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A B S T R A C T   

Jieyu Anshen Granules (JY) is a traditional Chinese medicine formula commonly used as an adjuvant treatment 
for Alzheimer’s disease (AD) complicated with depression. However, the specific underlying mechanisms and 
therapeutic targets of JY remain unclear. We used the TCMSP, TCMID, BATMAN-TCM, and other databases to 
screen the components and assumed targets of JY. Next, the GEO and DisGeNET databases were used to identify 
the related targets of both AD and Major Depressive Disorder (MDD). Enrichment analyses of core targets were 
performed, and the main components and core targets of JY for the comorbidity of AD and MDD were identified 
via protein–protein interaction (PPI) network construction and machine learning algorithms. Lastly, we verified 
binding affinity using the AutoDock software and molecular docking was performed. A total of 171 components 
were identified from JY, and 979 targets were obtained from the screening process. Bioinformatics analysis 
displayed 397 differentially expressed genes (DEGs) were shared by AD and MDD. Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis revealed significant enrich-
ment of genes associated with neurotransmitter receptor activity, G protein-coupled amine receptor activity, as 
well as signaling pathways such as the cAMP signaling pathway, PI3K-Akt signaling pathway, and cholinergic 
synapses. Through the PPI network and machine learning, we identified three hub genes (Ataxia telangiectasia- 
mutated gene [ATM], Colony stimulating factor 1 receptor [CSF1R], EPH receptor B2 [EPHB2]) as potential 
therapeutic targets. Molecular docking confirmed that the components of JY (Mairin, Hederagenin, 3-Epiolea-
nolic Acid) could effectively bind to multiple key targets. This study revealed the effective components and 
potential mechanisms associated with JY treatment regarding AD and MDD comorbidities, offering valuable 
insights into promising therapeutic targets for subsequent studies.   

1. Introduction 

Alzheimer’s disease (AD), an insidious, progressive and fatal 
neurodegenerative disease, is the most common form of dementia and 
accounts for 60–80 % of all types of dementia (Scheltens et al., 2021). 
Since its pathogenesis remains unclear, there is presently no cure other 
than medication for temporary symptomatic relief (Conte and Paci, 
2022, Varesi et al., 2022). Depression and depressive symptoms in AD 
contribute to an increased risk of behavioral disorders, accelerated 

cognitive decline, reduced quality of life, and higher mortality rates 
(Hammar et al., 2022). Major depressive disorder (MDD) is a common 
mental illness characterized by a lack of interest in daily life, insomnia, 
cognitive impairment, feelings of worthlessness, and even suicidal 
thoughts (Pu et al., 2021). Older individuals with MDD often experience 
cognitive deficits, and recent studies have demonstrated a neurobio-
logical and clinical correlation between depression and AD (Pu et al., 
2021, Botto et al., 2022). Depression is a risk factor for the development 
of AD, and the presence of depressive symptoms significantly increases 
the transition from mild cognitive impairment (MCI) to AD (Caraci et al., 
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2018). Common pathophysiological events, including hippocampal at-
rophy and molecular pathways associated with oxidative stress and 
neuroinflammation, have been reported in both AD and MDD, involving 
signaling molecules such as Aβ, BDNF, GSK-3β, TNF-α, and TGF-β1 
(Juszczyk et al., 2021, Dolotov et al., 2022). However, the specific 
pathophysiological mechanisms underlying the association between 
depression and AD remain unclear. Exploring the pathogenesis of AD 
complicated by depression and developing new treatments is essential 
for improving the quality of life of affected patients. Currently, antide-
pressants are the primary treatment for individuals with AD and 
depression (Juszczyk et al., 2021, Wang et al., 2022). However, in-
dividuals with AD and MDD comorbidities are particularly vulnerable to 
the limitations of conventional antidepressant treatment, including side 
effects (such as anxiety, loss of appetite, and sexual dysfunction), 
inadequate response, tolerance issues, and slow onset of action (Zhang 
et al., 2022). 

Traditional Chinese medicine (TCM) is gaining popularity as an 
adjunct and alternative medicine due to its effectiveness, holistic 
approach, and long-term use without addiction or dependence (Liu 
et al., 2022, Zhang et al., 2022). Jieyu Anshen Granules (JY) is a 
formulation consisting of various herbal components, including Radix 
Bupleuri, Radix Polygalae, Rhizoma Pinelliae, Radix et Rhizoma Gly-
cyrrhizae, Fructus Gardeniae, Arisaema cum Bile, Radix Curcumae, 
Poria Cocos, Fructus Jujubae, Dragon’s Teeth, Bulbus Lili, Semen Ziziphi 
Spinosae, Rhizoma Atractylodis Macrocephalae, Radix Rhizoma Acori 
Tatarinowii and Fructus Tritici Levis, used for alleviating depression and 
promoting mental and emotional calmness. JY is also employed to 
alleviate distress, anxiety, insomnia, forgetfulness and menopausal 
symptoms resulting from mental irritation. Recent studies have indi-
cated that combining JY Granules with fluoxetine can inhibit the reup-
take of 5-hydroxytryptamine (5-HT) by presynaptic membranes, leading 
to enhanced efficacy in treating depression. The mechanism of action 
may involve the inhibition of inflammatory mediators such as IL-6, IL-23 
and TNF-α, as well as the upregulation of norepinephrine and 5-HT 
neurotransmitter levels (Du et al., 2020). Modern pharmacological 
studies have shown that Chai Hu extract can enhance 5-HT levels in the 
brain, Acorus calamus aqueous decoction exhibits antidepressant effects 
by increasing 5-HT activity, and roasted licorice can restore the function 
of norepinephrine neurons, leading to improved substance P levels. 
Bupleurum and Yu Jin have been traditionally used to soothe the liver, 
relieve depression, tonify qi and the spleen, and induce resuscitation. 
Yuan Zhi and other herbs are known for their calming and spirit- 
tranquilizing properties (Du et al., 2020). Saikosaponins B2 (SSB2) 
and Saikosaponin A, the main active ingredients of Chai Hu, have 
recently been found to reverse chronic unpredictable mild stress 
(CUMS)-induced depressive-like behaviors, attenuate central 

neuroinflammation, and ameliorate hippocampal nerve damage in mice 
(Wang et al., 2021, Wang et al., 2023). As the main active ingredient in 
Yu Jin, curcumin has been shown to ameliorate depression by modu-
lating the neuroplasticity, excitotoxicity, nitrosative stress, and endo-
cannabinoid system (Ramaholimihaso et al., 2020). JY is a classical 
Chinese medicine with antidepressant activity, widely utilized in China 
for treating depression, either alone or in combination with other anti-
depressants. However, the specific mechanism by which JY improves 
the symptoms and progression of AD and MDD comorbidities remains 
unknown (Du et al., 2020). Network pharmacology is a comprehensive 
approach that involves prioritizing disease-related genes, predicting 
target profiles and pharmacological effects of herbal compounds, iden-
tifying drug-gene-disease co-module associations, screening synergistic 
multi-compounds in herbal formulations, and exploring the combina-
torial patterns and network regulatory effects of herbal formulations in a 
high-throughput manner (Jiashuo et al., 2022). On the other hand, 
molecular docking is a computational technique for predicting the 
interaction and binding affinity between proteins and ligands (Santos 
et al., 2019). 

In this present study, we used an integrated approach combining 
network pharmacology, molecular docking, high-throughput 
sequencing data and disease databases to explore the potential targets 
and pathways involved in the treatment of AD and MDD comorbidity 
using JY, as well as to uncover the relevant biological mechanisms and 
common targets shared by AD and MDD comorbidity. The study work-
flow is shown in Fig. 1. 

2. Method 

2.1. Screening and identification of the active ingredients of JY 

The Traditional Chinese Medicine Systems Pharmacology Database 
and Analysis Platform (TCMSP) (https://tcmspw.com/) and the 
Traditional Chinese Medicine Integrated Database. 

(TCMID) (https://www.megabionet.org/tcmid/) are comprehensive 
pharmacological platform specifically designed for Chinese herbal 
medicines, emphasizing the role of systemic pharmacology in Chinese 
medicine (Ru et al., 2014, Huang et al., 2018). To identify the active 
ingredients of JY, we searched the TCMSP database using the keywords 
“Baihe”, “Chai Hu”, “Baishu”, “Suanzaoren”, “Zhizi”, “Dazao”, “Nan-
xin”, “Dangui”, “Fulin”, “Banxia”, “Shichangpu”, “Yu Jin” and “Gan-
cao”.The TCMID database was used to search for additional active 
ingredients and screen for compounds with high activity within the JY 
formulation using keywords “Fuxiaomai”, “Yuanzhi” and “Longchi”. 
The active ingredients of all databases were imported into the TCMSP 
for screening, the screening criteria were an Oral Bioavailability (OB) ≥

Abbreviations 

JY Jieyu Anshen Granules 
MDD Major Depressive Disorder 
DEGs Differentially expressed genes 
CSF1R Colony stimulating factor 1 receptor 
TCM Traditional Chinese medicine 
DC Degree centrality 
CC Closeness centrality 
MF Molecular function 
SSRIs Selective serotonin reuptake inhibitors 
AMPAR AMPA-type-glutamate-receptor 
GLP-1 Glucagon-like peptide-1 
SSB2 Saikosaponins B2 
OB Oral Bioavailability 
AUC Area under the ROC curve 

KEGG Kyoto Encyclopedia of Genes and Genomes 
AD Alzheimer’s disease 
PPI Protein-protein interaction 
ATM Ataxia telangiectasia-mutated gene 
EPHB2 EPH receptor B2 
5-HT 5-hydroxytryptamine 
BC Betweenness centrality 
BP Biological process 
GSEA Gene Set Enrichment Analysis 
NMDAR N-methyl-D-aspartate-receptor 
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ROS Reactive oxygen species 
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GO Gene Ontology  
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Fig. 1. Workflow for Jieyu Anshen Granules (JY) treatment of Comorbidity With Alzheimer’s Disease and Depression.  
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30 % and a Drug Trad (DL) ≥ 0.18. 

2.2. Collection of drug component-related targets 

After screening the active ingredients of the JY formulation, the 
corresponding targets were further identified. SwissTargetPrediction 
(http://www.swisstargetprediction.ch/) is a tool for predicting com-
pound targets by assessing similarities to the 2D and 3D structures of 
known compounds (Daina et al., 2019). The PubChem organic small 
molecule bioactivity database (https://pubchem.ncbi.nlm.nih.gov) was 
used to retrieve the molecular structure of each active ingredient in JY 
formulation, then the SMILES formula of each active ingredient was 
obtained and inputted into SwissTargetPrediction to identify and collect 
potential targets associated with the active ingredients. The screening 
condition was “Probability* ≥ 0.1″ (Kim et al., 2021). Furthermore, a 
herbal compound-target network representing the JY formulation was 
constructed and visualized using the Cytoscape 3.8.2 software, in which 
nodes were used to represent herbs, ingredients, and targets, while the 
edges represent their interactions. 

2.3. Collection, identification and analysis of differentially expressed 
genes in Alzheimer’s disease 

Microarray data for the GSE97760 dataset was downloaded from the 
GEO database (https://www.ncbi.nlm.nih.gov/geo/) using its micro-
array platform GPL16699 (Agilent-039494 SurePrint G3 Human GE v2 
8x60K Microarray 039381). The GSE97760 dataset contains 9 AD pe-
ripheral blood samples and 10 normal samples. The probes were con-
verted to gene symbols based on the annotation information specific to 
the microarray platform, duplicate genes and probes were removed, and 
the limma package of R software (version 4.2.1) was used to identify and 
screen DEGs between the AD and normal groups. Genes with symbols 
containing “LOC”, “LROC” and “XLOC” were excluded from the analysis. 
DEGs with a p-value less than 0.05 and |logFC| ≥ 1 were then visualized 
using volcano plots. 

2.4. Collection of differential genes for depression disease targets and AD 
taken at intersection 

DisGeNET (https://www.disgenet.org) is a comprehensive database 
of genes associated with human diseases (Piñero et al., 2017), encom-
passing a vast collection of information on the molecular basis of specific 
diseases, annotation of genomic lists, sequencing protocols derived from 
various gene types, validation of disease gene prediction methods, and 
exploration of disease comorbidities. Here, the DisGeNET database was 
used to search for target genes related to depression, using the keyword 
“Depressive disorder” and the disease ID: C0011581. Lastly, we screened 
for overlapping genes associated with depression from AD differential 
genes. 

2.5. Construction of protein–protein interaction networks 

To investigate protein–protein interactions (PPIs) between protein- 
coding genes, we constructed a PPI network using the STRING data-
base (http://string-db.org), with a confidence score set at 0.7 (Piñero 
et al., 2017). Drug targets and disease targets were separately imported 
into the website to obtain PPI network data, which were further 
analyzed using Cytoscape 3.8.2. The two PPI networks were merged into 
a new network using Cytoscape’s merge tool. Next, we used the 
CytoNCA plugin (Tang et al., 2015) to identify hub genes and core 
networks. The pivotal genes were selected based on parameters such as 
degree centrality (DC), betweenness centrality (BC), and closeness 
centrality (CC). Finally, the core network of JY for AD and MDD 
comorbidities was obtained, and genes in the PPI network that could 
interact with each other were selected for subsequent analysis. 

2.6. Functional enrichment analysis 

GO enrichment analysis, including the assessment of biological 
process (BP), cellular component (CC) and molecular function (MF) 
terms, was conducted using the ClsterProfifiler package in R software 
(Yu et al., 2012). KEGG pathway enrichment analysis was also per-
formed using the ClsterProfifiler package (v3.16.0). Bubble plots were 
generated using the ggplot2 R package to visualize the top 10 significant 
KEGG pathways based on a p. adjustment < 0.05. The top 10 results for 
BP, CC and MF in the GO enrichment (p.adjusted < 0.05) were sorted 
from smallest to largest, and the GO plot R package (v1.0.2) was used to 
create bubble plots representing the selected top 10 terms for each 
category. For the first 5 terms, a sub-network was created in Cytoscape 
3.8.2 to visualize the relationship between the genes and their corre-
sponding GO terms. 

2.7. Further screening of core genes based on machine learning algorithms 

To further identify hub genes, three machine learning algorithms 
(SVM, RF and LASSO) were employed to construct classification models. 
LASSO is a regression method that enhances prediction accuracy and 
improves the comprehensibility of statistical models by selecting vari-
ables through variable selection and regularization techniques 
(Alhamzawi and Ali, 2018). RF (Rigatti, 2017) is an integrated learning 
algorithm that combines different decision trees, has no restrictions on 
variable conditions and offers better accuracy, sensitivity and specificity 
for predicting continuous variables. The SVM-RFE algorithm (Sanz et al., 
2018) is a versatile machine learning method specifically designed to 
address challenges such as small sample sizes and non-linearity. It 
demonstrates strong generalization capabilities by training the model 
using labeled training samples and subsequently classifying test samples 
based on the optimal hyperplane. 

The GSE97760 dataset was randomly divided, with 80 % of the 
samples used as the training dataset. Supporting vector machine, RF and 
LASSO classification models were constructed using the e1071 package 
(Cinelli et al., 2017), random Forest package and glm function, respec-
tively. The samples were classified into cases and controls according to 
gene expression levels. Internal and external validation was performed 
to confirm the stability and reproducibility of these constructed classi-
fiers. Internal validation was performed on the remaining 20 % of 
samples GSE97760. The validity of the model was then comprehensively 
evaluated in terms of sensitivity (Se), specificity (Sp), positive predictive 
value (PPV), negative predictive value (NPV) and area under the ROC 
curve (AUC). All statistical analyses were performed using the R 4.2.2 
software. Lastly, overlapping genes between potential genes generated 
by the LASSO, SVM-RFE and RF algorithms were considered as common 
disease-drug key genes. 

2.8. Assessment of the expression levels and diagnostic significance of 
potential biomarkers 

Column line graphs are valuable tools in clinical diagnosis and were 
constructed using the “rms” R package based on candidate genes. ROC 
curves were used to assess the performance of classifiers in bioinfor-
matics (Hajian-Tilaki, 2013). To further evaluate the accuracy of hub 
genes in prediction, ROC curves were generated using the pROC package 
in R based on the expression profiles of high-throughput sequencing 
data (GSE1297, GSE97760 and GSE98793). The diagnostic value of the 
hub gene was compared by measuring the area under the ROC curve and 
the AUC. 

2.9. The biological function of potential biomarkers 

To further investigate the biological functions of ATM, CSF1R and 
EPHB2, we used Gene Set Enrichment Analysis (GSEA) to understand 
the functions of the pivotal genes. GSEA (Canzler and Hackermüller, 
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2020) was performed using the Cluster Analyzer R package to investi-
gate the biological function of potential biomarkers through an ordered 
gene expression matrix based on the correlation between each 
biomarker and other genes. 

2.10. Molecular docking validation and molecular dynamics simulations 

To investigate the detailed docking patterns and binding affinities 
between macromolecules and small molecules (ligands), we performed 
molecular docking based on molecular modeling techniques using the 
AutoDock software. Then, the direct-acting targets in the core network 
and their corresponding bioactive components were identified. The x- 
ray crystal structures of key targets were obtained from the RCSB Protein 
Data Bank (PDB, https://www.rcsb.org/) and stored in PDB format. The 
MOL2 format of the bioactive components was downloaded from the 
ZINC database (https://zinc.docking.org/). Prior to molecular docking, 
we used the AutoDock software (version 4.2.6) to remove ligands, hy-
drogenate, calculate charges and add protein types of macromolecules, 
which were then saved in PDBQT format. Then, AutoDock was used to 
perform molecular docking between the macromolecule and the ligand 
using default parameters. A binding affinity value less than “-5″ indi-
cated better a stronger binding interaction between the macromolecule 
and the small molecule. Lastly, molecular docking was performed using 
the PyMOL software (version 2.4.1) (Seeliger and de Groot, 2010). 

3. Results 

3.1. The active ingredient and active target of JY 

The TCMSP and TCMID databases were used to screen for active 
ingredients of JY, using the criteria OB ≥ 30 % and DL ≥ 0.18. A total of 
171 active ingredients were selected as candidate bioactive ingredients. 
The detailed IDs, molecular names, OB, DL values and compound 
structures of the bioactive ingredients are shown in Supplementary 
Table S1. Interestingly, it was observed that these different drugs shared 
common active ingredients (Supplementary Table S2). Analysis of the 
drug library database (SwissTargetPrediction) using the candidate 
bioactive ingredients showed that 979 targets were associated with the 
ingredients after removing duplicate values. The specific ingredient- 
target information is shown in Supplementary Table S3. 

3.2. Building drug-component-target networks 

Using the Cytoscape software, we built a network to illustrate the 
relationships among herbs, ingredients and putative targets (Fig. 2). This 
component-target network contains 1145 nodes and 8815 edges. The 
results showed that Poria nilotic acid was the most abundant, with 136 
potential targets, followed by kaempferol (potential targets, 100) and 
ethyl linoleate (potential targets, 100). 

Fig. 2. Herb-Ingredient-target network of JY. Blue rhombus represents herb, the circular represents ingredients, Dark blue octagon represents targets.  
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3.3. Identification of differentially expressed genes associated with 
Alzheimer’s disease 

The AD expression dataset was downloaded, and DEGs were selected 
by comparing gene expression levels between control and AD samples. 
Using the limma package in R software, we identified a total of 5411 
DEGs from the GSE97760 dataset. The cut-off criteria for DEGs’ selec-
tion were p < 0.05 and |log2 FC| > 1. Among these, 2184 DEGs were 
visualized in the volcano plot (Fig. 3A). The detailed information on 
DEGs associated with AD are shown in Supplementary Table S4. 

3.4. DEGs in depression and Alzheimer’s disease 

The DisGeNET database was utilized to retrieve genes and relevant 
target details for depression (Fig. 3B; Supplementary Table S5), resulting 
in a total of 1719 relevant targets. Overlapping genes associated with 
depression were identified by comparing them with the differential 
genes in AD and visualized via Venn diagrams using R software 
(Fig. 3C). Among the overlapping genes, 397 genes were shared between 
AD and MDD, among which 199 were up-regulated and 198 were down- 
regulated. Next, we used the STRING database to construct the PPI 
network for AD and depression common targets. As shown in Fig. 4A, the 
PPI network for AD complicated with depression-related targets con-
sisted of 1932 edges and 360 nodes. 

3.5. Merging and analysis of protein–protein interaction networks 

Using the STRING database, we constructed a PPI network for the 
putative targets related to JY. The PPI network was constructed with a 
PPI enrichment p-value < 1.0e-16 and a minimum required interaction 
score of 0.400. The resulting network comprised 20,529 edges and 972 
nodes (Fig. 4B). Next, we imported the PPI networks of disease (Sup-
plementary Table S6） and drug targets (Supplementary Table S7） into 
the Cytoscape software, and using its Merge-intersection tool, we per-
formed an intersection merging of the networks, which resulted in a new 
merged network representing the interactions between JY and the 
comorbidities of AD and MDD and comprising 59 targets and 234 edges, 
and adjusted the note size and the edge connectivity thickness through 
node degree and combined_score (Fig. 4C). 

3.6. Enrichment analysis of core targets 

To investigate the biological mechanisms of the 57 key targets, we 
performed DO, GO and KEGG enrichment analysis using the clustering 
profile package in R. DO enrichment analysis revealed that the identified 
targets were strongly associated with Alzheimer’s disease (AD) and 
encephalopathy (Fig. 5B). Further, GO enrichment analysis identified a 
total of 1185 BPs, 29 CCs, and 90 MFs, as well as 122 significantly 
enriched KEGG pathways (p < 0.05) (Supplementary Tables S8 and S9). 
The GO pathways showed significant enrichment in BPs related to the 
regulation of chemical synaptic transmission, trans-synaptic signaling, 
adenylate cyclase regulation of G protein-coupled receptor signaling 
pathway, negative regulation of ion transport, cellular responses to 
monoamine stimulation, and responses to monoamines (Fig. 5A). The 
enriched CC pathways included glutamatergic synapses, organelle outer 
membranes, outer membranes, synaptic membranes, and components of 
synaptic membranes. In terms of MF, the enriched pathways included 
neurotransmitter receptor activity, G protein-coupled amine receptor 
activity, protein tyrosine kinase activity, transmembrane receptor pro-
tein tyrosine kinase activity, transmembrane protein kinase activity, 
amine binding, and catecholamine binding. Furthermore, the KEGG 
pathway analysis revealed the involvement of various pathways, 
including the cAMP signaling pathway, PI3K-Akt signaling pathway, 
calcium signaling pathway, 5-hydroxytryptaminergic pathway, TNF 
signaling pathway, neurotrophin signaling pathway, MAPK signaling 
pathway and Ras signaling pathway, in the treatment of AD and MDD 
comorbidity with JY (Fig. 5C). 

3.7. Identifying core genes by machine learning 

To identify potential biomarkers among the 57 target genes, we used 
LASSO regression, SVM-RFE, and random forest algorithms. In the 
LASSO regression model, we performed λ analysis and determined that 
the model accurately predicted the disease using λ = 3. Based on this 
lambda value, we obtained the LASSO regression coefficient profiles of 
potential genes (Fig. 6A-B). From these profiles, we identified 9 signa-
ture genes: EPHB2, NTRK1, HTR1A, CSF1R, ADRA2A, BRS3, JAK2, 
HDAC9, and ATM. The coefficient values and additional details of these 
potential genes are shown in Supplementary Table S10. Next, we used 
the SVM-RFE algorithm and constructed an SVM model based on 4 
signature genes, which showed that it had a best error rate of 0 and an 

Fig. 3. Identification of differentially expressed genes (DEGs) shared between AD and MDD. Volcano plot of differentially expressed genes in AD (A). The red dots 
represent significantly up-regulated genes, and the green dots represent significantly down-regulated genes. The DisGeNET database was used to search for target 
genes related to MDD (B). The overlapped differentially expressed genes of AD and MDD were selected (C). 
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accuracy rate of 1 (Fig. 6C–D). SVM-RFE analysis was performed to 
obtain the average ranking of each algorithm (Supplementary 
Table S11), and the RF algorithm was used to rank the genes according 
to their importance (Fig. 6E–F), based on which we selected the top 25 
most important genes in RF (Supplementary Table S12). Finally, the 
intersection of potential candidate genes in the three algorithms was 
visualized using a Venn diagram (Fig. 6G), and three intersecting genes 
(ATM, CSF1R and EPHB2) were identified and further validated in 
subsequent steps. 

3.8. To assess their expression levels and biological function for potential 
biomarkers 

To further verify the role of ATM, CSF1R and EPHB2, we examined 
their expression levels in the AD databases GSE97760 and GSE1297 (22 
AD hippocampal tissues and 9 normal samples) and the MDD database 
GSE98793 (128 MDD peripheral blood samples and 64 normal samples). 
Our analysis revealed that ATM was up-regulated, while CSF1R and 
EPHB2 were down-regulated compared to the control group（p＜0.05） 
(Fig. 8A–C). Furthermore, we constructed column line plots based on the 
three candidate genes (Fig. 7A) and generated ROC curves to assess the 
diagnostic specificity and sensitivity of each gene in the aforementioned 
databases. The AUC values of all candidate genes were high, indicating 

Fig. 4. Identification of core network and targets of JY against AD with MDD. AD comorbidity MDD-related targets PPI network (A). JY putative targets PPI network 
(B). PPI network of candidate JY targets for AD comorbidity MDD treatment extracted from Panel (C). 

Fig. 5. Functional enrichment analysis. The top 10（BP、CC、MF）terms of GO analysis about targets involved in the core network (A)；DO analysis about targets 
involved in the core network (B)；The top 30 KEGG pathway enrichment of core targets of JY against AD comorbidity MDD (C). Pathways that had significant 
changes of p. adjust < 0.05 were identified. The dot size represents a number of genes and color represents the p. adjust value. 

X. Ren et al.                                                                                                                                                                                                                                      
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their strong diagnostic value (Fig. 7B–G). Notably, the column line plots 
had the highest diagnostic value. Fig. 8D–F illustrated the biological 
processes and components associated with the up-regulation of ATM 
expression and the down-regulation of CSF1R and EPHB2 expression, 
which included the pentose phosphate pathway, nitrogen metabolism, 
fructose and mannose metabolism, fatty acid elongation, ribosomal 
components, and GPI-biosynthetic pathways. 

3.9. Validation of molecular docking 

The PPI network analysis identified ATM, CSF1R and EPHB2 as key 
targets within the core network, which were also overlapping genes for 
AD and MDD comorbidities. To validate their interactions, molecular 
docking was performed using their corresponding bioactive components 
as ligands. The ligand-receptor binding conformations had the lowest 
binding energy, indicating that it was the most stable and the most likely 

Fig. 6. Identifying candidate diagnostic biomarkers for AD and MDD comorbidities by machine learning. Biomarkers screened in the Lasso model(A, B). The number 
of genes (n = 9) corresponding to the lowest point of the curve is the most suitable for disease(C, D). Biomarkers were screened in the SVM − RFE algorithm, and the 
SVM model based on four signature genes had the best error rate of 0 and an accuracy rate of 1 (E, F). The random forest algorithm showed the error in disease; 
control group and genes are ranked based on the importance score. Venn diagram shows that 3 candidate diagnostic genes are identified via the above three al-
gorithms(G). 

Fig. 7. The expression levels and diagnostic implications of the potential biomarkers. Nomogram construction and the diagnostic value evaluation. The visible 
nomogram(A); The ROC curve of each candidate gene (ATM, CSF1R, and EPHB2) show the significance with diagnostic value for diagnosing both AD (B-D) and MDD 
(E-G). 
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to interact. Hederagenin showed a good binding affinity with all three 
target receptors, with binding energies of − 16.7, − 14.0.8 and − 13.2 
kcal/mol, respectively. The binding energies of 3-Epioleanolic acid and 
the three targets were − 16.6, − 15.6 and − 13.8 kcal/mol, respectively. 
Notably, CSF1R showed the highest binding affinity for each of the small 
molecule ligands. Additional specific docking scores of these compo-
nents to the targets are shown in Supplementary Table S13, and the top- 
ranked binding targets are illustrated on the heat map shown in Fig. 9A. 
3D view of the docking pattern between the components and targets for 

the top 4 rankings was constructed using PyMOL (Fig. 9B–G). 

4. Discussion 

Depression commonly coexists with Alzheimer’s disease (AD) 
(Lyketsos et al., 2011), but the underlying pathophysiological mecha-
nisms connecting the two conditions remain unclear (Harerimana et al., 
2022). Selective serotonin reuptake inhibitors (SSRIs) are frequently 
prescribed for treating depression in AD patients (Elsworthy and Aldred, 

Fig. 8. The expression levels of ATM, CSF1R, and EPHB2 in disease(A-C). GSEA of potential biomarkers: KEGG results for ATM(D); KEGG results for CSF1R(E); KEGG 
results for EPHB2(F). 

Fig. 9. Docking binding Energy of key targets and main active components (Kcal/Mol). The molecular docking results of key targets and their corresponding in-
gredients(A), ATM binding 3 − Epioleanolic Acid(B); ATM binding Mairin (C); Interaction between CSF1R protein and 3 − Epioleanolic Acid (D); CSF1R binding 
hederagenin(E); EPHB2 binding 3 − Epioleanolic Acid(F); EPHB2 binding Mairin(G). 
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2019). However, due to the multifactorial nature of the diseases, a sig-
nificant proportion of patients do not respond well to these antide-
pressants (Veitch et al., 2022). Furthermore, SSRIs are associated with 
various side effects, such as sexual dysfunction, hypertension, sleep and 
gastrointestinal disorders, extrapyramidal symptoms, and an increased 
risk of fracture (Nitzan et al., 2022). Therefore, there is a need to 
discover new antidepressants that are effective and have minimal side 
effects to enhance treatment options. In this context, natural compounds 
derived from medicinal plants have gained increasing attention world-
wide due to their lower toxicity, fewer adverse events, and better patient 
adherence (Jasib Habeeb et al., 2022) Depression is considered a com-
mon complication of AD and significantly impacts the treatment of AD 
patients (Cacabelos et al., 2023). Hence, developing an effective treat-
ment for patients with AD and MDD comorbidities is of utmost impor-
tance (Yang et al., 2020). Xie Yu An Shen Granules, a traditional Chinese 
medicine formulation, or its main ingredients, have been widely used for 
the treatment of depression with notable clinical effects (Du et al., 
2020). In this study, we employed a combination of network pharma-
cology and bioinformatic analysis to investigate the potential mecha-
nisms underlying the therapeutic effects of Xie Yu An Shen Granules in 
patients with AD and MDD comorbidities. 

In this study, we constructed PPI networks between the targets of JY 
components and patients with AD combined with MDD. Through 
merging and topological analysis, we identified 57 potential targets 
involved in the therapeutic effects of JY for these patients. KEGG 
pathway analysis showed that these core targets mainly interacted with 
the cAMP signaling pathway, PI3K/Akt signaling pathway, calcium 
signaling pathway, 5-hydroxytryptaminergic, TNF signaling pathway, 
etc., reflecting the shared pathogenesis between AD and MDD. Consis-
tent with the results of KEGG analysis, the main pathways including 
PI3K/Akt signaling pathway, cAMP signaling pathway, calcium 
signaling pathway and TNF signaling pathway have been reported in the 
literature to be both involved in the development of AD and to play an 
important role in depression, and modulating these pathways may 
ameliorate the progression of AD and MDD comorbidities. It was shown 
that activation of the PI3K / Akt signalling axis in neurons could exert 
anti-AD and antidepressant effects by reducing Tau hyper-
phosphorylation as well as serotonergic neurotransmission (Pehrson 
et al., 2022).Similarly, the cAMP signaling pathway is implicated in 
various processes such as neurofibrillary tangle formation, synapse 
reduction, neuronal apoptosis, and neuroinflammation (Zhu et al., 
2020). Previous studies found that cAMP could mediate the activation of 
downstream molecules PKA-CREB-BDNF to ameliorate spatial learning 
and memory deficits in depressed rats (Luo et al., 2017). The calcium 
signaling pathway has also garnered significant attention in AD and 
MDD research. Calcium channels are involved in multiple signaling 
pathways that regulate mitochondrial function, oxidative stress, tau 
phosphorylation, and memory formation. Stimulation of calcium 
signaling through N-methyl-D-aspartate-receptor (NMDAR) and/or 
AMPA-type glutamate receptor(AMPAR) activation triggers down-
stream pathways that contribute to both depressive and antidepressant 
effects (Shen et al., 2021). The neurotransmitter pathways in the hip-
pocampus (5-hydroxytryptaminergic and glutamatergic synapses) also 
play a crucial role in the underlying molecular mechanisms of depres-
sion, providing useful clues for identifying a detailed depression-related 
metabolic profile (Nowak et al., 2019). Lastly, glial activation and 
neuroinflammation are implicated in the pathogenesis and progression 
of AD, with the TNF signaling pathway being critical. Increased 
expression of multiple proteins involved in the TNF/TNF receptor-1- 
mediated necroptotic pathway has been observed in the brains of in-
dividuals with AD (Hei et al., 2019). Overall, the PPI networks and 
enrichment analyses revealed that JY might modulate key signaling 
pathways, including the cAMP signaling pathway, calcium signaling 
pathway, PI3K/Akt signaling pathway, and TNF signaling pathway, to 
improve AD and MDD comorbidities. 

Next, using machine learning, we identified three key genes (ATM, 

CSF1R, EPHB2) that may play crucial roles in the development of AD 
and MDD comorbidities. ATM is a central regulator of the DNA damage 
response, involved in DNA damage repair, cell cycle arrest, and 
apoptosis (Gao et al., 2021). Deletion of ATM proteins in vulnerable 
neuronal populations can lead to loss of cell cycle control and cell death 
(Shen et al., 2016). In recent years, studies have increasingly focused on 
the DNA damage response in AD and MDD, but the mechanisms are not 
yet clear. ATM may promote neuronal apoptosis in response to DNA 
damage through pathways such as p53-E2F-1 and MAPK-IKK-NF- 
kappaB (Hu et al., 2021, Jayaraman et al., 2021). Additionally, experi-
mental ATM inhibitors are being investigated for the treatment of 
neurodegenerative diseases (Hu et al., 2021). In summary, the potential 
use of ATM inhibitors could be a promising therapeutic approach in AD. 
However, due to limited understanding of the relevant pathways and 
mechanisms of action of ATM, further investigations are needed to un-
cover the specific mechanisms by which ATM might be involved in 
depression. The colony-stimulating factor 1 receptor (CSF1R), a product 
of the proto-oncogene c-fms, belongs to the class III transmembrane 
tyrosine kinase receptor family. It regulates microglia homeostasis, 
neurogenesis and neuronal survival in the central nervous system (CNS), 
and its dysfunction has been associated with several diseases, including 
AD and MDD (Hu et al., 2021). Previous studies have shown that the 
inhibition of CSF1R could eliminate microglia in 3xTg-AD and 5XFAD 
model mice, inhibition of CSF1R at lower levels prevented microglia- 
plaque association and improved cognition, and early long-term 
administration of CSF1R inhibitors PLX3397 and PLX5622 ablated 
microglia and reduced intra-neuronal amyloid, neuritis plaque deposits 
and profibrillary oligomers accumulation in AD mouse models (Dagher 
et al., 2015, Sosna et al., 2018). Consistent with the above studies, 
CSF1R expression was reduced in our AD samples. Previous studies have 
shown a down-regulation of CSF1R expression in post-mortem samples 
(parietal cortex, cerebellum) from depressed patients, which regulated 
microglia/macrophage proliferation, differentiation and survival 
(Zhang et al., 2020). Pharmacological experiments also suggested that 
Jiao Tai Wan (JTW), a herbal formulation for the treatment of depres-
sion, could ameliorate CORT-induced neuronal damage in depressed 
mice by inhibiting CSF1R-mediated microglia activation and pro- 
inflammatory responses (Bai et al., 2022). EPHB2, a member of the re-
ceptor tyrosine kinase family, plays a crucial role in various neurological 
processes such as cell adhesion, neural crest migration, axon guidance, 
and synaptogenesis within the nervous system (Qu et al., 2013). Recent 
studies have demonstrated that preserving EPHB2 in transgenic mouse 
models of AD can rescue cognitive deficits, and overexpression of EphB2 
can improve impaired memory in APP/PS1 transgenic mice (Hu et al., 
2017). EphB2 overexpression has also been shown to protect hippo-
campal neurons from neurotoxicity induced by Aβ1-42 oligomers, 
potentially by increasing synaptic NMDA receptor levels and activating 
downstream p38 MAPK and CREB signalling (Geng et al., 2013). 
Furthermore, EphB2 is involved in the development of neurogenic re-
gions in excitatory neurons, suggesting that its inactivation may 
contribute to neuropsychiatric disorders, including depression and 
memory impairment. Studies have demonstrated that EphB2 can pre-
vent the progression of depression-like behavior and memory impair-
ment by downregulating the NMDA-2B receptor (Zhen et al., 2018). 
Additionally, in previous investigations using proteomic and metab-
olomic sequencing of the hypothalamus in LPS-induced depressed mice, 
elevated levels of EPHB2 were observed, and it interacted with the 
NMDAR subunit GluN2A, which accumulated in the hypothalamus, 
indicating that targeting the EPHB2-GluN2A-AKT cascade could be a 
potential therapeutic strategy to correct glutamatergic transmission 
dysfunction associated with depression (Wu et al., 2019). Thus, ATM, 
CSF1R and EphB2 might be involved in the common pathogenesis of AD 
and depression and represent key targets for intervention with JY. 

In this study, we conducted molecular docking to compare the key 
targets with the bioactive components of JY. Among the 104 compo-
nents screened, betulinic acid (Mairin), hederagenin, and 3-Epioleanolic 
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Acid were found to bind well to multiple key targets. Mairin, a biolog-
ically active pentacyclic tricyclic triterpenoid, is primarily found in the 
fruit bark, leaves, and stem bark of Betula spp (Cho et al., 2016). It 
possesses the ability to penetrate the blood–brain barrier and has a long 
elimination half-life. Mairin exhibits anti-inflammatory and antioxidant 
effects and has been shown to stimulate the production of neurotoxic 
reactive oxygen species (ROS) in macrophages and astrocytes, thereby 
inhibiting lipid peroxidation (Dubey and Chinnathambi, 2019). It has 
been demonstrated to attenuate cognitive decline associated with AD by 
protecting against neuronal damage in animal models of polyamine- 
induced amnesia and STZ-induced rat brain. Mairin is a key active 
ingredient in several anti-AD drugs, including Shankhpushpi, Brahmi, 
and Ellagic acid, among others (Kaundal et al., 2018a, 2018b). Previous 
studies have demonstrated that Mairin acts as a natural inhibitor of 
Phosphodiesterase 4 (PDE4) through the cAMP/cGMP and BDNF path-
ways, leading to improved cerebral blood flow and restoration of 
memory deficits in animal models of vascular dementia (Kaundal et al., 
2018a, 2018b). Additionally, Daniele G. Machado et al. found that the 
antidepressant potential of Rosmarinus officinalis L was mainly attrib-
uted to the presence of Mairin (Machado et al., 2013). Hederagenin is a 
triterpene saponin extracted from red fruit and exhibits anti-apoptotic, 
hypolipidemic, and anti-inflammatory properties (Lu et al., 2015). 
Previous research has shown that hederagenin can prevent the decrease 
in mitochondrial membrane potential, reduce intracellular production 
of reactive oxygen species (ROS), inhibit corticosterone-induced 
apoptosis, and protect PC12 cells from corticosterone-induced damage 
by activating the PI3K/AKT pathway (Lin et al., 2021). It has also 
demonstrated the ability to effectively reduce brain levels of Aβ and tau 
in APP/PS1 double transgenic mice, thereby alleviating cognitive 
impairment (Chowdhury et al., 2017). Previous studies have indicated 
that hederagenin enhances central monoamine signaling pathways by 
inhibiting the reuptake of extracellular monoamines such as 5-HT, 
noradrenaline, and dopamine, suggesting that this mechanism may 
contribute to its antidepressant activity (Wang et al., 2019). In network 
pharmacology studies focusing on the co-morbid treatment of AD and 
MDD, hederagenin has been identified as a significant component that 
exhibits polypharmacological and synergistic effects (Zhang et al., 
2021). Additionally, 3-Epioleanolic acid is an active ingredient derived 
from Verbena officinalis and exhibits anti-inflammatory activity 
(Truong et al., 2011). It is worth noting that 3-Epioleanolic acid ob-
tained from Gardenia jasminoides fruit has been suggested to play a key 
role in the stimulation of Glucagon-like peptide-1 (GLP-1) secretion (Luo 
et al., 2020). Previous studies have indicated its involvement in smooth 
muscle contraction through the mediation of cholinergic receptors as a 
chemical component of E. capensis (Sewram et al., 2000). However, no 
experimental evidence currently supports its potential cognitive 
improvement and antidepressant biological functions, which require 
further exploration. Taken together, we identified a trio of pivotal genes 
with promising diagnostic properties that could be considered potential 
targets for developing anti-AD and antidepressant drugs. Molecular 
docking has shown that the active components of JY, Mairin, heder-
agenin and 3-Epioleanolic Acid, can protect AD and MDD comorbidities 
by acting on ATM, CSF1R and EPHB2. Our findings also suggest that 
ATM, CSF1R, and EPHB2 may serve as common targets for treating AD 
and MDD comorbidities. 

5. Conclusions 

In this study, an integrated network pharmacology and compre-
hensive bioinformatics approach were employed to investigate the po-
tential mechanisms and molecular targets of JY in the treatment of AD 
combined with depression. Our findings suggest that JY may act on the 
cAMP, calcium, and PI3K-Akt signaling pathways. Furthermore, the 
study identified ATM, CSF1R, and EPHB2 as key targets of JY for the 
treatment of AD complicated with depression, supporting the potential 
of JY as a promising and safe multi-targeted treatment in this disease. 
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