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Abstract Solid can be divided into three main categories such as bulk, particles and molecules.

However, the particle productions, as well as distribution of size, are very crucial to achieve partic-

ular properties for any specific industrial uses. This research aim is to develop empirical relations

using an artificial neural network (ANN) for the sonofragmentation experimental results in terms

of number fractions for different lengths and widths of particles corresponding to ultrasonic ampli-

tude equal to 10%. For the ANN model, three and four hidden layers are chosen for lengths and

widths models, respectively. Then it empirically calculated the number of fractions for different

lengths and widths of a particle was compared with the population balance equation (PBE). To fur-

ther strengthen the empirical expression, the ANN result was also compared with the population

balance model and found to be agreed well with the PBE simulations. The model was trained

and validated using the measured (experimental) data of the number fraction. The model was found

to be valid and reliable, with R2 equal to or greater than 0.95 in both training and validation.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Physical properties of solid particles such as size, porosity, shape, and

surface area are included and described basically at the particle level.

In the field of crystal engineering, arrangement of the constituting

molecules in the crystal lattice defines the molecular-level properties
of crystals such as polymorphism, crystal habit, amorphous structure,

etc. (Bhoi, 2019). The methods of size reduction are usually employed

in different industries such as chemical, pharmaceutical, mineral, etc.

to create particles or crystals with the desired properties (Das, 2020).

Particle size reduction is an important particle engineering technique

that is especially useful to enhance solubility of poorly water-soluble

medicines in aqueous media.

Furthermore, there are also several particle size reduction methods,

such as milling and grinding. In addition to this, the ultrasound

method is used to maintain the quality of drugs in pharmaceuticals

(Bari and Pandit, 2014).

Bhoi et al. (Bhoi, 2019) performed several sonofragmentation

experiments by changing time and ultrasonic amplitude. They investi-

gated the further simulated breakage using ultrasound. For performing

the simulations, Monte Carlo (MC) was used. It was discovered that,
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in crystal size reduction, both the ultrasonic amplitude and the sonica-

tion period play a significant role. Zeiger et al. (Zeiger and Suslick,

2013) presented the modeling and observations on molecular crystals

of Sonofragmentation. They discovered that direct particle-

shockwave and related particle-turbulent shear interactions are the

dominant mechanisms of sonofragmentation (Zeiger and Suslick,

2011). Bari et al. (Bari and Pandit, 2014) investigated the population

balance modeling using kinetic parameter estimation for particle

breakage assisted with ultrasound. Ultrasound facilitated particle

breakage has been shown to be an effective method for size reduction.

In gPROMS, the breakage rate for ultrasonic breakage was calculated

for various distribution functions by the zeroth moment simulations

using different time intervals. It was discovered that the distribution

function with uniform binary breakage produces the best PSD results.

Thus, it was used to derive the law for energy size reduction law using

ultrasonic breakage.

Raman et al. (Raman et al., 2011) studied identification of break-

age mechanisms identification and kinetic modeling with high-

intensity ultrasound to grind the particles. An ultrasound transducer-

like horn-type shape is used to apply HIU to an alumina particle sus-

pension, which causes breakage. They found that the variation of the

first Kapur function with particle size is found to have an exponential

relationship, which is unique to ultrasound-mediated particle break-

age. Zeiger et al. (Zeiger and Suslick, 2011), examined the molecular

crystal sonofragmentation. The use of acetylsalicylic acid was used

to investigate the mechanisms for breaking of molecular crystals at

high-intensity ultrasound medium (Zeiger and Suslick, 2011).

Sonofragmentation is independent of slurry concentration, according

to particle-loading studies of molecular crystals. This eliminates parti-

cle–particle collisions as a significant breakage mechanism. They found

that the importance of direct particle-shock wave interactions in the

design of sonocrystallization processes cannot be overstated.

Klaue et al. (Klaue, 2019), studied the polymer sonofragmentation

for size distribution and controlling the size of the produced particles.

Since the activity of Ziegler –Natta catalyst (ZNC) particles, as well as

the size and size distribution (SD) of the final polymer particles, can be

greatly influenced. For breaking up ZNC particles in the solvent, they

used sonofragmentation. Finally, they discovered that the sonofrag-

mentation treated ZNC has a significantly higher catalyst yield than

the untreated one.

Kim et al. (Kim and Suslick, 2017) studied the ionic crystal

sonofragmentation. The crystal’s fragmentation rate was highly influ-

enced by the materials strength. They discovered that slurry loading,

and liquid–vapor pressure do not affect sonofragmentation. Further-

more, it was suppressed by increasing the viscosity of the liquid. Edwin

et al. (Edwin and Wilson, 2019), incorporated the Strontium function

and investigated the sonofragmentation for hydroxyapatite crystals.

Tronium gets attention as strontium-incorporated hydroxyapatite

enhances the number of bone-forming sites while also being biocom-

patible. It was found that strain in the HA lattice correlates with stron-

tium incorporation, resulting in varying degrees of sonofragmentation.

Furthermore, the study found that 100% strontium replacement of cal-

cium sites results in a lower strain and, as a result, inadequate

fragmentation.

Gopi et al. (Gopi and Nagarajan, 2008) studied the advances in the

fabrication of ceramic particle nano alumina using sonofragmentation.

They investigated the effects of various parameters on the sonofrag-

mentation process, including frequency, shape, surfactants, particle

concentration, applied ultrasonic power, and process time. Raman

et al. (Raman and Abbas, 2008) performed experimental investigations

of breakage of a mediated particle using ultrasound. They used a

24 kHz horn-type transducer as well as a continuous chord length mea-

surement system.

Jordens et al. (Jordens, 2016), studied the effect of power and fre-

quencies on the breakage of particles. According to Kapur function

analysis, stable bubbles are more efficient than transient bubbles at

breaking coarse particles larger than 40 mm. Then, it was discovered

that stable bubbles produce less abrasion than transient bubbles.
Rasche et al. (Rasche, 2018), studied the particle size evolution and

carried out mathematical modeling. Further, they studied the aspirin

crystals investigated the particle size distribution under ultrasound

breakage. They discovered that the breakage rate’s dependence on par-

ticle mass was small for the binary equal-size breakage model. As a

result, a binary equal-size breakage model accurately modelled these

crystals. Sato et al. (Sato, 2008) studied the high aspect ratio crystals

breakage with a 2D PBM, while two physical assumptions considered

in their model.

Alexopoulos et al. (Alexopoulos and Kiparissides, 2007) evaluated

the combined effect of breakage and aggregation. Then, developed a

bivariate solution for the dynamic population balance equation in

batch particulate systems. Saha et al. (Saha, 2019) used the finite vol-

ume method for multidimensional fragmentation and developed

numerical solutions. They discovered that the scheme accurately esti-

mates several physically considerable moment functions. Furthermore,

it has a simple mathematical framework for describing higher

dimensions.

Using a variety of tests, the scheme’s efficiency was validated. Lee

et al. (Lee and Matsoukas, 2000) investigated coagulation and breakup

simultaneously using Monte Carlo. Finally, they compared the results

with analytical solutions and look at the outcomes of three cases and

found them to be validating well with the Monte Carlo method. Das

et al. (Das, 2020) used a bivariate model for population balance for

rectangular plate crystals. They performed the population balance

modeling and compared it with experimental validations. The accuracy

of the population balance equations modelling highly depends on the

number of cells considered for the discretization of the domain and

more cells are required for achieving a certain level of precision, mak-

ing it computationally expensive. Therefore, in this paper, a predictive

tool is developed using the notion of artificial neural networks and val-

idated with experiments. The proposed calculations of empirical rela-

tions from ANN were compared with population balance equation

(PBE) simulations. Similar to the population balance model, two

ANN models based on the length and width of the particles (crystals)

are developed using 3 and 4 hidden layers, respectively. Finally, two

empirical relations are obtained for number fractions in terms of

length and width of the particles.
2. Materials and method

Pyrazinamide (PZA) crystals with 123.12 g/mol molecular
weight and 98% purity, toluene and methanol were used in

the analysis (Bhoi, 2019). We have taken the data from pub-
lished sources and developed computational methodology in
this work. More detailed description of the experimentation

can be found elsewhere (Bhoi, 2019).
The crystals of pyrazinamide are assumed as thin rectangu-

lar plate-type particles of uniform thickness that break into
two fragments. To begin, the crystal only breaks across the

width of the crystal particle, and the fracture can occur at
any random point between xl percent and (1-x)l percent of
the crystal’s length. Finally, crystal particles smaller than

20 mm in length do not further break down into tiny pieces,
and crystal particle size is proportionate to the area. The total
frequency of stressing loading activities for the entire system

remains unchanged for a steady ultrasonic amplitude (Bhoi,
2019; Das, 2020).
3. Overview of artificial neural network

The effectiveness of ANN modeling in identifying the appro-
priate solution for complicated processes like granulation,
crystallization is well known (Velásco-Mejı́a, 2016). The basic
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idea of the ANN modeling approach is to use statistical opti-
mization to empirically associate specific inputs to particular
outputs (Jin, 2021; Lima, et al., 2022). ANN modeling

approach is typically employed when finding a mechanistic
model for a process is challenging. A general structure of the
ANN model comprises three layers (a) input layer, (b) hidden

layer and (c) outer layer. The parameters that affect the system
or particulate process are in the input layer, while the hidden
layer is made up of multiple layers composed of various num-

bers of linear and nonlinear neurons that connect the input
layer to the output layer (refer to Fig. 1). Moreover, the outer
layer is where the output results are obtained from the ANN
model. The precision of the ANN model is highly dependent

on various factors discussed below:

1. The number of layers and nodes employed,

2. The kind of activation functions chosen for each node,
3. The quantity of data points used in training and validation

of the ANN model.

To build accuracy, the number of data points plays a signif-
icant role and impacts the solution of ANN model. A coarse

data may lead to inaccurate results. In addition, choosing
appropriate activation functions is also challenging in develop-
ing an accurate ANN model. To make a simple ANN model,
linear and nonlinear activation functions are considered.

Mathematically these functions can be written as follows:

p ¼ e2u � 1

e2u þ 1
ð1Þ

and

p ¼ auþ b ð2Þ
where u signifies the model’s linear combination of input
parameters and p denotes the activation function. The activa-
tion function (1) represents the hyperbolic tangent function

(tanh) whereas the function (2) expresses the linear activation
functions. It is worth noting that simpler activation will allow
us to make control systems for any particulate process. Non-

linear nodes are only employed in extreme situations where lin-
Fig. 1 ANN structure for length model (
ear nodes failed to predict. The model’s parameters are esti-

mated using penalized maximum likelihood (Gotwalt, n.d.)
which is a method for fitting the model. In the current study,
we use a Gaussian model based on the sum of squared errors:

LGaussian ¼ k

2
log SSEð Þ þ 1þ logð2p

k
Þ

� �
ð3Þ

where k denotes the total number of data points used in order
to develop the ANN model and SSE refers to the sum of

squared errors.

The coefficient of determination (R2) is used to assess the
accuracy of the ANN model in fitting the data:

R2 ¼ 1�
P

i Ei � Pið Þ2P
i y

�
i � Pi

� �2 : ð4Þ

Here P and E represent the predicted and experimental val-
ues, respectively and i is the set of experimental runs
(Shirazian, 2017).

4. Results and discussion

This part of the paper is devoted to check the accuracy and

robustness of the ANN model against experimental data and
population balance model. ANN model is developed for pre-
dicting the sonofragmentation of thin rectangular plate-type

pyrazinamide crystals via the ultrasound-based technique.
Two kinds of models are built in modeling the system: (1)
Length-based model and (2) Width-based model (Das, 2020).
For the length and width models, three and four hidden layers

are used, respectively. The experimental data used for develop-
ing the ANNmodel taken from (Bhoi, 2019) is listed in Table 1.
It is important to note that the experimental data considered

here is corresponding to ultrasonic amplitude equal to 10%.
Among whole data points 32 out of 43 data sets were used
in the training the model to determine the unknown parame-

ters, however, 11 data points were used to validate the number
fraction results.

One can see from Table 1 that the number fraction calcu-

lated using the ANN model the sonofragmentation process
left side), and width model (right side).



Table 1 Comparison of results using ANN, experimental data, and Population Balance Model.

Length of

particles

Number fraction

(Experimental)

Number

fraction (PBE)

Number

fraction

(ANN)

Width of

particles

Number fraction

(Experimental)

Number

fraction (PBE)

Number

fraction

(ANN)

0 0 0 0 0 0 0 0

16.2791 0 0 0 5.5215 0 0 0

26.4535 0.003871 0.00449076 0.004599 14.7239 0.003571 0.00357143 0.023862

34.593 0.019355 0.0193222 0.018686 25.7669 0.03125 0.00892857 0.05193

44.7674 0.043548 0.039315 0.043022 34.9693 0.070536 0.0285714 0.071664

54.9419 0.067742 0.0560855 0.067863 46.0123 0.1 0.0491071 0.090049

65.1163 0.086129 0.0676912 0.085425 55.2147 0.113393 0.0696429 0.100116

75.2907 0.094839 0.0780065 0.094246 64.4172 0.111607 0.0848214 0.104683

87.5 0.095807 0.0831606 0.096121 75.4601 0.101786 0.1 0.102411

95.6395 0.09 0.0786336 0.091715 84.6626 0.088393 0.108036 0.09446

105.814 0.082258 0.0728217 0.081358 95.7055 0.073214 0.117857 0.079601

115.988 0.071613 0.0683001 0.069763 106.748 0.060714 0.117857 0.062332

126.163 0.061936 0.0611997 0.05949 115.951 0.049107 0.108036 0.048713

134.302 0.052258 0.0528072 0.052382 125.153 0.039286 0.0901786 0.037302

144.477 0.043548 0.0469953 0.044461 134.356 0.03125 0.0758929 0.028598

154.651 0.036774 0.0392443 0.037301 145.399 0.025 0.0633929 0.021453

164.826 0.03 0.0340776 0.030822 154.601 0.019643 0.0508929 0.017614

175 0.024194 0.0276187 0.025071 165.644 0.015179 0.0410714 0.014657

183.14 0.019355 0.0211598 0.021028 174.847 0.0125 0.0330357 0.012997

195.349 0.016452 0.0166347 0.015902 184.049 0.010714 0.0258929 0.011699

205.523 0.013548 0.0121095 0.012444 195.092 0.008036 0.0205357 0.010326

217.733 0.009677 0.00822218 0.009159 202.454 0.007143 0.0160714 0.00943

231.977 0.006774 0.00433128 0.00632 219.018 0.004464 0.0125 0.007353

246.221 0.004839 0.0010801 0.004312 241.104 0.003571 0.00892857 0.004534

262.5 0.003871 0.00 0.002759 263.19 0.002679 0.00625 0.002025

280.814 0.001935 0.00 0.001656 296.319 0.001786 0.00357143 0

297.093 0.001935 0.00 0.00105 300 0 0.00267857 0

315.407 0 0.00 0.000631 325 0 0.00178571 0

350 0 0.00 0.000251 350 0 0 0

375 0 0.00 0.000139 375 0 0 0

400 0 0.00 8.62E-05 400 0 0.00 0.000227

425 0 0.00 6.1E-05 425 0 0.00 0.000867

450 0 0.00 4.92E-05 450 0 0.00 0.001273

475 0 0.00 4.36E-05 475 0 0.00 0.00138

500 0 0.00 4.1E-05 500 0 0.00 0.001194

525 0 0.00 3.98E-05 525 0 0.00 0.00077

550 0 0.00 3.92E-05 550 0 0.00 0.000198

575 0 0.00 3.89E-05 575 0 0.00 0

600 0 0.00 3.88E-05 600 0 0.00 0

625 0 0.00 3.88E-05 625 0 0.00 0

650 0 0.00 3.87E-05 650 0 0.00 0

675 0 0.00 3.87E-05 675 0 0.00 0

700 0 0.00 3.87E-05 700 0 0.00 0.000262
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of rectangular d-form pyrazinamide crystals shows highly com-
parable results compared to the experimental data whereas the

PBE shows significant deviation from the experimental values.
Table 2 shows that the ANN model provides very good R2 val-
ues (greater than0.95) for training and validation steps corre-

sponding to both length and width models.
The experimental and training ANN values are compared

in terms of number fraction in Fig. 2 for both length and width

models. The validation of the ANN model is done in Fig. 3 for
both models. Both figures show that the ANN values are
matching well with the experimental values, and capable to
capture the variations in the process.

Furthermore, as shown in Figs. 4 and 5, relatively fewer
residual values were produced in both the training and valida-
tion tests, respectively. In this case, the SSE values for training
and validation are moderate and outstanding, respectively.

The constructed neural model is accurate and can be used to
estimate the number fraction for both length and width
models.

The following relation of number fraction corresponding to
length of particles is obtained:

H1 = tanh(0.5*(0.0207204429309029*Length_of_parti

cles + -1.17799011226555)).
H2 = tanh(0.5*(-0.0637912625023325*Length_of_parti

cles + 8.09956092528305)).
H3 = tanh(0.5*(-0.0657532982458528*Length_of_parti

cles + 3.11428277707588)).



Table 2 ANN model values after training and validation for both length and width models.

Measures Training values for length

model

Validation values for length

model

Training values for width

model

Validation values for width

model

R2 0.9987018 0.9998036 0.9718882 0.9580637

RMSE 0.0011024 0.0004696 0.0055374 0.0081402

Mean Absolute

Deviation

0.0007123 0.0003625 0.0028395 0.0051473

-LogLikelihood �172.5229 �68.69226 �120.8735 �37.31203

SSE 3.8888e-5 2.4255e-6 0.0009812 0.0007289

Sum Frequency 32 11 32 11

Fig. 2 Comparison of experimental (solid line) Vs. predicted (solid circles) training data for number fraction.

Fig. 3 Comparison of experimental (solid line) Vs. predicted (solid circles) validating data for number fraction.
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Number fraction = -0.151616499717725*H1 + 0.0040254
6315007164*H2 + -0.124980283548877*H3 + 0.

0303751811701785.
Similarly, using the ANN model the following relation of

number fraction corresponding to width of particles is
developed:
H1 = tanh(0.5*(-0.04522451367367*Width_of_particles +
4.33200248535175)).

H2 = tanh(0.5*(0.00131127523356585*Width_of_parti
cles + 1.99138412281423)).

H3 = tanh(0.5*(0.0132881291510304*Width_of_parti
cles + -2.23217887065043)).



Fig. 4 Residual errors corresponding to training experimental data.

Fig. 5 Residual errors corresponding to validating experimental data.
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H4 = tanh(0.5*(0.00232015143889709*Width_of_parti
cles + -0.282504441273059)).

Number fraction = 0.124972843935664*H1 + 44.311156

5249285*H2 + -0.237216575217829*H3 + -7.395996536038
79*H4 + -35.037207680288.

Here H1, H2, H3 and H4 are the hidden layers used for

developing the ANN model. It is important to note that the
above equations can be also used to generate more values of
fractions corresponding to different lengths and widths of

the particles. ANN model helps in reducing the experimental
work and allows the researchers to obtain the values of a cer-
tain parameter where those are not available. Whereas popula-
tion balance models fail to do so. Moreover, due to

discretization of the continuous domain into discrete cells for
the population balance model makes it computationally
expensive.

5. Conclusions

This work has been devoted to developing an ANN (Artificial Neural

Network) model for tracking the changes in ultrasonic amplitude as

well as the sonication time that are properly captured by the proposed

ANN model. The ANN model was based on minimizing the RMSE

between experimental and predicted number fractions corresponding

to lengths and widths of the particles. For length-based model, the

training and validation of the ANN model provided R2 greater than

0.99, whereas for the width-based model, the ANN model provided

R2 greater than 0.95. The comparison of results computed using
ANNmodel with the existing population balance model has been done

for both length and width models. The outcomes revealed that the

ANN model demonstrated better accuracy than the population bal-

ance model (PBM). Finally, we can conclude that the ANN model

revealed great capability and can be employed as a predictive tool

for tracking the sonofragmentation process.
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