methotrexate concen-

tration, along with a marked distinction between biospecimens with

low and high concentrations. Additionally, our proposed methodology

was able to differentiate between biospecimens with a high concentra-

tion of methotrexate and those with a low concentration, with an area

under the curve (AUC) value of 0.9907.

2. Materials and methods

2.1. Reagents

The prostate specific antigen (PSA, ab167924), myoglobin

(MYO, ab77876), cluster of differentiation 63 (CD63,
ab276872), neuron-specific enolase (NSE, ab78797), carbohy-
drate antigen 19–9 (CA199, ab289665) were bought from

Abcam, Inc. The methotrexate (PHR1396), hydrofluoric acid
(HF, 184225), glucose (PHR1000), cysteine (C7352) were pro-
vided by Sigma Chemical Co. The hydrochloric acid (HCl,

10011028), 6-mercapto-1-hexanol (MCH, XW163378901) were
purchase from Sinopharm Chemical Reagent Co. The
methotrexate aptamer with sequence of HS-GGAGGCTCTC

GGGACGACGGACGCGGGATGTTTGGGGGACCCACG
TTTGTCGTCCCGATGCTGCAATCGTAA for specific
binding with methotrexate was provided by Sangon Biotech
(Shanghai, China) according to previous literature (He et al.,

2021). The MAX phase Ti3AlC2 and MWCNTs were provided
by Xian Ruixi Biotechnology Co and Chengdu Organic Chem-
icals Co. Ltd, respectively. The ultrapure deionized (DI) water

was processed by a Milli-Q system.

2.2. Synthesis of MXene and doping of MWCNTs/MXene
nanocomposites

To synthesize the MXene used in our biosensor, we followed
procedures reported in the literature by reported literatures

(Hosseini et al., 2020; Yang et al., 2020). Initially, we added
2.0 g Ti3AlC2 slowly to a 0.1 M HF solution and stirred the
solution continuously for 20 h at 45℃. We then washed the
resulting mixture ten times with deionized water until the pH

reached 6.6. The black powder was collected via drying in a
vacuum oven at 60℃ for 12 h to prepare for the doping proce-
dures with MWCNTs and MXene. We prepared various ratios

of MWCNTs and MXene (0%, 1.0%, 2.0%, and 3.0% by
weight) via strong stirring at 60℃ for 2 h. These doped mate-
rials were used to construct the multi-spiral-channel field-

effect transistor (MMSFETs) biosensor for the ultrasensitive
quantification of methotrexate. Overall, the synthesis and
preparation procedures were carefully conducted to ensure
the high quality and performance of the biosensor.

2.3. Fabrication, functionalizations and reaction of MMSFETs

We fabricated the MMSFETs biosensor via photolithography

and thermal evaporation strategies (Fu et al., 2017; Lin et al.,
2011; Tang et al., 2011). The photolithography was performed
by S1833 (Shipley) with exposure time of 10 s, 365 nm, and

20 mW/cm2
. The configurations for thermal evaporation were
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set as following: 2.6 Pa, 4 nm Cr acting as the adhesive layer
and 50 nm Au deposition as the metal interconnection.
Finally, the channel was spin-coated with the fixed ratio

MWCNTs/MXene mixture following by 1 h bakeout under
60 ℃. For the functionalization of gate electrode, the
MMSFETs was cleaned with plasma for 5 min and incubated

in the 20 lM aptamer for 4 h. Then, the MMSFETs was
blocked by 20 lM MCH for10 h to avoid nonspecific adsorp-
tion (Anjum et al., 2019). Finally, the functionalized

MMSFETs biosensors were kept in 4℃ refrigerator for further
usage. For the determination of methotrexate, the MMSFETs
Fig. 1 A) illustrative scheme of fabrication of hybrid MMSFETs for

field effect transistor and corresponding electrical double layers (EDLs)

MXene.
biosensors were incubation with a series of methotrexate solu-
tions or clinical biosamples with optimal parameters including
the temperature (37 ℃), incubation time (40 mins), and pH

(7.0) (See detailed information in 3.3) for the evaluation of
the performance.

2.4. Characterizations of MMSFETs

The MWCNTs/MXene nanocomposites were characterized by
scanning electron microscope (SEM) via EM-30AX. The AFM
ultrasensitive determination of methotrexate. b) The mechanism of

. SEM photography of c) pristine MXene and d) MWCNTs-doped
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analysis of bare gate, gate/aptamer, gate/aptamer/MCH and
gate/aptamer/MCH/methotrexate were performed by AFM
Dimension FastScan (Bruker). The transfer characteristics of

MMSFETs were measured by Keithley sourcemeter 2400.
Typically, the electrodes including the gate, source and drain
of MMSFETs were immersed in PBS ionic liquid electrolyte,

and the sourcemeter 2400 would record the amperometric sig-
nal of channel. Because the binding between the methotrexate
and the aptamer in MMSFETs would lead the increase of

resistance for gate electrode, and the biosensor would amplify
the small signal into favorable readout, resulting in the correc-
tion relationship between the amperometric signal and the tar-
geted concentration of methotrexate.

2.5. Harvesting of biosamples

The institutional ethics committee of the Children’s Hospital

of Fudan University proved all clinical research and protocols
in this project. For the protocols of biospecimens harvesting,
five millliter of biospecimens were collected under centrifuga-

tion with configurations of 1500 � g and 8 min. The obtained
biospecimens were stored for further quantification (-20℃).
Fig. 2 Validations of functionalization procedures for MMSFETs. A

MCH, d) gate/aptamer/MCH/methotrexate, respectively.
The AUC, t-test and calibration curve were analyzed by
GraphPad Prism 9.

3. Results

3.1. Illustrative mechanism and characterization of MMSFETs

To attain highly sensitive and precise quantification of
methotrexate, we employed a customized design approach to

develop a hybrid biosensor utilizing MWCNTs-doped
MXene-based multi-spiral-channel field-effect transistors
(Fig. 1a). The FETs-based biosensor has the ability to amplify

otherwise imperceptible signals into discernable readouts via
the utilization of electrical double layers (EDLs, Fig. 1b). As
the semiconductor for our biosensor, we opted for 2-D semi-

conducting MXene nanocomposites, which exhibited clear
intercalation and delamination structures (Fig. 1c). We also
performed elemental mapping to validate the synthesis of
MXene (Fig. S1-2 and Supporting Table S1), with conclusive

evidence of the existence of Ti, C, N, and O. Additionally,
we verified the doping of MXene with MWCNTs to enable
subsequent optimization of our biosensors (Fig. 1d).
FM analysis of a) original gate, b) gate/aptamer, c) gate/aptamer/
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3.2. Validation of modification processes

To achieve highly specific quantification of methotrexate, we
selected a customized aptamer with the sequence HS-GAGG
CTCTCGGGACGACGGACGCGGGATGTTTGGGGGAC

CCACGTTTGTCGTCCCGATGCTGCAATCGTAA, which
exhibited specific binding affinity towards methotrexate. To
validate the successful functionalization of aptamer and effi-
cient blocking, we employed atomic force microscopy (AFM)

and utilized root mean square (RMS) roughness (Jia et al.,
2019; Lee et al., 2018; Seo et al., 2020; Zhang et al., 2012) as
the index for evaluating the modification procedures (Fig. 2-

a-d). The pristine gold electrode exhibited the lowest RMS
value of 9.21 ± 0.89 nm. When the gate electrode was func-
tionalized with 20 lM aptamer, the RMS value for gate apta-

mer increased to 14.32 ± 1.22 nm. Following the blocking of
MCH, the RMS value for the gate/aptamer/MCH electrode
further increased. Finally, the highest RMS value was

observed for the gate/aptamer/MCH electrode due to the
specific binding between the aptamer and methotrexate.

3.3. Detection performance optimization of MMSFETs

To optimize the detection performance MMSFETs, we sys-
tematically tailored the semiconducting and the architecture
of transistor. The signal response of MMSFETs was enhanced
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were selected at 37℃ and 40 min, respectively (Fig. 3c-d). Opti-
mizing aptamer concentration and incubation time is crucial
for achieving sufficient binding between methotrexate and

aptamer. In terms of pH and temperature, there is a general
rising trend followed by a decline, as exceedingly high pH
and temperature can adversely impact the biochemical interac-
tion between methotrexate and aptamer. With the aforemen-

tioned optimizations, the optimal configurations for
designing and functionalizing the MMSFETs biosensor can
be ensured.

The optimizations of semiconducting nanocomposites and
the tailored channel architecture are critical factors for maxi-
mization of detection capability (Zamzami et al., 2022a). We

tailored the doping of MWCNTs into MXene including the
ratio of 0.0%, 1.0 %, 2.0% and 3.0% in Fig. 4a-d. We ana-
lyzed the transfer characteristics and corresponding transcon-

ductance, because the Gm represented the detection
sensitivity. The detection capability of MMSFETs improved
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3.0% MWCNTs doping ratio enhanced the original drain-
source amperometric current, the semiconducting property
diminished, resulting in declined Gm (Fig. 4d). We hypothe-
sized that with the increase of MWCNTs concentration, the
gain of Gm has a trend of rising first and then falling, which
is due to its internal dynamic balance. Our field effect transis-
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tor biosensor would amplify the negligible signal into notable
readout via the electrical double layers (EDLs, Fig. 1b). The
channel architecture especially effective area is the key config-

uration for the optimization of MMSFETs. Herein, we per-
formed transfer characteristics and Gm analysis for multi-
spiral-channel MMSFETs biosensor with N = 10, N = 12,

N = 14, and the N = 12 demonstrated the optimum perfor-
mance (Fig. 4e-g). Abovementioned optimizations on nanoma-
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terials and the electrode architecture established a robust
groundwork for subsequent methotrexate quantification.

3.4. Selectivity, reproducibility, stability and quantification
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methotrexate against other interferences including CD63,
PSA, MYO, NSE, CA199, glucose and cystine (Fig. 5a-b).
The favorable response signal of MMSFETs biosensing of

100 nM methotrexate were observed with 11.4 ± 0.34 lA,
while negligible response signals of PSA (0.13 ± 0.04 lA),
YO (0.21 ± 0.03 lA), CD63 (0.18 ± 0.05 lA), NSE (0.28

± 0.02 lA), CA199 (0.45 ± 0.04 lA), glucose (0.28 ± 0.08
lA) and cysteine (0.33 ± 0.12 lA) were displayed in Fig. 5b,
which evidenced acceptable selectivity of MMSFETs for quan-

tification of methotrexate. For the evaluation of stability, we
recorded the amperometric response of MMSFETs for quan-
tification of methotrexate, resulting in a relative standard
derivation (RSD) of 0.99%, which confirmed the favorable

stability of MMSFETs biosensor (Fig. 5c). Moreover, we also
monitored the stability of MMSFETs for further applications.
Specifically, we monitored the amperometric signals of

MMSFETs over 1 month, with a maximum of signal decline
by 0.82%, which proved the favorable stability of MMSFETs
(Fig. 5d). Finally, we performed quantification for a series of

concentrations ranging from 0.001 to 100 lM via the transfer
characteristics (Fig. 5e), the calibration curve was plotted with
favorable linear correlation y = 3.186 � log CMethotrexate)

+ 3.51 with R2 = 0.9932 (Fig. 5f). Meaningful, we calculated
the limit of detection low to 0.352 nM via the signal noise ratio
at 3.0 according to previous literatures (Bischak et al., 2020;
0
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Fig. 6c). The t-tests for independent low-concentrations and
high-concentrations were analyzed individually, resulting in
R2 values of 0.9923 and 0.9902, respectively (Fig. S3-4). Lastly,

we performed an area under curve (AUC) analysis, which
yielded a value of 0.9907 (with sensitivity of 100% and speci-
ficity of 95.65%) for discriminating between high and low con-

centrations of methotrexate via MMSFETs (Fig. 6d). The
above-mentioned outcomes conclusively demonstrate the clini-
cal usability of MMSFETs in detecting real biospecimens.

4. Conclusions

In summary, our study presents a novel hybrid MWCNTs-doped

MXene-based multi-spiral-channel field-effect transistor (MMSFETs)

biosensor for highly sensitive detection of methotrexate. The integra-

tion of MWCNTs-doped MXene and multi-spiral-channel architecture

into the field-effect transistor provided exceptional sensitivity for

methotrexate detection within the range of 0.001–100 lM with an

unprecedentedly low LOD of 0.352 nM, surpassing the performance

of previously reported biosensors. We optimized the parameters such

as pH and temperature to ensure excellent selectivity, reproducibility

(RSD= 0.99%, n = 7) and stability (over one month). Our

MMSFETs biosensor demonstrated excellent diagnostic performance

in clinical biospecimens, as evidenced by the high linear correlation

(YMMSFETs = 1.4305 � Xtargeted concentration + 4.3791 with R2 =

0.949), low p value (7.68E-12 < 0.001), and high AUC value

(0.9907). Overall, considering the above-mentioned merits, we antici-

pate that MMSEFTs biosensor paves a practical platform for field

effect transistor biosensor in the biochemical quantification in clinics.
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