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Abstract A quantitative structure–activity relationship (QSAR) model was built using multiple

linear regression (MLR) to predict the ability of series methyl and/or methylthio trans-stilbene

derivatives to inhibit CYP1B1. Twenty-four compounds with their activity expressed as the negative

log of the IC50 value (pIC50 [M]) were split into a training (20 compounds) and a test set (four com-

pounds) using Kennard and Stone algorithm. Molecular descriptors were calculated using alvaDesc

software after compound optimization in the Gaussian 09 package in PL-Grid. The model charac-

terized by the best validation parameters (R2
TRAIN = 0.954, Q2

LOO = 0.898, R2
TEST = 0.880) was

chosen based on the chemometric method – cluster analysis. The applicability domain has been

determined, indicating that the regression model can give reliable prediction. The study shows that

the inhibitory activity against CYP1B1 of the methyl and/or methylthio trans-stilbene derivatives

can be predicted by RDF035m, Mor10m, Eig04_AEA(bo), RDF070s, MaxDD descriptors. Finally,

the paper attempts to interpret three-dimensional descriptors by assessing the impact of interatomic

interactions, following the partition of molecules into fragments, on the final value of descriptors.
� 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Molecules based on the stilbene scaffold are widely represented in nat-

ure. They have aroused the interest of many scientists because of their

wide range of biological properties, including anti-inflammation, can-

cer prevention and treatment, cardioprotection, neuroprotection, anti-

diabetic, depigmentation, and some others. Stilbene skeleton consists

of two phenyl rings joined by an ethylene bridge. Presence of unsatu-

rated bond results two diastereoisomeric forms, E-1,2-

diphenylethylene (trans-configuration) and Z-1,2-diphenylethylene

(cis-configuration), but the trans-isomer is more common and stable

disposition (Akinwumi et al., 2018). Among naturally occurring stilbe-

nes, trans-resveratrol (3,5,40-trihydroxy-trans-stilbene) is the most
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extensively studied and the best-known compound. Although resvera-

trol has been reported to possess many desirable pharmacological

properties, it exhibits low systemic bioavailability (Tsai et al., 2017).

It is the consequence of three hydroxyl groups in resveratrol molecule,

which are highly available for glucuronidation or sulphation reactions.

Resveratrol undergoes these second phase metabolism transformations

in the intestine and liver during and after absorption. Another worth to

mentioned stilbene is a dimethyl ether analogue of resveratrol, pteros-

tilbene (3,5-dimethoxy-40-hydroxy-trans-stilbene). Pterostilbene shares

many pharmacological similarities with resveratrol. Nevertheless, it is

more biologically active and has much better bioavailability than

resveratrol (Akinwumi et al., 2018; Kapetanovic et al., 2011). Two

methoxy groups caused increased lipophilicity, which may enhance

the cell membrane permeability and is responsible for greater bioavail-

ability (Pecyna et al., 2020; Tsai et al., 2017). This observation inspired

researchers to synthesize and evaluate new trans-stilbene analogues

with methoxy or bioisosteric methylthio groups in different positions

of two phenyl rings (Chun et al., 2011; Kim et al., 2002; Mikstacka

et al., 2012, 2014; Wierzchowski et al., 2017).

One of many mechanisms of action presented by this family of

molecules is inhibition of the human cytochrome P450 1B1 (CYP1B1)

enzyme. This protein is involved in the I-phase metabolism of numer-

ous important physiological compounds, including estrogen, arachi-

donic acid, melatonin, retinoids, and many xenobiotics, particularly

the metabolic activation of many environmental procarcinogens such

as polyaromatic hydrocarbons, aromatic amines, and nitro-polycyclic

hydrocarbons. It has been identified as a key enzyme in the carcino-

genic action of 17-b-estradiol. CYP1B1 is expressed in the liver, like

the other two members of the CYP1 family (CYP1A1 and CYP1A2)

and, what is more, in various tumor tissue. The higher expression of

CYP1B1 in tumor cells compared to the surrounding normal tissue

has led to a greater interest in the role of CYP1B1 in tumorigenesis

and its treatment (Horley et al., 2017; F. Li et al., 2017).

What is more, CYP1B1 is responsible for anti-cancer drug resis-

tance through the metabolism of chemotherapeutic agents to inactive

metabolites. For these reasons, inhibition of CYP1B1 activity is under

consideration as an approach in cancer chemoprevention and cancer

chemotherapy (Mikstacka & Dutkiewicz, 2021). The compounds that

can inhibit the activity of CYP1B1 are the methoxy- and methylthio-

trans-stilbene derivatives. The quantitative relationship between the

structure of these compounds and the mentioned biological activity

(QSAR, quantitative structure–activity relationship) has become the

subject of the study reported in this paper. The construction of QSAR

models should be based on the OECD guidelines (OECD, 2014).

According to the mentioned specification, a QSAR model should be

developed with (a) a defined endpoint, (b) an unambiguous algorithm

to guarantee model transparency, (c) a defined domain of applicability,

(d) proper measures of validation, including internal performance (as

determined by goodness-of-fit and robustness) and predictivity (as rep-

resented by external validation), and (e) possible mechanistic

interpretation.

The present work has three main goals: (1) calculation and valida-

tion of QSAR models by applying diverse modelling methods based on

descriptors obtained by different molecular geometry optimization

techniques, various methods of data pre-treatment, reduction, and

selection, (2) assessment of the usefulness of cluster analysis in the

selection of the best predictive model, and (3) detailed analysis and

interpretation of the selected model.

2. Materials and methods

2.1. Data set

In the present work, the data set consisting of 24 molecules,
trans-stilbene derivatives, was taken from the literature
(Mikstacka et al., 2012, 2014; Wierzchowski et al., 2017),
previously published by our co-workers. To the best of our
knowledge, no QSAR model has been performed using these
compounds to predict the ability to inhibit CYP1B1 enzyme.

The chemical structures of studied compounds with their
related activity and membership in training or test set were
listed in Table 1.

All biological activity results were obtained using the same
study protocol. The duplicates were removed. Activity data
expressed as IC50 values [lM] against CYP1B1 were trans-

formed to a negative logarithmic scale (pIC50 [M]) to give
numerically larger data and then used as a Y value for QSAR
study. The external validation set should contain about 10–
30 % of the entire set and presented activities and structures

covering the whole training set range (Gramatica, 2007). Using
Kennard and Stone algorithm (PLS-Toolbox 7.5 (Eigenvector
Research, Inc., Manson, WA, USA) (PLS_Toolbox, 2020) in

Matlab software version R2018a (The Matworks, Inc., Natick,
MA, USA) (Matlab), the whole dataset was split into training
(20 compounds), and test (four compounds) sets considering

the ratio 5:1. The training set was used for variable selection
and models construction. The remaining compounds included
in the test set were used to evaluate the predictive performance

of the models. As explanatory variables (X values), molecular
descriptors were used. Methods of their calculation are
described in the next section.

2.2. Geometry optimization methods

For calculation 3D and 4D molecular descriptors is necessary
to optimize the structure’s geometry, thereby searching the

molecule’s global energy minimum. For the molecular stere-
ostructure calculations, the Gaussian 09 package (Gaussian,
Inc., Wallingford CT, USA) (Frisch et al., 2009), in PL-Grid

Infrastructure (PL-Grid Consortium, Poland) (2009) was used.
The calculations were performed with the use of density func-
tional theory (DFT) at the B3LYP/cc-pVDZ level (Chen &

Chieh, 2003), and semi-empirical methods: Austin Model 1
(AM1) and Parameterization Method (PM6).
2.3. Descriptor’s calculation

By using alvaDesc v2.0.10 (Alvascience Srl, Lecco, Italy)
(alvaDesc), a total of 5471 molecular descriptors, were com-
puted (from 0- to 3-dimensional descriptors) (Mauri, 2020).

Zero-dimensional descriptors can be calculated from the
molecular formula and do not consider any information about
the atom connections. As an example, can be given molecular

weight and atom type counts. Information about functional
group counts and atom-centered fragments but not the whole
topology are considered in 1-dimensional descriptors. Two-

dimensional descriptors include information about the connec-
tivity of atoms in the molecule and atomic composition. By
using the 3D representation of the molecular graph, three-
dimensional descriptors are calculated. They consider the posi-

tion of atoms in the three-dimensional space (Carracedo-
Reboredo et al., 2021).

Gaussian 09 package (Frisch et al., 2009), in PL-Grid

Infrastructure (2009) was used for additional calculation of
the structure-based properties like HOMO and LUMO orbital
energies and based on them global reactivity descriptors.



Table 1 Compounds used in the QSAR study.
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6.432 TR 16. 5.263 TR

5. 6.682 TR 17. S 5.963 TR

6. 6.212 TR 18. 5.703 TE

7. 6.512 TR 19. 5.963 TR

8. 5.382 TR 20. 5.823 TE

9. 5.352 TR 21. 6.003 TR

10. 6.522 TE 22. 6.053 TR

11. 7.471 TR 23. 6.303 TR

12. 7.551 TR 24. 5.593 TR

The first formula shows the general structure of the tested compounds. The colours correspond to the nomenclature used in the analysis of the

received results. The blue colour signifies the core of the molecule, the orange colour signifies the substituents in Fragment 1, and the grey

signifies the substituents in Fragment 2. a data from reported references; 1 (Wierzchowski et al., 2017), 2 (Mikstacka et al., 2014) 3 (Mikstacka

et al., 2012); b TR – training set molecules; TE – test set molecules.
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Obtained descriptors were analysed to inspect for all missing
and incorrect values.

2.4. Variable’s reduction, selection, and pre-treatment

There are many steps involved in quantitative structure–activ-

ity relationship analysis. Presently, each molecule has many
potential descriptors (almost 6000) that may be used in this
type of study. After data collection, it is necessary to perform

variable’s reduction, selection, and pre-treatment (also known
as pre-processing).
The purpose of variable reduction and selection is to
remove descriptors irrelevant or negligible to a predicted bio-

logical activity of the compounds, which effects as improve
computation speed, performance, and interpretability of
received models. First, we reduced the number of independent

variables using three different methods. Two are very simple,
obvious, and popular, e.g., excluded from the database
descriptors with a standard deviation less than 0.0001 or

excluded from the database variables with a percentage of con-
stant values greater than 95 %. The third one employs an exist-
ing technique for space-filling designs of experiments Wootton,



4 N. Piekuś-Słomka et al.
Sergent, and Phan-Tan-Luu (WSP) algorithm. This variable
reduction method (V-WSP) is an unsupervised approach
(Ballabio et al., 2014). The V-WSP method uses a correlation

threshold to reduce the number of variables with multi-
collinearity, redundancy, and noise, in such a manner to obtain
an optimal set of descriptors with minimal correlation in multi-

dimensional space (Rojas et al., 2021).
There are no certain rules on what kind of mathematical

transformation the variables used in the construction of QSAR

models should undergo. In this study, we perform four meth-
ods of data pre-treatment, e.g., centering, variance scaling,
standardizing, range scaling. Centering (mean centering) con-
verts all the values to fluctuations around zero instead of

around the mean of the variable measurements. In this way,
it adjusts for differences in the offset between variables with
high and low values. Therefore, it is used to focus on the fluc-

tuating part of the data and leaves only the relevant variation
(being the variation between the observations) for analysis.
Variance scaling (also known as unit autoscaling) uses the

standard deviation as the scaling factor. After variance scaling,
all variables have a standard deviation of one. Standardizing
makes it easier to compare variables, even if those scores were

measured on different scales because standardized variables
have a mean of zero and a standard deviation of one. Range
scaling (mean normalization) involves subtracting the mean
from each observation and dividing the result by the difference

between the minimum and maximum values. This procedure
makes range scaling more sensitive to outliers (van den Berg
et al., 2006).

Finally, further descriptors selection was made by the
Genetic Algorithm (GA). This supervised method is commonly
used in QSAR analysis. GA is a stochastic technique that imi-

tates natural selection and evolution. The calculation starts by
generating a set of random solutions (the population), which
are analogous to a set of chromosomes in a biological system,

constituted by binary vectors indicating the presence (or
absence) of each descriptor in the model. In the next step,
new models are made through an evolutionary process by
the combination of chromosomes (models) of the initial popu-

lation (crossover), in addition to randomly including (or
excluding) descriptors (mutation) (Ghosh & Bagchi, 2009;
Rojas et al., 2021). The fitness of each chromosome is evalu-

ated by the fitness function. The fitness function used in the
present study was the leave-one-out (LOO), cross-validated
correlation coefficient (Q2

LOO). The genetic algorithm proce-

dure was iterated 10,000 times.
All calculations described in this section were performed in

alvaModel v2.0.2 software (Alvascience Srl, Lecco, Italy)
(AlvaModel (Software to Model QSAR Data), 2021).

2.5. QSAR models calculation

The quantitative analysis of the relationship between struc-

tural features of compounds and their ability to inhibit
CYP1B1 enzyme was performed with the use of Multiple Lin-
ear Regression (MLR), Partial Least Squares (PLS), K-

Nearest Neighbors (KNN), Support Vector Machine (SVM)
regression methods (Huang et al., 2021) using the alvaModel
v2.0.2 software (Alvascience Srl, Lecco, Italy) (AlvaModel

(Software to Model QSAR Data), 2021). MLR estimates the
regression coefficients’ values by applying the least-squares
curve fitting method. PLS regression is based on converting
a large number of correlated features to a small number of
uncorrelated variables called latent variables. PLS is immune

to multicollinearity and is especially appropriate in dealing
with a large number of explanatory variables in comparison
with the number of observations (Carrascal et al., 2009). The

PLS version implemented in alvaModel is based on the
SIMPLS (de Jong, 1993) algorithm. The above techniques
are linear methods. Therefore, they can only capture the linear

relationship between an outcome variable and independent
variables. Because of that, these methods may not be able to
sufficiently detect the nonlinear relationships in the data (Wu
et al., 2021).

The K-Nearest Neighbours algorithm is a non-parametric
method most often used for classification purposes, but it
can also be used for regression. In the training phase, the K-

Nearest Neighbours algorithm stored the features and target
values of the training dataset inside the model. In the next step,
k-closest elements (called neighbours) are found, and for them,

the weighted average of the predicted values of these k-
neighbours are calculated. The K-Nearest Neighbours algo-
rithm is beneficial when the relationship between the explana-

tory and explained variables is complex or unusual (e.g., non-
monotonic), i.e., difficult to model in the classical way. If the
relationship is easy to interpret (e.g., linear) and the set does
not contain outliers, classical methods (e.g., MLR) will usually

give more accurate results. In the present paper, as a distance
measure, Euclidean distance was applied. It is the straight line
distance between two points in the multi-dimensional space.

The optimal number of neighbours (k) was found based on
internal and external validation parameters.

Support Vector Machine (SVM) is a supervised machine-

learning algorithm that can be used either as a classifier or
as a regressor (in this case, it is also referred to as Support Vec-
tor Regression SVR) (Xue & Yan, 2017). SVR exposes excel-

lent performance in solving problems occurring during
QSAR analysis, such as small sample size, high-dimension,
or highly nonlinear relationships. The SVM version imple-
mented in alvaModel is a least-squares support vector machine

with a Radial Basis Function (RBF) kernel (Brereton & Lloyd,
2010; Xue & Yan, 2017). In the least-squares support vector
machine, the hyperplane is found by solving a set of linear

equations instead of convex quadratic programming problems
like for classical SVM (Carracedo-Reboredo et al., 2021;
Suykens et al., 2002).

2.6. Models’ validation and comparison

The last step in QSAR model creation is validation of obtained
models. The purpose of model validation is to test the model’s

accuracy, stability, and predictive ability. Two approaches to
the model’s evaluation were used. Cross-validation was
employed as an internal validation using exhaustive leave-

one-out (LOO) and non-exhaustive 5-fold cross-validation to
assess how well-developed models described the relationships
within the calibration data. The external validation test set,

which includes molecules not used in the selection of variables
and model construction, was used. Models were evaluated
using statistical outputs as follows: coefficient of determination

of calibration (R2
TRAIN), coefficient of determination of cross-

validation LOO (Q2
LOO), coefficient of determination of 5-fold
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cross-validation (Q2
5-FOLD), coefficient of determination of pre-

diction (R2
TEST), root mean square error of calibration

(RMSETRAIN), root mean square error of prediction

(RMSETEST), mean absolute error of calibration
(MAETRAIN), mean absolute error of prediction (MAETEST).

Furthermore, verification of model robustness was exam-

ined by the Y-randomization test with a 100-response permu-
tation (Eriksson et al., 2003; Tropsha et al., 2003). With the
purpose of compare the results of the permutation tests, the

cR2
p parameter calculated according to (Ojha & Roy, 2011)

was used. We also determine an Applicability Domain (AD)
for the best model. The AD is a theoretical region in the chem-
ical space surrounding both the model descriptors and mod-

elled response. It is calculated based on molecules from a
training set. The developed model can confidently predict a
new molecule if the new compound lies in the AD of the

QSAR model (Gramatica, 2007; Jaworska et al., 2005). The
AD was investigated using William’s plot, which shows the dis-
tribution of standardized residuals against the leverage.

Additionally, tool called Prediction Reliability Indicator
(K. Roy et al., 2018) was used to evaluate the quality of predic-
tions for a true external set without experimental values.

Twenty-eight compounds were used as a true external set (18
methoxy derivatives and ten derivatives with at least one
methylthio group, Fig. 1).

Based on the composite scores the quality of prediction for

each molecule can be categorised as ‘‘Good” (composite
score = 3), ‘‘Moderate” (composite score = 2) and ‘‘Bad or
Unreliable” (composite score = 1) (Hao et al., 2020; F. Li

et al., 2022; Sun et al., 2021). Optimal weighting coefficients
for each rule (1) mean absolute error of leave-one-out predic-
tions for 10 most close training compounds for each query

molecule; (2) applicability domain in terms of similarity based
on the standardization approach; (3) proximity of the pre-
dicted value of the query compound to the mean training

response) were applied (K. Roy et al., 2018).
Fig. 1 Molecules used in evalu
We decided to use the chemometric method, cluster analysis
(CA), to compare and evaluate obtained models (STATIS-
TICA version 13.3, TIBCO Software Inc., Palo Alto, CA,

USA) (STATISTICA, 2021). We add, for the data set consist-
ing of all calculated models (180 models) with their validation
parameters, one ‘‘ideal” model (called reference model). Fur-

thermore, the ratio of R2
TEST to R2

TRAIN, MAETRAIN to
MAETEST, and RMSETRAIN to RMSETEST were calculated
and used as complementary variables.

3. Results and discussion

3.1. Calculation of QSAR models

In the presented study, we build QSAR models using four

modeling methods (MLR, PLS, KNN, SVR). The geometry
of molecules was optimized by three different techniques
(B3LYP, AM1, PM6). Five methods of data pre-processing
(non-pre-processing, centering, variance scaling, standardiz-

ing, range scaling) and three types of variable reduction (exclu-
sion descriptors with standard deviation less than 0.0001,
exclusion variables with the percentage of constant values

greater than 95 %, V-WSP) were applied. A genetic algorithm
was used as a variable selection method in each case. As a
result of the performed calculations, 180 QSAR models were

obtained and characterized by various statistical, internal,
and external validation parameters. Details on how to achieve
this goal are described in the Material and Methods section.

3.1.1. Geometry optimization

Building QSAR models requires calculating molecular descrip-
tors, which are ‘‘formal mathematical representations of a

molecule’’ (Cronin, 2010). Optimization of the structure’s
geometry (finding the stationary points on the potential energy
surface of the molecule) is necessary for computing 3D and 4D
molecular descriptors (obtained from the three-dimensional
ation quality of prediction.
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molecular structure). In computational chemistry, three pri-
mary methods are used for calculating molecular properties
and structures. The ab initiomethod and density functional the-

ory (DFT) are based only on theoretical assumptions. Ab initio
methods attempt to solve the electronic Schrödinger equation
given the positions of the nuclei and the number of electrons

to yield helpful information such as electron densities, energies,
and other properties of the system (Friesner, 2005). The second
class of theoretical approaches is DFT, which uses different

functionals. Dozen years ago, the most commonly used in
QSAR studies was the hybrid functional B3LYP (Becke 3 term
with Lee, Yang, Parr exchange). The third group, semi-
empirical methods (e.g., AM1, PM3, PM5, PM6, RM1), take

into account not only quantum mechanics theory. They also
used parameters fitted to empirical data, especially molecular
energies and geometries. The main benefit of semi-empirical

techniques is the short time of calculations. However, they
are considered less accurate. In the 1980 s, the semi-empirical
method AM1 (Austin Model 1) was introduced as a modifica-

tion of MNDO (Modified Neglect of Diatomic Overlap), thus
solving its greatest weakness, in particular failure to produce
hydrogen bonds, without any increase in computing time. In

the next several years, improvements were made to the method
of parameter optimization (PM3, PM5, PM6) for a better qual-
ity of the obtained results (Guo et al., 2021). In the present
work, the structures’ geometry optimization was conducted at

the at the B3LYP/cc-pVDZ level of theory, and semi-
empirical methods: AM1 and PM6. The best QSAR model
was obtained based on data set composed of compounds opti-

mized by AM1 technique. There was no clear trend as to which
optimization method affects better QSAR results. Received
findings indicate that semi-empirical techniques (faster and less

expensive regarding CPU time) can be successfully employed
for geometry optimization in QSAR studies for trans-stilbene.
These findings of the current study are consistent with those

of Vendrame et al. (Vendrame et al., 2004) and Camilo et al.
(Camilo et al., 2012), who found that PM6 method does not
Fig. 2 Hierarchical dendrogram for the studi
provide any real improvement over AM1 in the case of
stilbene-like molecules.

3.1.2. Descriptors’ calculation and variables’ reduction and
selection

In the present study, almost 6000 descriptors were computed
for each optimised structure. This set includes 0 to 3-

dimensional descriptors, structure-based properties like
HOMO and LUMO orbital energies, and global reactivity
descriptors based on them calculated.

A large number of variables and the associated presence of
redundancy, multicollinearity, random noise, and chance cor-
relation are common problems when dealing with multivariate

regression. It is worth noting that calculating the best model
was preceded by reducing variables using the V-WSP method
(Ballabio et al., 2014). The principle of its unsupervised tech-

nique is to eliminate correlated variables based on the assumed
correlation threshold after choosing initial variables and then
replace the initial variables with the remaining variables and
rerun the V-WSP algorithm until there are no variables to

select (M. Li et al., 2021). In the present study, this algorithm
decreased the number of independent variables by over 85 %.
It can be helpful in combination with supervised selection (in

this case, genetic algorithm), which can suffer from highly cor-
related data and chance correlation, thus giving overfitted
results (Hawkins, 2004).

The response values (Y values) were transformed into a
negative logarithmic scale. The range of Y values after trans-
formation is 3.138 log units. For developing a QSAR model,

the range of a Y response not less than 3–4 log units is consid-
ered suitable (K. Roy et al., 2016).

3.2. Selection of best predictive QSAR model

Cluster analysis (CA) is a chemometric method used in QSAR
analysis mainly for data exploration – data mining (Kadam &
ed regression models and reference model.
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Roy, 2006; Pirhadi et al., 2015) or splitting into training and
test set (Das et al., 2016; Halder and Dias Soeiro Cordeiro,
2021; Leonard & Roy, 2006; J. Roy et al., 2019). The principle

of this analysis is to cluster the most similar objects into
groups. This property was applied to the comparative evalua-
tion of the received models. The data set, consisting of the

QSAR models’ and validation parameters, was subjected to
cluster analysis. The ‘‘reference model” with ideal validation
parameters was also added. As a clustering method, Ward’s

minimum variance algorithm was used. The Euclidean dis-
tance was taken as the measure of distance. The result of CA
is the dendrogram presented in Fig. 2, which allowed us to
identify-one the most similar to the reference QSAR model.

The red ellipse in Fig. 2 indicates the cluster formed by the
reference model and one of the 180 built models. It proves that
the indicated model has the best validation parameters.

Many validation parameters are known. Each has pros and
cons, and there is no single parameter for comparing many of
the QSAR models. It is especially cumbersome because more

and more computer software is available, both dedicated to
QSAR analysis and toolboxes dedicated to statistical pro-
grams. The consequence is that the creation of predictive mod-

els is easier and faster. It seems that the use of cluster analysis
will allow a vast number of models to be fast and effective
compared in the space of many validation parameters.

3.3. Analysis and interpretation of selected QSAR model

The best model was obtained using multiple linear regression.
The value of pIC50 (transformed to a negative logarithmic

scale, the inhibitory effect of trans-stilbene derivatives on
CYP1B1) could be predicted from a linear equation:

pIC50 ¼ 6:233 � 3:585 � RDF035m � 1:848 � Eig04 AEAðboÞ
þ 1:617 �Mor10m þ 1:559 � RDF070s

þ 1:364 �MaxDD
Fig. 3 Scatter plot of predicted versus experimentally measured pIC

(training set – blue points, test set – yellow points, ––– regression line
Fig. 3 shows the plot of predicted pIC50 against the exper-
imental results.

3.3.1. Validation parameters and errors measures

A good prediction model should be described by: high R2 val-
ues, low root mean square errors, and mean absolute errors.
The coefficient of determination R2

TRAIN measures how well

the model can mathematically reproduce the endpoint data
of the training set (fitting ability). In the publication cited
almost 4000 times, Golbraikh and Tropsha (Golbraikh &

Tropsha, 2002) considered the value of R2
TRAIN greater than 0.6

as the criterion of model acceptability. More restrictive judg-
ment has been presented in (Chirico & Gramatica, 2011),

where 0.7 was taken as the benchmark. Cross-validation tech-
niques assess the internal prediction power and the robustness
of the model (stability of QSAR model parameters). However,

the internal validation parameters do not indicate the predic-
tive power of the model (Gramatica, 2013). According to men-
tioned papers (Chirico & Gramatica, 2011; Golbraikh &
Tropsha, 2002), the coefficient of determination obtained by

leave-one-out cross-validation Q2
LOO should take a value

greater than or equal to 0.5 and 0.6, respectively. It is worth
noting that the value of Q2

LOO increases only when valuable

predictors are added to the model but decrease otherwise (in
contrast to R2

TRAIN) (Gramatica, 2013).
The validation parameters of the best model are summa-

rized in Table 2. The model is characterized by R2
TRAIN= 0.954

and Q2
LOO = 0.898, which satisfies the requirements mentioned

above. What is more, a comparison of R2
TRAIN and Q2

LOO can

help evaluate possible overfitting. This phenomenon occurs
whenever the obtained model reflects well the relationship
between the explanatory variables and the predicted value
but, at the same time, may not be valid for the prediction of

the dependent variable for new molecules. According to the lit-
erature, the overfitting is observed if R2

TRAIN is higher than
25 % compared to the Q2

LOO value, and thus, the difference

between R2
TRAIN and Q2

LOO should not exceed the value of
50 of the inhibitory effect of trans-stilbene derivatives on CYP1B1

, – – – ideal regression line).



Table 2 Validation metrics of the selected model.

Training set R2
TRAIN 0.954

R2
TRAIN, ADJ. 0.937

RMSETRAIN 0.180

MAETRAIN 0.150

Cross-validation Q2
LOO 0.898

Q2
5-FOLD 0.899

Test set R2
TEST 0.880

RMSETEST 0.206

MAETEST 0.204

(R2-R0
2)/R2 0.002

(R2-R’0
2)/R2 0.003

k 0.985

k’ 1.014

Y-randomization cR2
p 0.825

8 N. Piekuś-Słomka et al.
0.3 (Leach, 2001; Zapadka et al., 2019). The difference between
R2

TRAIN and Q2
LOO is 0.056, which is slightly over 6 % of R2-

TRAIN value. The values of external validation parameters con-
firmed the external predictive ability of the model. The
coefficient of determination of test set (R2

TEST) is greater than

0.70 (R2
TEST = 0.880). As mentioned before, the value of R2-

TRAIN increases with each additional variable being added to
the equation, regardless of its significance. The parameter that

allows penalizing additional predictors is R2
TRAIN, ADJ. This

criterion does not automatically increase when new variables
are added to the model. The slight difference between R2

TRAIN

and the adjusted R2
TRAIN (0.954 vs 0.937) testifies the inclusion

of significant variables in the model. Directions on other, more
restrictive criteria in relation to the determination coefficient
and its modification can be found in the previously cited paper

(Golbraikh & Tropsha, 2002). They are listed in Table 2 ((R2-
R0

2)/R2; (R2-R’0
2)/R2; k; k’). They are all in accordance with the

so-called Golbraikh and Tropsha acceptable model criteria.

The root mean square errors (RMSETRAIN and RMSETEST)
summarize the overall error of the model: they are calculated as
the root square of the sum of squared errors in calculation
divided by the total number of chemicals. The more similar

are these compared values, the more the model has general
applicability (Gramatica, 2013). Another measure of error is
mean absolute error (MAE). It is calculated for both the train-

ing and test sets (MAETRAIN andMAETEST). However, there is
no clear opinion on which of these measures is better. When
both metrics are calculated, the RMSE is, by definition, never

lower than the MAE (Chai & Draxler, 2014). Both measures
have been determined for the described model (Table 2). Their
values indicate good predictive properties of the model.

Moreover, similar metrics values for the training and test
sets prove the lack of overfitting (likewise, the comparative
analysis of R2

TRAIN and Q2
LOO). According to (K. Roy et al.,

2016), the quality of the established model based on MAE-

based criteria is described as good. However, it should be
added that it is fully justified to use this criterion for a test
set of at least ten compounds.
The evaluation of the predictive reliability was carried
out with the use of Prediction Reliability Indicator software
(K. Roy et al., 2018). For this purpose, the geometry of the

molecules was optimized and the molecular descriptors for
the compounds presented in Fig. 1 were calculated. As a
result of the analysis 27 ‘‘Good” and one ‘‘Moderate” (this

derivative was found to be outside AD) predictions were
obtained.

3.3.2. Y-randomization

The response permutation test, called Y-randomization, was
also carried out to check whether the experimental pIC50 val-
ues were correlated with the molecular descriptors by chance.

The Y-randomisation technique proceeds with scrambling of
the Y-column data, keeping the descriptor matrix (X-matrix)
unchanged. Model randomisation, Y-scrambling is performed

with the descriptors present in the developed QSAR model.
Each time, the models are built using the scrambled data,
and the values of coefficients of determination are calculated
(Mitra et al., 2010). Based on coefficients of determination of

the randomised models (R2
r) and coefficient of determination

of the original QSAR model (R2) according to Todeschini
(Todeschini, 2010), corrected R2

p (cR2
p) can be calculated. A

value above 0.5 might indicate that the model is not obtained
by chance (K. Roy et al., 2015). On the basis of the conducted
response permutation test performed for obtained model

(cR2
p = 0.825), it can be assumed that experimental pIC50 val-

ues are correlated with the molecular descriptors not
coincidentally.

3.3.3. Applicability domain

In constructing a QSAR model, molecules’ applicability
domain (AD) plays a crucial role in estimating the uncertainty

in predicting a particular compound based on its similarity to
the compounds used to build the model. It can be described as
the structural, physicochemical, or biological space informa-
tion based on which the training set of the model is developed,

and the model is applicable to make predictions for new com-
pounds within the specific domain (K. Roy et al., 2015). For
example, the AD could be visualized in the Williams plot of

the standardized residuals of the estimated pIC50 values versus
the corresponding leverage (h) values given by the molecular
descriptors (Fig. 4). The vertical dashed line represents a lever-

age cut-off (warning leverage) h*= 3�p/n, where p is the num-
ber of model parameters, n denotes the number of compounds
in the training set, and horizontal dashed lines represent the

upper and lower boundaries for applicability domain (±3 of
standardized residuals) (Jaworska et al., 2005). Predictions
with an h value higher than h* may not be reliable because
the results can be regarded as a consequence of extrapolation

instead of an exact fit. As shown in Fig. 4, all molecules had
h values lower than h*.

Similarly, the standardized residuals of all the molecules

appeared to reside between the bordering lines. It can be
concluded that the model can give reliable predictions for
chemicals similar to those used to develop the model. More-

over, it proves the accurate splitting into the training and
test sets.



Fig. 5 Radar chart representing the distribution of selected

descriptors (range scaled values) for five the most (compounds: 2,

11–14) and five least (compounds: 8, 9, 16, 18, 24) active trans-

stilbene derivatives.

Fig. 4 Williamsplotof applicability domainof theQSARmodel for inhibitionofCYP1B1(training set –bluepoints, test set –yellowpoints).
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3.3.4. Detailed interpretation of molecular descriptors

The meaning and appurtenance to the class of the selected

molecular features are outlined in Table 3.
The first step in the interpretation of the selected molecular

features was to plot a radar chart for the five most (compounds:

2, 11–14) and five least (compounds: 8, 9, 16, 18, 24) active com-
pounds (Fig. 5).

The graph shows that the Eig04_AEA(bo) is the best vari-

able, differentiating compounds with the highest and the low-
est ability to inhibit the CYP1B1 enzyme. This descriptor,
together with MaxDD, contains information about the two-
dimensional structure of compounds. The determination of

the Eig04_AEA(bo) value is based on a binary, zero-one
matrix (adjacency matrix) containing information about the
presence of a neighborhood between bonds (called edges),

except for the bonds of hydrogen atoms. In the next step,
the data matrix is weighted by bond orders. On its basis, the
principal components are computed, and the percentage of

variance explained by the fourth principal component is the
descriptor’s value. It means that, in this group of trans-
stilbene derivatives, values are not influenced by the type of

substituent (methoxy or methylthio) but only by their location.
Table 3 Molecular descriptors of the MLR model.

Name Description Class

RDF035m Radial Distribution Function – 035 /

weighted by mass

RDF

descriptors

Eig04_AEA

(bo)

Eigenvalue n. 4 from augmented

edge adjacency mat. weighted by

bond order

Edge

adjacency

indices

Mor10m Signal 10 / weighted by mass 3D-MoRSE

descriptors

RDF070s Radial Distribution Function – 070 /

weighted by I-state

RDF

descriptors

MaxDD Max detour distance Topological

indices
As the Eig04_AEA (bo) value increases, the activity of the

compound decreases (negative coefficient in the regression
equation). The compound with the lowest Eig04_AEA(bo)
value is compound 3. One of the phenyl rings of this molecule

does not have any substituent. All four subsequent compounds
(compounds: 1, 11–13) are substituted in the second position of
one phenyl ring (R1) and fourth position of the second phenyl
ring (R2) by methoxy and/or methylthio group (regardless of

the type of substituent, the calculated descriptor value is the
same).

The max detour distance (MaxDD) is defined as the length

of the longest path between two vertices of a graph (Mercader
et al., 2001). In the case of chemical compounds, it is the long-
est path between atoms (without hydrogens) in a molecule. As

many as nine compounds (compounds: 2, 4–10, 14) possess the
same, highest value of the MaxDD descriptor. According to
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the regression model’s equation, higher values of MaxDD
increase activity. All these compounds have substituents on
both phenyl rings, at least three. Only one of them has a

methylthio group. The interpretation of the definition indicates
that replacing the oxygen atom with a bioisosteric sulphur
atom does not affect the descriptor’s value. The analysis of

the structure of the compounds shows that among the tested
trans-stilbene derivatives, the largest distance between atoms
is in the compounds where the substituents are in the second

position (R1) and the third position (R2) (the longest possible
path would be between the compound substituted in the sec-
ond positions in both phenyl rings, but such molecule does
not exist in the data set).

In this study, the relationship between the structure and
activity of trans-stilbene derivatives is expressed by the selected
MLR model with five descriptors. The contributions of indi-

vidual atomic pairs (depending on the molecule size from
about 500 to over 1000 atomic pairs) to the 3D descriptors’
values were calculated using our standalone software (online

version under construction).
For interpretation of 3D descriptors, three parts were high-

lighted in the structure of the compounds. One part is the com-

pound’s core (E-1,2-diphenylethylene, blue colour in Table 1).
Fragment 1 consists of phenyl ring substituents (R1, orange
colour in Table 1). The substituents may be placed at different
positions of the phenyl ring. Fragment 2 consists of the sub-

stituents of the second phenyl ring (R2, grey colour in Table 1).
The fourth position is always occupied and position third is
possible.
Fig. 6 The theoretical radial distribution function of RDF035m de

descriptor corresponding to different atomic pairs of compound 13 (B)

compound 8 (C).
The radial distribution function (RDF) descriptors are
based on the distance distribution of the molecules. RDF is
independent of the size of a molecule and unambiguously

describes the three-dimensional arrangement of the atoms,
and is invariant against the rotation and translation of a mole-
cule (Zapadka et al., 2019). These features make RDF an ideal

candidate as a structure-related descriptor in investigating the
relationship between structure and relevant properties in drug
design (Novak et al., 2020). Using different weights, including

atom types, electronegativity, atom mass, or van der Waals
radii, RDF can be adjusted to select among those atoms of a
molecule, which give important contributions to descriptor
value in deriving QSAR model (Fedorowicz et al., 2004).

RDF035m descriptor contributes the most significantly to
pIC50 variation as indicated by the highest standardized coef-
ficients value. An increase in this descriptor’s value was

reflected by a decrease in the pIC50 value (lower ability to inhi-
bit CYP1B1). RDF035m is calculated with the spherical vol-
ume restricted to 3.5 Å and an atomic mass as the weights.

Fig. 6 shows the theoretical distribution of the RDF035m
function, considering the contribution of various atomic pairs
to the final descriptor value. The experimentally determined

contributions of atomic pairs constituting 80 % of the final
value for the compound with the highest (compound 8) and
the lowest (compound 13) RDF035m value are plotted on the
graph. It can be observed that the pairs between carbons, car-

bon, and oxygen, carbon and hydrogen, and oxygen and
hydrogen atoms dominate the final RDF035m value.
scriptor corresponding to different atomic pairs (A). RDF035m

. RDF035m descriptor corresponding to different atomic pairs of



Fig. 7 The contribution of atomic pairs in the final RDF035m value depending on the molecule’s fragment for selected trans-stilbene

derivatives.
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The contribution of atomic pairs, depending on the mole-
cule fragment, in the RDF035m value for the five compounds
with the highest (compounds: 8, 9, 24, 6, 17) descriptor value
and the five compounds with the lowest (compounds: 13, 11,

15, 16, 12) is shown in Fig. 7.
As shown in Fig. 7, for compounds with a low RDF035m

value, the atomic pairs only in the molecule core account for

a nearly total value of the descriptor. On the other hand,
Fig. 8 The contribution of atomic pairs in the final RDF070s value

derivatives.
atomic pairs within Fragment 1 and 2 and between core
and Fragment 1 and 2 are responsible for the high value of
the descriptor. When a methylthio substituent is present, no
atomic pairs from this fragment and between this fragment

and core significantly contribute to RDF035m, which results
in a small descriptor value (despite the use of atomic mass as
a weight). The explanation for this observation may be the

change (elongation) of the bond length in the presence of sul-
depending on the molecule’s fragment for selected trans-stilbene
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phur, which results in a smaller possible number of inter-
atomic interactions in the range of 3.5 Å. In addition, com-
pounds with a high RDF035m value have, in Fragment 1,

three methoxy groups often adjacent to each other. Such
observation is consistent with that the carbon–oxygen pairs
are responsible for the high value of the descriptor because

the more methoxy substituents, the greater the possibility of
potential interatomic interactions between C and O. Despite
their potentially greater importance due to the weighting

scheme, no significant contribution to the RDF035m value
of carbon–sulphur atomic pairs.

In the case of RDF070s, due to the intrinsic state weighting
method (Kier & Hall, 1990), it is difficult to plot the theoretical

distribution of the function, taking into account the division
into different atomic pairs. Depending on the number and type
of bonds, the atoms of the same element have different

weights, which results in a significant multiplication of the
number of possible types of interatomic pairs. An increase in
this descriptor’s value reflected an increase in the pIC50 value.

Fig. 8 shows that for interactions inside Fragment 1 or 2,
the presence of at least two substituents is necessary. More-
over, they cannot be bonded to adjacent carbon atoms of the

diphenyl skeleton. The explanation for this observation may
be that RDF070s are calculated with the spherical volume of
7 Å, which is greater than the distance between two adjacent
methoxy groups. The analysis of Fig. 8 revealed a decreasing

contribution to the final descriptor value of interactions
between core and Fragment 1 as the value of the RDF070s
decreases. This can be related to the declining number of sub-

stituents. Fig. 8 also confirms that substituents cannot be in
spatial proximity until significant interactions between the sub-
stituent atoms occur. That is more, Fig. 8 indicates a lack of

interactions in Fragment 2, where there are at most two sub-
stituents but in adjacent positions.
Fig. 9 Theoretical radial basis function of Mor10m
Another 3D molecular descriptor included in the regression
model belongs to the class 3D-MoRSE. These descriptors are
denoted as ‘Mor’ accompanied by a number which refers to

the scattering parameter and a letter indicating the type of
weighting. Particularly, Mor10m stands for a descriptor with
the scattering parameter equal to 10 Å and weighted by atomic

mass. Weighting by atomic mass practically eliminates hydro-
gen atoms’ role while significantly increasing the effect of
atoms such as phosphorus, sulphur, and chlorine on the values

3D-MoRSE descriptors (Devinyak et al., 2014). As with the
RDF descriptors, the final value of 3D-MoRSE is the sum
of contributions from each atomic pair of the molecule. How-
ever, as shown in Fig. 9, in the case of 3D-MoRSE, the atomic

pairs can have both positive and negative contributions.
For interpretation, the significant interatomic interactions

with both the positive and the negative input should be identi-

fied. The coefficient for Mor10m in the regression equation
indicates that the pIC50 value is directly related to this descrip-
tor. As before, the five compounds with the highest (com-

pounds: 8, 9, 6, 5, 4) and five with the lowest (compounds: 13,

11, 19, 18, 23) Mor10m values were subjected to detailed anal-
ysis (Fig. 10).

The graph shows that interactions within the molecule core
have a much more significant impact on the final Mor10m
value than on RDF. On the other hand, in the case of inter-
atomic interactions in Fragments 1 and 2, a substantial

decrease in the impact of Mor10m values can be seen. Another
observation is that when there is a methylthio substituent in
Fragment 1 or 2, the summarized interatomic interactions

between this part and the molecule core negatively contribute
to the descriptor value. Fig. 11, in conjunction with Fig. 10,
allows for a broad interpretation of the studied variable.

Among the interactions that significantly affect the descrip-
tor value are those between carbon atoms, C and O, C and S,
descriptor corresponding to different atomic pairs.



Fig. 11 Contribution of the interatomic interactions in the final Mor10m value depending on different trans-stilbene derivatives.

Fig. 10 Contribution of the atomic pairs in final Mor10m value depending on the fragment of the molecule for selected trans-stilbene

derivatives.
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and to a lesser extent, C and H. The summarized contribution
of carbon-hydrogen interactions for all ten analysed com-
pounds is negative and very similar. As the value of Mor10m

decreases, the sum of interactions between carbon and oxygen
atoms decreases. Notwithstanding, in the case of interatomic
interactions between C and S, an increasing influence on the

final value of the descriptor is noticeable, while this contribu-
tion is negative. The described observations can be related to
the number of methoxy and methylthio groups in the studied
compounds. As the final value of the descriptor decreases,

the number of methoxy groups decreases, while the trans-
stilbene derivative with the lowest Mor10m value has two
methylthio substituents (the most among the compounds

tested) and no methoxy groups.
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3.3.5. Brief interpretation of molecular descriptors

A critical component of QSAR analysis is determining the

influence of various structural elements on the final value of
molecular descriptors. The present investigation facilitates
the indication of those structural elements that affect the value

of the analysed descriptors. However, the ability to inhibit the
enzyme CYP1B1 (and all other modelled properties) by trans-
stilbene derivatives is predicted from the combination of all

independent variables included in the equation, together with
their regression coefficients. Moreover, analysing the influence
of a single descriptor on biological activity may lead to contra-
dictory conclusions, especially without considering the regres-

sion coefficients presented in the equation. Finally, we found a
range of different responses for the various compounds when
examining the individual components of the regression equa-

tion (the scaled descriptor values multiplied by regression coef-
ficients) (Fig. 12).

Analysing topological descriptors is relatively easy to con-

clude as they carry less information about compounds’ struc-
ture than 3D descriptors. Both 2D descriptors (Eig04_AEA
(bo) and MaxDD) indicated the presence of substitutions at

the second (R1) and fourth positions (R2) as favourable for
the activity. Conclusions regarding the beneficial effect of the
substituent presence at the 2-position of the stilbene skeleton
are consistent with the observations presented in (Kim et al.,

2002). A large contribution to the predicted pIC50 value of
Eig04_AEA(bo) (with its regression coefficient) was observed
for highly active compounds. The same arrangement of

substituents is also present in two of the three least active com-
pounds. However, this equation component negatively affects
Fig. 12 Contribution of individual components of the regression eq

(compounds: 2, 11–14) and three least active (compounds: 8, 9, 16) compo

regression coefficient.
the predicted biological activity and does not significantly
influence the result. It is worth noting that in the absence of
a substitution at the second position (R1) (compound 16), the

value of the Eig04_AEA(bo) descriptor with its regression
coefficient has a minor effect on predicted activity. Further-
more, the MaxDD descriptor’s minor effect on the predicted

activity for seven of the eight compounds analysed (Fig. 12).
Conversely, compound 16 has a large negative contribution
of MaxDD descriptor to the predicted activity, and the most

significant influence of this equation component on the result
is observed for this compound.

As demonstrated previously, the analysis of the RDF035m
descriptor indicated a positive effect of the methylthio group

and a negative effect of a large number of methoxy groups
on the inhibition of CYP1B1. Compounds without a
methylthio group and with a large number (five) of methoxy

groups (compounds 8 and 9) have low activity, resulting from
a significant negative effect of the RDF035m value and its
regression coefficient (Fig. 12). On the other hand, the presence

of two methylthio substituents and the absence of the methoxy
group (compound 13) increases activity mainly due to the pos-
itive effect of this component of the equation. Furthermore,

the most active compound (compound 2) does not have a
methylthio group but the average number (three) of methoxy
substituents. For this molecule, the influence of the equation
component (-3.585 � RDF035m) on the predicted activity is

the smallest among the analysed trans-stilbene derivatives.
For most of the compounds presented in Fig. 12, the effect

of RDF070s, along with its regression coefficient on predicted

activity, is relatively small. However, the contribution of the
uation on the predicted biological activity for the five most active

unds. The hatched bar border indicates descriptors with a negative
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respective equation component (1.559 � RDF070s) in predicted
pIC50 for moderate active compounds is higher.

The analysis of the influence of various structural elements

on the value of the Mor10m descriptor indicated that a large
number of methoxy groups improved the modelled activity,
while the presence of methylthio groups did not. Considering

the influence of the descriptors themselves and the regression
coefficients allows for assessing the real impact of individual
components of the regression equation on the predicted activ-

ity (Fig. 12). For compound 13 (with two methylthio sub-
stituents), a large negative effect of the Mor10m equation
component on the predicted pIC50 value is observed. In the
presence of one methylthio and one methoxy group (com-

pounds 12, 11, 16), this effect is also negative, but to a lesser
degree. Mor10m has a slight positive effect on the modelled
activity of compound 14, which contains one methylthio and

two methoxy substituents. On the other hand, when only
methoxy groups are present (compounds: 2, 8, 9), the predicted
ability to inhibit CYP1B1 Mor10m along with the regression

coefficient has a positive proportional influence, depending
on the number of these groups.

This study has developed several regression models to pre-

dict the inhibition activity against CYP1B1 of a series of trans-
stilbene containing methoxy and/or methylthio substituents in
various positions. With the use of cluster analysis, only one
QSAR model was selected and further analyzed. The extended

study of the chosen model proves its good predictive power
and evidence of the usefulness of cluster analysis in the com-
parative evaluation of many computed QSAR models. It is

worth noting that the established regression model fulfils all
five OECD principles. The study shows that the inhibitory
activity against CYP1B1 of the methyl and/or methylthio

trans-stilbene derivatives can be predicted by RDF035m,
Mor10m Eig04AEA(bo), RDF070s, MaxDD descriptors.
The analysis indicated the presence of substitution at the sec-

ond (R1) position as favourable for the predicted activity.
Moreover, the beneficial effect of exchanging oxygen into the
bioisosteric sulphur atom in the substituent has been demon-
strated. However, the total number of substituents should

not exceed three.
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A., Teubert, A., Te_zyk, A., Stefański, T., Baer-Dubowska, W.,
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