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Abstract In this study, different distinct approaches of machine learning (ML) including Multi-

layer perceptron (MLP), Gradient Boosting with DT (GBDT), and Gaussian process regression

(GPR) were employed in order to predict the amount of Papaya oil methyl ester (POME) biodiesel

production. To optimize the POME production, yield of these models were optimized with focus on

maintaining generality and enhancing the prediction accuracy. The influencing transesterification

factors on the biodiesel manufacture like the temperature of reaction (℃), amount of sodium

hydroxide as catalyst (wt.%), treatment time (min), and methanol to papaya oil molar ratio were

chosen as the inputs. NaOH was employed as a catalyst at the phase boundary for the reaction

between papaya oil and short chain alcohols. Considering the MAPE criterion, the MLP, GBDT

and GPR models have shown the error rates of 8.9670E-02, 2.0324E-01 and 7.2080E-02, respec-

tively. Similarly, the GPR process gets the best R2 criterion score of 0.996, followed by GBDT with

0.989 and MLP with 0.971. The Mean Absolute Error (MAE) also shows the best model is the

Gaussian process, which has an error rate of 4.7. In addition, the optimal POME yield production

value was estimated through the proposed method to be about 99.96%, in the optimized values of

64℃, 0.875 wt%, 7.375 min, and 10.875 for the temperature reaction (℃), amount of catalyst, treat-

ment time, and methanol to papaya oil molar ratio, respectively.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Recently, there is a growing interest and attention in production of

biodiesel from different sources, particularly renewable sources. Differ-

ent materials can be used as the biofuel sources like vegetable oils, yel-

low grease, animal fats, etc. (Covert et al., 2016; Marwaha, 2019).

There are some key parameters that are considered when selecting

these species, such as the yield of process, a higher oil content, a max-

imum conversion rate to biodiesel, the price and availability (Cihan,

2021). One of the ideal materials which can be used as the source of

biodiesel are the plants require less maintenance, grow fast and use

low amount of water (Marwaha, 2019). Moreover, these sources

should not be used as the human food, be cheap and abundant, and

the production of these biodiesels should be at a reasonable price com-

pared to the prices of available diesel in market. For example, Papaya

is a good source for production of biodiesel because from 1 kg Papaya,

the waste is about 300 g and about 160 g seeds. The content of Papaya

oil is different between 15.3 and 30%, based on the type of fresh

Papaya (Nayak and Vyas, 2019) and the rate of oil production from

Papaya is about 470 tons in each year.

Transesterification process is a chemical process for conversion of

triglycerides with alcohol to form alkyl esters which take place using

a catalyst. Transesterification conversion in the presence of heteroge-

neous and homogeneous catalysts for production of edible and non-

edible oils were investigated by different method such as enzyme cat-

alytic, conventional heating (Yang et al., 2016; Atadashi, 2013;

Panchal, 2020), supercritical, ultrasound and microwave heating

(Nayak and Vyas, 2019; Kies et al., 2016) in order to produce various

biodiesel. One of the most well-known and high productivity process is

the production of methyl ester from triglycerides via transesterifica-

tion route in liquid phase where an alcohol react with a fatty acid

and by a catalytic reaction (Pullen and Saeed, 2015) as can be seen

in Scheme 1.

In production of different biodiesels various operating factors are

important such as the temperature and pressure of process, the concen-

tration, and type of catalyst, the molar ratio of alcohol to oil and the

process time (Panchal, 2020; Pullen and Saeed, 2015; Rashid and

Anwar, 2008). Therefore, optimizing these variables is very important

to provide the maximum the biodiesel production yield (Nayak and

Vyas, 2019; Panchal, 2020). However, many researchers use the con-

ventional approach for optimization as varying one factor at a time

while other parameters are constant, but this method is not appropri-

ate because it is much cost and time consuming (Marwaha, 2019).

The rapid advancement of information technology has resulted in

the generation of extremely huge number of datasets in fields such as

science, medicine, sports and so on. These datasets may be too large

or even too small for humans to process in a reasonable amount of

time and find some real patterns and rules among them. As a result,

various algorithms, meta-algorithms and other tools for identifying

patterns and creating models are being created (Dean, 2014;

Maimon and Rokach, 2009). These algorithms are part of a subset

of AI known as Machine Learning (ML), which is defined as the study
Scheme 1 Representation
of methods and models that enable computer systems to complete a

task (regression, classification, clustering or . . .) by learning from avail-

able data rather than being explicitly programmed (Makridakis et al.,

2018; Ferrari-Trecate, 2003). ML tools excel at evaluating multidimen-

sional data and allow for the creation of surrogate models that charac-

terize enormous datasets. Self-driving cars, picture classification, audio

recognition, natural language processing, and other high-dimensional

data-driven breakthroughs have been enabled by ML technology

(Yang, 2019).

The descriptor/feature is the input data to the ML model, and the

label/ground truth is the desired property. There are three different

approaches in machine learning: supervised, unsupervised, and rein-

forcement learning. Both data and labels are provided in supervised

learning, and the model learns the mapping between the input features

and the predicted output (classification and regression). Only the input

is provided in unsupervised learning, and the model learns the shared

characteristics and variations between the input data before grouping

the data (clustering) (Grauman and Darrell, 2006).

Also, in reinforcement learning (Wiering and Van Otterlo, 2012), a

model conducts actions depending on the current state, and the envi-

ronment rewards (white cards) or punishes (red cards) the behavior.

The agent will learn how to get more rewards and fulfill the assigned

objective in its surroundings over time (Selvaratnam and Koodali,

2021).

The multilayer perceptron (MLP) is a well-known form of ANN

that has several applications, including machine learning and pattern

recognition. An input layer, multiple hidden layers, and an output

layer are the various layers are in an MLP. After calculating a

weighted sum of its inputs, each node in the network feeds this sum

into a nonlinear activation function so that it can be used to generate

an output. MLPs are capable of learning complex relationships

between inputs and outputs, and can be trained using various algo-

rithms such as backpropagation, which adjusts the weights of the net-

work to minimize the error between the predicted and actual outputs

(Venkatesan and Anitha, 2006).

Gradient boosting is another model that was chosen. Boosting

technologies are a subset of ensemble algorithms that are distinct from

bagging. The key concept of bagging ensemble algorithms (such as gra-

dient boosting and adaptive boosting) is to expand the diversity of

input samples of individual base (weak) learners through resampling

capabilities, hence raising the predictability of the ensemble boosting

approach. The basic principle of bootstrapping ensemble methods is

to use the base learners to iteratively and step-by-step minimize the loss

function until it achieves a specified limit (Natekin and Knoll, 2013).

The Gaussian process regression (GPR) is a popular ML model uti-

lized in machine learning for modeling and predicting functions (Grbić

et al., 2013). This approach is non-parametric and Bayesian, and it

models the output function as a distribution of functions. In GPR,

the data points are supposed to follow a multivariate Gaussian distri-

bution, and the covariance between data points is modeled using a

covariance function, also known as a kernel function. The kernel func-

tion specifies how the inputs are related to each other and can be cho-
of chemical reaction.



Table 2 Tuned Parameters for MLP.

Parameter Value

Hidden layer sizes 104

Table 1 Data set of experimental data used for modeling (Nayak and Vyas, 2019).

No. (X1) Temperature,0C (X2) Catalyst wt.% (X3) Time, minute (X4) Molar ratio POME (Papaya oil methyl ester) yield (Y)

1 60 0.5 5.5 9 71

2 65 1.25 8 12 67

3 55 0.75 8 6 58

4 60 1 5.5 9 98.8

5 60 1 5.5 9 93

6 65 0.75 3 6 63

7 60 1 5.5 9 93.2

8 55 0.75 8 12 78.22

9 55 1.25 8 6 62

10 50 1 5.5 9 52

11 55 1.25 3 6 61

12 65 1.25 3 12 86

13 55 1.25 8 12 57

14 55 1.25 3 12 61

15 60 1 0.5 9 89.2

16 60 1.5 5.5 9 55

17 65 0.75 8 6 59

18 65 1.25 8 6 60

19 55 0.75 3 6 58

20 60 1 5.5 15 67

21 60 1 5.5 9 96

22 60 1 5.5 9 99

23 55 0.75 3 12 72.67

24 65 0.75 8 12 98.3

25 70 1 5.5 9 79

26 60 1 5.5 3 47

27 65 0.75 3 12 96

28 60 1 10.5 9 90

29 60 1 5.5 9 98.8

30 65 1.25 3 6 76.4
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sen based on prior knowledge of the problem or learned from the data.

The output of GPR is a distribution over functions, which can be used

to make predictions with uncertainty estimates. GPR is commonly

used in applications such as regression and classification, where the

objective is to model and predict the behavior of complex systems or

processes (Trapp, 2020; Wilson et al., 1110).
Fig. 1 Change of Error Rate on Hidden Layer Sizes changes

(MLP Model).

activation relu

solver lbfgs

tol 0.027

Table 3 Tuned Parameters for GPR.

Parameter Value

alpha 3.2e-07

Number of restarts optimizer 2

Table 4 Tuned Parameters for GBDT.

Parameter Value

Learning Rate 1.85

Number of estimators 60

loss huber

criterion mae



Fig. 2 Comparison between the observed and model predicted values of POME using the GPR method on test data.

Fig. 3 Comparison between the observed and model predicted values of POME using the GPR method on train data.
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In this study, for the first time a comprehensive study of biodiesel

production from Papaya oil was performed from computational point

of view. Several ML models, including Multi-layer perceptron (MLP),

Gradient Boosting with DT (GBDT), and Gaussian process regression

(GPR), were employed to estimate the efficiency of producing biodiesel

from Papaya oil methyl ester (POME). To achieve this, various impor-

tant transesterification parameters were identified as input variables

for the models, including reaction temperature (℃), sodium hydroxide

concentration (NaOH, wt. %), treatment time (min), and methanol to

papaya oil molar ratio.
2. Data for modeling and optimization of process

The experimental and coded values of selected operating fac-
tors for prediction of POME production yield are mentioned

in Table 1. The data have been taken from a published source
and more details about the experiments can be found in
(Nayak and Vyas, 2019).

We have four independent variables in our regression prob-
lem: temperature, catalyst amount, time, and the molar ratio



Fig. 4 Residuals of prediction using GPR model.

Fig. 5 Comparison between the observed and model predicted values of POME using the MLP method on test data.
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of methanol to oil. The only outcome of our regression prob-
lem is POME (Papaya oil methyl ester) yield (Y), and the only

input variable is temperature �C. The whole dataset is depicted
in Table 1. The experimental data used in this research are
identical to those used in prior studies such as (Nayak and

Vyas, 2019).
3. Methodology of optimization

3.1. Gaussian process regression model (GPR)

Gaussian process regression (GPR) is a machine learning tech-

nique that is widely used for modeling and predicting the



Fig. 6 Comparison between the observed and model predicted values of POME using the MLP method on train data.

Fig. 7 Residuals of prediction using MLP model.
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behavior of complex systems. It is a Bayesian approach that
can handle both linear and nonlinear regression problems,
and has the added advantage of providing a measure of uncer-
tainty in its predictions (Rasmussen, 2004).

At the heart of GPR lies the concept of the Gaussian pro-
cess. In other words, a Gaussian process could be thought of as
a probability distribution over functions, where each function

is itself a random variable. The covariance function, k(x,x’),
and the mean function, m(x), which describes the covariance
between any pair of data points � and x’, entirely defines
the Gaussian process.

Given a set of N input–output pairs, D ¼ ðxn; ynÞ for
n ¼ 1; 2; � � � ;N, the objective of GPR is to extract a function

that maps inputs to outputs, while also providing a measure
of uncertainty in its predictions. This is done by assuming that
the outputs y are related to the inputs x through a Gaussian

process, that is shown in Eq. (1).

y GP m xð Þ; k x; x0ð Þð Þ ð1Þ



Fig. 8 Comparison between the observed and model predicted values of POME using the GBDT method on test data.

Fig. 9 Comparison between the observed and model predicted values of POME using the GBDT method on train data.
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In practice, it is common to choose a covariance function

that accurately reflects the underlying structure of the data
while setting the mean function to zero.

To train the Gaussian process, we need to estimate the

parameters of the covariance function, which control the shape
and behavior of the function. Finding the values of the param-
eters that maximize the log-likelihood of the data, as in Eq. (2),
is the standard method for maximizing the likelihood of the

data given the model parameters.

logp yjx;Dð Þ ¼ � 1
2
yTK�1

y y� log Kj j � N
2
log 2pð Þ ð2Þ

In the above equation, y stands for the vector of outputs, K

is the N � N covariance matrix, and T denotes the determinant
of a matrix.



Fig. 10 Residuals of prediction using GBDT model.

Table 5 Final Model Results.

Models MAE R
2

MAPE

MLP 5.53360 0.97134 8.9670E-02

GPR 4.70105 0.9961 7.2080E-02

GBDT 1.32080E + 01 0.9893 2.0324E-01
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Once the covariance function parameters have been esti-
mated, we can use the Gaussian process to make predictions

at new input locations. Specifically, given a new input x*
and its associated covariance matrix K*, the predicted output
is given by Eq. (3).

y� ¼ K�T Kþ r2Ið Þ�1
y# ð3Þ

where I represents the identity matrix, r2 stands for the

noise variance, and y denotes the vector of actual outputs.
The variance of the prediction at x* is given by Eq. (4).

varðy�Þ ¼ K�� � K�T Kþ r2I
� ��1

K�

Where, K** is the covariance between x* and itself.

3.2. MLP algorithm

The Multilayer Perceptron (MLP) model is widely utilized for

ANN models in various kinds of applications. It has several
levels of concealment, plus an input and an output layer. This
architecture for the MLP method is often preferred due to its

practicality and effectiveness in various applications (Rohani
et al., 2011). The function that determines the activity of the
neuron should be differentiable and non-decreasing in order

to be considered a soft nonlinearity. Here, two different trans-
fer functions were utilized, including the hyperbolic tangent
(tanh) (Taki, 2016):

f hð Þ ¼ 1
1þe�h # ð5Þ

Beside the log-sigmoid (Taki, 2016):

f hð Þ ¼ 2
1þe�2h � 1# ð6Þ

The neural network is responsible for mapping vectors.
The goal is to adjust the network parameters so that the

real output zq closely approximates the corresponding

observed output dq (for q ¼ 1; � � � ; Q). The training procedure

relies on minimizing some form of error cost (Taki, 2016).
During the course of this investigation, we made use of Basic
Backpropagation (BB) in conjunction with two separate train-

ing methods (Bayesian regularization backpropagation and
Levenberg-Marquardt backpropagation). The first layer did
not have any transfer functions, but the hidden layers were

given sigmoid function applications. The output layer also
made use of a linear transfer function so that it could make
accurate predictions regarding the issues.

3.3. Gradient boosting (GB)

Gradient Boosting is boosting algorithm with the decision
trees as core models. Gradient Boosting uses a statistical

approach called boosting to improve standard decision tree
models. The objective is to combine a set of base models to
build a single strong model (Lin et al., 2012). The Gradient

Boosting (GB) technique incrementally constructs new deci-
sion trees by reducing the current residuals. This iterative pro-
cess optimizes the estimation by sequentially adding a new tree
that minimizes the loss function. GB is essentially a functional



Fig. 12 Projection of X1 and X3 with prediction surface in final GPR model. X2 = 0.75 and X4 = 12. Optimal value is 99.56 for

X1 = 64 and X3 = 6.43.

Fig. 11 Projection of X1 and X2 with prediction surface in final GPR model. X3 = 5.5 and X4 = 12. Optimal value is 99.84 for

X1 = 64 and X2 = 0.875.
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Fig. 13 Projection of X1 and X4 with prediction surface in final GPR model. X2 = 0.75 and X3 = 5.5. Optimal value is 99.95 for

X1 = 62 and X4 = 10.875.
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gradient descent technique (Elith et al., 2008). Assume

fðxi; yiÞgNi¼1 for the training set, L y;F xð Þð Þ for the loss function,
and M for the count of iterations. GB in general works with

these steps:

� F 0 ¼ argminq0

PN
i¼1L yi; q0ð Þ

� For m in {1,. . ..M} Do:

o ri ¼ � @L yi ;F xið Þð Þ
@F xið Þ

h i
F ðxÞ¼F m�1ðxÞ

; i ¼ 1; � � � ;N
o am ¼ argmina;b

PN
i¼1½ri � bhðxi; aÞ�2

o qm ¼ argminq

PN
i¼1L½ri; F m�1 þ qhðxi; amÞ�2

o F mðxÞ ¼ F m�1ðxÞ þ qmhðx; amÞ

In recent equations, b denotes the weight factor and ri
stands for the value of negative gradient calculated employing
the prior model. The GBR workflow begins with an initial

model f0(x), which implies M base models of decision trees
to be created. For each iteration m ¼ 1; 2; � � � ;M, compensa-
tion of the residues is analogous to optimize the expansion

coefficients qm and am:

qm; amð Þ ¼ argminq;a

PN
i¼1L yi;Fm�1 þ qh xi; að Þ½ �;# ð7Þ

That gets:

Fm xð Þ ¼ Fm�1 xð Þ þ qmh x; amð Þ# ð8Þ
AdaBoost (Schapire, 2013), LogitBoost (Li, 1203), and
L2Boosting (Lutz et al., 2008) are just a few of the smooth loss

functions supported by the gradient boosting framework
(Bühlmann and Yu, 2003). Because of its simplicity and coher-
ence, the squared loss function is used for this regression

problem:

L y;FM xð Þð Þ ¼ PN
i¼1 yi � FM xið Þð Þ2:# ð8Þ
4. Results and discussion

To review and evaluate the performances of the proposed

models with the data, the tuned hyper-parameters as described,
and the final models are obtained using the explained method-
ology. Some criteria from the literature were utilized to assess a

model’s performance. Mean Absolute Percentage Error
(MAPE), Root Mean Squared Error (RMSE), and R2 score
are some of the criteria. The following are the statistical

parameters (Taki, 2016):

MAPE ¼ 1
n

Pn
j¼1

dj�pj
dj

���
���� 100# ð10Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1 dj � pj
� �2q

# ð11Þ

where dj is the ith observed output for the jth pattern, pj
stands for the predicted (from models) output for the jth

pattern.



Fig. 14 Projection of X2 and X3 with prediction surface in final GPR model. X1 = 60 and X4 = 12. Optimal value is 97.99 for

X2 = 0.875 and X3 = 6.437.
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Also,d
�
and p

�
denote the mean of the entire observed and

estimated values, respectively. Also, n stands for the size of
dataset.

The size of the hidden layers may be the most crucial

hyper-parameter for MLP. As shown in Fig. 1, the error rate
is minimized in two intervals, and in order to keep the models
simple, we selected a lesser quantity, which is comparable to

100.
For other parameters, the optimized values are given in

Table 2. To be more specific, the rectified linear unit (ReLU)

function is utilized as the activation function for the hidden
layer, which computes f(x) = max (0, x). Also, the weight
optimization solver was chosen to be ’lbfgs,’ which is a
quasi-Newton technique optimizer.

There are not many parameters for tuning for the GPR
model. The final configuration used in this model is presented
in Table 3.

The optimized configuration for the GBDT model is also
shown in Table 4.

Examining Fig. 3, we can conclude that GPR performed

very accurately in the learning phase since most of the
observed and predicted values are very close to each other.
When we put this fact together with Figs. 2 and 4, we can
see that although the observed values differ from the predicted
values in the test phase, they are in a reasonable neighborhood,

which indicates a robust model.
Unlike the GPR model, many data points are not closely

viewed during the MLP learning phase. The fact shown in

Fig. 6 leads to poorer performance in the test phase, which
is clearly visible in Fig. 5. Given these facts and the lack of con-
vergence seen in Fig. 7 in MLP microwaves, this model is
clearly inferior to GPR in terms of performance.

The GBDT model has a performance close to the GPR
model in terms of the learning phase, as can be seen in
Fig. 9, so it has better accuracy than the MLP. This fact can

be confirmed by Fig. 10 as well as the square R score shown
in this figure. But as we can clearly see from Fig. 8, in some
data points the predicted values are far from the observed val-

ues. This is a fact of this model being less general than the
GPR model.

Based on the facts and figures that have been brought so

far. The GPR model has a total equilibrium both in terms of
generality and accuracy and looks better than the other two.

As a result of what has been mentioned in Table 5, the GPR
model may be said to have the most practical experience with

the proposed method in this research. As a result, to analyze



Fig. 15 Projection of X2 and X4 with prediction surface in final GPR model. X1 = 60 and X3 = 5.5. Optimal value is 99.90 for

X2 = 0.928 and X4 = 10.125.
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the results of this model in greater depth, the effect of inputs

on outputs is examined in two separate ways, as seen in the
three-dimensional diagrams that follow.

The yield of product from Papaya oil is shown to vary as
a result of the effect of various operational parameters in

Figs. 11-16. As can be seen, Figs. 11-13 represent the pre-
dicted results of POME (Y) yield vs. the T against different
parameters such as catalyst dose, treatment time, and metha-

nol to Papaya oil molar ratio, respectively. As can be inferred
by increasing the T factor (X1) to about 65 degree (Fig. 11),
the yield of POME production increase while higher increas-

ing the reaction temperature reduced the POME very fast
(Jin, 2022). Therefore, it is very necessary to find the opti-
mum value of this parameter. The same trend was observed

in increasing the catalysts amount (X2). The POME produc-
tion yield (Y) was in its optimum values when 0.875 wt% of
catalyst was used in the reaction media. Fig. 12 shows the
POME production yield vs. the reaction temperature and

time reaction (X3). Increasing the reaction time from the
beginning of the process until about 6.5 min, increased the
yield of reaction. The exact optimum value for the process

time was calculated to be 6.43 min. Finally, Fig. 13 displays
the changes in the POME production yield by changing the

amount of molar ratio of methanol to Papaya oil (X4) and
the temperature of reaction. According to these results
increasing the molar ratio led to an increment in POME
and the optimum value for maximum production yield was

calculated to be 10.875.
The impact of the catalyst concentration (X2, NaOH) and

the methanol to Papaya oil molar ratio (X4) on the POME

efficiency is shown in Fig. 14. An increase in the catalyst con-
tent up to about 0.9 wt% resulted in the gradual increase in
POME efficiency (Y) while other parameters were constant

(X1 = 60 and X4 = 12). However, the higher increase of cat-
alyst content the POME efficiency was decreased. As can be
seen from Figs. 15 and 16 an increase in the molar ratio of

methanol to papaya oil (X4) up to 10.87 resulted in the gradual
increase in POME efficiency (Y) but after that POME effi-
ciency production decreased. The dual effect of parameters
on the POME production yield were observed in each 3D dia-

gram while the two other parameters were kept at their con-
stant values. By applying the investigated model to the range
of available data, the optimal output values were obtained

which are mentioned in Table 6.



Fig. 16 Projection of X3 and X4 with prediction surface in final GPR model. X1 = 60 and X2 = 0.75. Optimal value is 98.34 for

X3 = 7.375 and X4 = 10.875.

Table 6 Parameter Values that Maximize the Response.

Temperature,
0
C (X1) Catalyst wt.% (X2) Time, minute (X3) Molar ratio

(X4)

Papaya oil methyl ester (POME) yield (Y)

64 0.875 7.375 10.875 99.96
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5. Conclusion

Machine learning investigation of transesterification of Papaya oil for

production of biodiesel was performed using three models including

GPR, MLP, and GBDT. According to our findings, the GPR model

has demonstrated superior accuracy and generalizability and can

therefore be deemed the optimal choice. This method had 7.208E-02

and 4.701 errors according to MAPE and MAE criteria and also the

R2 score in this model was estimated to be 0.996. The MAPE criterion,

the MLP, GBDT models show error rates of 8.9670E-02, and 2.0324E-

01, respectively. Due to the accuracy that has been maintained in gen-

eralization, this complete model can be considered as free from over-

fitting, which can be considered as a complete model for this predic-

tion, considering the available accuracy. According to the obtained

results, increasing the operating values led to an improvement in the

POME production yield. However, further increment of these values

reduced the production yield. The optimum value of the highest

POME yield production (Y) with the proposed method was estimated

to be 99.96 %, with the details of 64 (⁰C) for temperature reaction

(X1), 0.875 wt% catalyst amount (X2), reaction time (X3) of

6.433 min, and 10.875 of methanol to Papaya oil molar ratio (X4).
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Grbić, R., Kurtagić, D., Slišković, D., 2013. Stream water temperature

prediction based on Gaussian process regression. Expert Syst.

Appl. 40 (18), 7407–7414.

Jin, H. et al, 2022. Optimization and analysis of bioenergy production

using machine learning modeling: Multi-layer perceptron, Gaus-

sian processes regression, K-nearest neighbors, and Artificial neural

network models. Energy Rep. 8, 13979–13996.

Kies, A., Schyska, B.U., von Bremen, L., 2016. The optimal share of

wave power in a highly renewable power system on the Iberian

Peninsula. Energy Rep. 2, 221–228.

Li, P., Robust logitboost and adaptive base class (abc) logitboost.

arXiv preprint arXiv:1203.3491, 2012.

Lin, H.-T., Liang, T.-J., Chen, S.-M., 2012. Estimation of battery state

of health using probabilistic neural network. IEEE Trans. Ind. Inf.

9 (2), 679–685.
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