
Arabian Journal of Chemistry (2023) 16, 104425
King Saud University

Arabian Journal of Chemistry

www.ksu.edu.sa
www.sciencedirect.com
ORIGINAL ARTICLE
Optimization of Portulaca oleracea L. extract using
response surface methodology and artificial neural

network and characterization of bioactive

compound by high-resolution mass spectroscopy
* Corresponding author at: Department of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic o

E-mail address: sang@knu.ac.kr (S.-H. Lee).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

https://doi.org/10.1016/j.arabjc.2022.104425
1878-5352 � 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Fanar Alshammari a, Md Badrul Alam a,b, Marufa Naznin c, Sunghwan Kim c,d,

Sang-Han Lee
a,b,*
aDepartment of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
bFood and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566,
Republic of Korea
cDepartment of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
dMass Spectrometry Converging Research Center and Green-Nano Materials Research Center, Daegu 41566, Republic of Korea
Received 4 July 2022; accepted 10 November 2022
Available online 23 November 2022
KEYWORDS

Antioxidant;

Artificial neural network;

Portulaca oleracea;

Response surface methodol-

ogy;

Secondary metabolites
Abstract The well-known medicinal plant Portulaca oleracea L. (PO) is used as a traditional med-

icine and culinary herb to treat various diseases. Fatty acids, essential oils, and flavonoids were

extracted from PO seeds and leaves using ultrasonic, microwave, and supercritical fluid extraction

with RSM techniques. However, investigations on the secondary metabolites and antioxidant capa-

bilities of the aerial part of PO (APO) are scarce. In order to extract polyphenols and antioxidants

from APO as effectively as possible, this study used heat reflux extraction (HRE), response surface

methodology (RSM), and artificial neural network (ANN) modeling. It also used high-resolution

mass spectrometry to identify the APO secondary metabolite. A central-composite design (CCD)

was used to establish the ideal ethanol content, extraction time, and extraction temperature to

extract the highest polyphenolic compounds and antioxidant activity from APO. According to

RSM, the highest amount of TPC (8.23 ± 1.06 mgGAE/g), TFC (43.12 ± 1.15 mgCAE/g),

DPPH-scavenging activity (43.01 ± 1.25 % of inhibition) and FRAP (35.98 ± 0.19 mM ascorbic

acid equivalent) were obtained at 60.0 % ethanol, 90.2 % time, and 50 �C. Statistical metrics such

as the coefficient of determination (R2), root-mean-square error (RMSE), absolute average devia-
f Korea.
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tion (AAD), and standard error of prediction (SEP) revealed the ANN’s superiority. Ninety-one

(91) secondary metabolites, including phenolic, flavonoids, alkaloids, fatty acids, and terpenoids,

were discovered using high-resolution mass spectrometry. In addition, 21 new phytoconstituents

were identified for the first time in this plant. The results revealed a significant concentration of phy-

toconstituents, making it an excellent contender for the pharmaceutical and food industries.

� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Portulaca oleracea L. (PO) is a well-known medicinal plant used both

as a traditional medicine and as an edible herb to treat various ail-

ments. This herb is widely used in European folk medicine. Addition-

ally, PO is mentioned in some pharmacopeias, such as the Ayurvedic

Pharmacopoeia of India and the Pharmacopoeia of PR China

(Iranshahy et al., 2017). Pharmacological investigations have demon-

strated that PO has a wide range of biological effects, including anti-

inflammatory, a bronchodilator, anti-microbial, antioxidant, and neu-

roprotective characteristics (Malek et al., 2004, Wang et al., 2007,

Hozayen et al., 2011, Karimi et al., 2011, Du et al., 2017). Animal stud-

ies have demonstrated its hepatoprotective, antiulcerogenic, and

antifertility benefits (Kumar et al., 2010, Nayaka et al., 2014, Eidi

et al., 2015). Additionally, investigations on phytochemistry have

revealed that this plant includes minerals, vitamins, fatty acids, flavo-

noids, alkaloids, and terpenoids (Sakai et al., 1996, Xiang et al., 2005,

Yan et al., 2012, Petropoulos et al., 2016).

Numerous studies have demonstrated that the solvent concentra-

tion, incubation time, and temperature affect the effectiveness of

polyphenol extraction, while some thermolabile bioactive substances

may degrade during extraction (Saha et al., 2011). There are several

extraction strategies for bioactive molecules, including reflux, soxhlet,

microwave-aided, ultrasonicator-assisted, and supercritical fluid

extraction (Pandey and Banik 2012). Heat reflux extraction has several

benefits over more traditional extraction methods, (1) the solvent is

replenished in the extraction; (2) the mass transfer driving force is more

substantial, (3) the extraction takes less time, (4) the solvent is used less

because it has already been used, and (5) the extraction yield is

increased. This technology is a promising substitute for extracting

bioactive natural compounds due to its benefits over traditional extrac-

tion methods (Gong et al., 2014, Ma et al., 2022).

Extraction is the initial and most crucial step in collecting and puri-

fying bioactive chemicals from plant sources; yet, lengthy extraction

times and low extraction efficiency limit these approaches (Samuel

and Emovon 2018, Sedraoui et al., 2020). Analytical techniques were

optimized using multivariate statistical methodologies to address this

problem. Response surface methodology (RSM) combines mathemat-

ical and statistical methods that have proven effective in developing,

improving, and optimizing complex processes (David Samuel et al.,

2021). RSM provides a wealth of information and is more cost-

effective because it reduces the required experiments. In addition,

RSM assesses the simultaneous influence of several factors and antic-

ipates the system’s response to each new condition to find the optimal

circumstances for the predicted response (Kusuma et al., 2021,

Kusuma et al., 2022). Nevertheless, nonlinearity and inaccurate data

are not handled precisely by RSM approaches. It has also been demon-

strated that artificial neural networks (ANNs) are effective data-driven

computational tools with the flexibility to capture complex and non-

linear data (Okwu et al., 2020, Okwu et al., 2021). The operation of

ANN as a prediction tool is similar to that of the human brain. The

brain’s neurons, basic processing units connected by networks and

used to transmit messages between the neurons, served as the model’s

primary source of inspiration. The sigmoid function controls the net-

work (Samuel and Okwu 2019, Okwu et al., 2021, Zadhossein et al.,

2021). However, the black box learning technique associated with

the ANN cannot be utilized to correlate input factors and output vari-
ables (Gupta and Sharma 2014). This problem is circumvented by

incorporating an additional method, such as RSM, to analyze the

interaction between the input and response variables. Hence, Combin-

ing RSM with ANN resulted in a more precise forecast (Samuel and

Okwu 2019).

Mounting studies over the past few decades have shown how to

extract fatty acids, essential oils, and flavonoids from PO seeds and

leaves using ultrasonic, microwave, and supercritical fluid extraction

with RSM methods (Stroescu et al., 2013, Wang et al., 2014,

Sodeifian et al., 2018). Most of the research disclosed just process opti-

mization. However, the authors did not compare the efficacy of predic-

tive modeling with better methodologies, such as ANN, and there was

a dearth of secondary metabolite profiling of the improved extracts. To

the best of our knowledge, however, heat reflux extraction (HRE)

using RSM and ANN was used for the first time in this study to

increase the polyphenol content and antioxidant activity of the aerial

portions of the Portulaca oleracea (APO). This study aimed to examine

and improve extraction parameters, including extraction temperature

and duration, as well as ethanol concentration, using the RSM central

composite design (CCD) tool to obtain the highest polyphenolic con-

tent and antioxidant potential from APO. Additionally, for the first

time, we have profiled the secondary metabolites of APO using high-

resolution mass spectrometry analysis.

2. Materials and methods

2.1. Sample collection and preparation

Wild Portulaca oleracea L. was collected in September 2021 in
Daegu, Korea. The Department of Food Science and Technol-

ogy, Kyungpook National University, Daegu, Korea (voucher
specimen # FT1005), identified the sample. Heat reflux extrac-
tion (HRE) was done in an oven with a condenser (Soxhlet

water bath C-WBS-D6, Changshin Science, Seoul, Korea).
Dry powder samples (10.0 g) were extracted using 100 ml of
solvent following the instructions in supplemental Table 1.

The extracted materials were filtered on Whatman No. 1 filter
paper (Schleicher & Schuell, Keene, New Hampshire) and then
dried in a freeze drier (Il-shin Biobase, Goyang, Korea). The
APO extract was kept at �20 �C for the ensuing investigations.

2.2. Total phenolic content (TPC), total flavonoid content

(TFC) and antioxidant activities

The TPC and TFC of APO extracts were assessed using the
Folin-Ciocalteu assay and the aluminum chloride colorimetric
method, respectively (Alam et al., 2017). The corresponding

regression equations for the calibration curves were used to
determine the TPC (y = 0.0582x + 0.0038; r2 = 0.9955)
and TFC (y = 0.059x + 0.0081; r2 = 0.9879). The gallic acid

equivalent (mg)/dry weight sample (g) and catechin equivalent
(mg)/dry weight sample (g) were used as the units of measure-
ment for the TPC and TFC, respectively. DPPH-radical scav-

http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1 Central composite design (CCD) for independent variables and corresponding response values (experimental).

Run Independent variables Responses

(X1) (X2) (X3) TPC (Y1) TFC (Y2) DPPH (Y3) FRAP (Y4)

1 50 140 50 5.09 ± 0.68 21.20 ± 0.73 20.87 ± 0.72 19.03 ± 0.05

2 50 40 50 3.89 ± 0.83 19.42 ± 0.52 15.36 ± 0.39 16.36 ± 0.02

3 50 90 50 8.12 ± 0.34 41.89 ± 0.25 41.75 ± 0.37 35.19 ± 0.16

4 50 90 30 3.15 ± 0.26 29.07 ± 0.65 9.18 ± 0.24 12.04 ± 0.10

5 0 90 50 1.25 ± 0.41 19.76 ± 0.32 0.66 ± 1.00 3.04 ± 0.07

6 75 60 60 6.58 ± 0.82 29.09 ± 0.10 27.21 ± 0.21 26.02 ± 0.08

7 50 90 50 7.61 ± 1.02 41.75 ± 0.56 41.93 ± 0.25 35.19 ± 0.06

8 75 120 40 5.06 ± 0.49 31.02 ± 0.26 25.07 ± 0.45 23.12 ± 0.02

9 75 60 40 5.03 ± 0.42 32.02 ± 0.95 22.70 ± 0.54 22.26 ± 0.04

10 25 120 60 5.06 ± 0.23 25.75 ± 0.35 20.08 ± 0.98 17.01 ± 0.08

11 50 90 50 7.59 ± 0.62 43.20 ± 0.26 40.56 ± 0.10 35.19 ± 0.04

12 100 90 50 5.75 ± 0.06 31.50 ± 0.33 30.25 ± 1.02 25.93 ± 0.02

13 50 90 50 7.49 ± 0.04 43.02 ± 0.53 40.05 ± 0.56 35.17 ± 0.06

14 75 120 60 6.84 ± 0.08 29.02 ± 0.35 29.88 ± 0.46 27.96 ± 0.16

15 25 60 60 3.17 ± 0.06 24.52 ± 0.15 14.02 ± 0.29 15.33 ± 0.13

16 50 90 70 5.53 ± 0.24 31.01 ± 0.60 22.53 ± 0.37 21.33 ± 0.19

17 25 60 40 2.81 ± 0.68 23.13 ± 0.72 7.01 ± 0.19 10.46 ± 0.15

18 50 90 50 7.98 ± 0.68 43.11 ± 0.72 41.89 ± 0.73 35.09 ± 0.07

19 50 90 50 8.12 ± 0.83 43.23 ± 0.39 41.05 ± 0.52 36.09 ± 0.05

20 25 120 40 2.82 ± 0.34 21.03 ± 0.37 8.51 ± 0.25 9.19 ± 0.16

X1. Ethanol concentration (%); X2. time (min); X3. temperature (�C); TPC. total phenolic content (mg gallic acid equivalent/g dry weight

extract); TFC. total flavonoid content (mg catechin equivalent/g dry weight extract); DPPH. DPPH radical scavenging activity (% inhibition);

FRAP. ferric reducing antioxidant power (mM ascorbic acid equivalent).
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enging test and ferric reducing antioxidant power (FRAP)
assay were used to assess the antioxidant properties of APO

extracts (Alam et al., 2021).

2.3. RSM design and extraction process

The RSM model was designed to extract phenolic chemicals
from APO using ethanol concentration (X1), extraction dura-
tion (X2), and temperature (X3) as independent process fac-

tors. Respondent factors included TPC, TFC, DPPH-
scavenging activity and FRAP (Y1-Y4, respectively). A three-
component, five-layer CCD was employed for the extractions
(supplementary data Table S1). The CCD is widely utilized

due to its adaptability. The early experimental results from a
factorial design can be used in a CCD that only makes the
axial points, eliminating resource waste. Nonetheless, the most

distinctive parameters are the axial points (�a, a). These loca-
tions are outside the minimum and maximum limits of the fac-
tors, guaranteeing the response surface’s curvature and

allowing the construction of ideal conditions. In contrast to
the BBD, a CCD can distinguish between axial point estimates
based on orthogonal and rotational characteristics. An orthog-

onal design allows for an independent examination of the pri-
mary, interaction, and quadratic effects, simplifying the
interpretation of the results. The second-order polynomial
model equation (Eq.1) describes the link between independent

factors and replies.

Y ¼ b0 þ
Xn

i¼1

biXi þ
Xn

i¼1

biiX
2
ii þ

Xn�1

i

Xn

j

bijXij ð1Þ
where Y, Xi and Xj as well as b0 represents the response vari-
able, independent coded variables and the constant coefficient,
respectively, while bi, bii, and bij represent the coefficients of
linear, quadratic, and interaction effects, respectively.

The model’s adequacy was assessed using the determination
coefficient (R2), the adjusted determination coefficient (Adj.
R2), and the lack of fit test. The F-value (p < 0.05) was signif-

icant. Three-dimensional (3D) surface plots showed each fac-
tor’s effect on response value. The RSM analysis and
multiple linear regression were carried out using Design Expert

11 (Stat-Ease, Minneapolis, Minnesota, USA).

2.4. Artificial neural networks (ANN) modeling

The ANN modelling was systematically conducted by using
the dataset presented in Table 1. MATLAB R2020a software
(The Neural Network Toolbox, Inc., USA) was employed to
create the ANN model. The ANN design consists of data col-

lection; model development using different functions and algo-
rithms; configuration of the model; weights and biases
initialization; training, testing, and validation of the model.

The MLP (multilayer perceptron network) topology consists
of input, hidden, and output layers. Independent variables
(X1, X2, and X3) were used as input vectors, and four

responses (Y1, Y2, Y3, and Y4) were applied as target vectors
(Fig. 1A). The data were divided into three subsets, where
70, 15, and 15 % of the whole data points were utilized for
training, validation, and testing, respectively. In the training

step, the feed-forward network and cascade feed-forward net-
work with the Broyden-Fletcher-Goldfarb-Shanno algorithm
(BFGS) and Levenberg-Marquardt back-propagation algo-



Fig. 1 ANN model topology. The best ANN model in terms of architecture (A), network training curves for trained subsets with epoch

numbers for TPC (B), TFC (C), DPPH (D) and FRAP (E) using the MATLAB software.
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rithm were used to lessen the mean square error (MSE). The
MSE was calculated using Eq. (2)

MSE ¼ 1

N

Xi¼1

N

YANN � YExp

� �2 ð2Þ

where YExp is the experimental outcomes, N represents to sam-

ple number and YANN is the predicted value. A hyperbolic tan-
gent sigmoid transfer function was used for pattern
recognition and network modeling using Eq. (3)

f xð Þ ¼ tansig nð Þ ¼ 2

1þ e�2x
� 1 ð3Þ
2.5. Comparison of the RSM and ANN models’ predictive
abilities

To evaluate the estimation skills of RSM and ANN, several
statistical metrics such as R2, RMSE, AAD, and SEP were cal-
culated using the following equations.

R2 ¼ 1�
Pn

i¼1ðYp � YeÞ2Pn
i¼1ðYm � YeÞ2

ð4Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðYp � YeÞ2

n

vuuut ð5Þ
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AAD ¼
Pn

i¼1 Yp � Ye

�� ��=Ye

� �
n

� �
x 100 ð6Þ

SEP ¼ RMSE

Ym

x 100 ð7Þ

where Yp is the predicted response; Ye is the observed response;
Ym is the average response variable; n is the number of
experiments.

2.6. Model validation

The optimal extraction parameters were determined using

response surface and desirability function analysis. A series
of three experiments was conducted under ideal conditions
to ensure the model’s accuracy, with the average experimental
results compared to predictions. In addition, the electrospray

ionization mass spectrometry (ESI-MS)/MS profiles of bioac-
tive compounds were identified under optimum conditions.

2.7. Identification of bioactive compounds by ESI-MS/MS
analysis

The negative (-) mode ESI-MS was performed on a Q-Exactive

Orbitrap mass spectrometer (Thermo Fisher Scientific Inc.,
San Jose, CA, USA). Immersing the sample in the ESI source
required a 500 L graded syringe (Hamilton Company Inc.,

Reno, NV, USA) and a 15 L/min syringe pump (Model 11,
Harvard, Holliston, MA, USA). The normal negative mode
ESI-MS conditions were as follows: mass resolution of
140,000 (full width at half maximum, FWHM), sheath gas flow

rate of 5, seep gas flow rate of 0, auxiliary gas flow rate of 0,
spray voltage of 4.20 kV, capillary temperature of 320 �C, S-
lens Rf level, and automatic gain control of 5 E 6. The MS/

MS investigations used the same apparatus with three stepwise
normalized collision energies (10, 20, and 30) (Alam et al.,
2021). Mass spectrum data was processed using the Xcalibur

3.1 with Foundation 3.1 (Thermo Fisher Scientific Inc., Rock-
ford, IL, USA). The compounds were probably found by com-
paring the calculated (exact) masses of deprotonated (M�H)
adducts with the m/z values and ESI-MS/MS fragmentation

patterns from the in-house MS/MS database and online data-
bases like FooDB (Naveja et al., 2018), METLIN (Guijas
et al., 2018), CFM-ID 4.0 (Wang et al., 2021). The ChemDraw

Professional 15.0 (PerkinElmer, Waltham, MA, USA) was
used to draw the chemical structure.

2.8. Statistical analysis

All data were reported as the mean ± standard deviation of at
least three independent experiments (n = 3), each with three

sample replicates. Differences were considered significant at
p < 0.001, p < 0.01, and p < 0.05.

3. Results and discussion

3.1. Fitting of the RSM and ANN models

For each extraction circumstance, Table 1 describes the exper-
imental settings and conclusions. All response variables were
transformed into second-order quadratic polynomial equa-
tions to account for changes in answers as a function of extrac-
tion factors. ANOVA was used to determine whether the fitted
second-order quadratic model equations were statistically sig-

nificant. The regression coefficient (b), adjusted correlation
factor (R2), coefficient of variation (CV), and adequate preci-
sion were used to describe how well the model fit (Table 2).

The nonsignificant terms (p > 0.05) were taken out of the
models to improve the fit and predictions. We used the p-
values to figure out how vital each coefficient was. When the

p-values were<0.05, 0.01, and 0.001, the model terms were sig-
nificant, very significant, and strikingly significant,
respectively.

Table 2 shows that model terms are significant

(p < 0.0001). The R2 values (0.9892–0.9988) of the built
regression models indicate a high level of statistical signifi-
cance. The appropriate precision indicates a signal-to-noise

ratio, and > 4 is ideal (Alam et al., 2022). The ratio ranged
between 31.55 and 93.26, showing a significant signal and suit-
ability for this method. The coefficient of variation (CV) mea-

sures the repeatability of a model, and the range of 2.14 to 5.47
indicates that the model is reproducible. Multiple linear regres-
sion equations were used to create 3D surfaces and contour

plots to show independent variable interactions (Fig. 2A-D).
Mounting evidence revealed that ANN modeling is supe-

rior and more sophisticated than RSM, and ANNs are a fea-
sible alternative to RSM for complicated nonlinear

multivariate modeling. ANNs are more exact than RSM at fit-
ting experimental responses, predicting, and modeling biolog-
ical processes (Huang et al., 2017). ANN modeling was used

to verify the experimental values. The trained ANN model’s
predicted values are in Table S2. The ANN predicts nonlinear
relationships between extraction parameters (X1, X2, and X3)

and response variables (Y1, Y2, Y3, and Y4). The ANN model
predicted values that were pretty close to the actual values,
proving its accuracy. By comparing network training and test-

ing errors, the hit-and-try strategy modified the number of hid-
den layer neurons. The experiment investigated the lowest
practicable error between training and testing and the minimal
number of epochs to prevent model overfitting; the results were

consistent with earlier efforts (Choi et al., 2022). The
Levenberg-Marquardt approach produced the best validation
result for all dependent variables Y1, Y2, Y3, and Y4 (Fig. 1-

B-E.
3.2. Comparison of the RSM and ANN models’ predictive
abilities

Both the RSM and ANN models’ prediction and estimation
skills were examined. Comparative similarity plots were uti-
lized to examine the ANN model’s four target response predic-

tions (Y1, Y2, Y3, and Y4). In terms of fitting experimental
data to all target responses, the ANN model was more accu-
rate, precise, and assessable than the RSM model (supplemen-

tary data Table S2). The RSM model had a larger discrepancy
between projected and actual data, whereas the ANN model’s
residuals remained steady.

To compare RSM with ANN, R2, RMSE, AAD, and SEP
were calculated (Table 3). A better model has lower RMSE,
AAD, and SEP while higher R2. R2 values of the trained

ANN model were greater than those of the RSM model, sug-
gesting the ANN model’s superiority in predicting all four



Table 2 ANOVA for quadratic model.

ANOVA for quadratic model for TPC

Source RC SS DF MS F-value p-value

Model 81.54 9 9.06 102.01 < 0.0001 Significant

Intercept 7.82

Linear terms

X1 1.17 21.74 1 21.74 244.77 < 0.0001 Significant

X2 0.3091 1.30 1 1.30 14.58 0.0034 Significant

X3 0.6681 7.14 1 7.14 80.42 < 0.0001 Significant

Interaction terms

X1X2 �0.2012 0.3240 1 0.3240 3.65 0.0852

X1X3 0.0912 0.0666 1 0.0666 0.7500 0.4068

X2X3 0.2637 0.5565 1 0.5565 6.27 0.0313 Significant

Quadratic terms

X12 �1.08 29.78 1 29.78 335.27 < 0.0001 Significant

X22 �1.20 19.41 1 19.41 218.56 < 0.0001 Significant

X32 �0.8696 19.32 1 19.32 217.52 < 0.0001 Significant

Lack of Fit 0.4767 5 0.0953 1.16 0.4379 not significant

Pure error 0.4115 5 0.0823

R2 0.9892

Adjusted R2 0.9795

Adeq Precision 31.5543

C.V. % 5.47

ANOVA for quadratic model for TFC

Model 1414.37 9 157.15 249.82 < 0.0001 Significant

Intercept 42.67

Linear terms

X1 3.14 157.50 1 157.50 250.38 < 0.0001 Significant

X2 0.0757 0.0778 1 0.0778 0.1236 0.7324

X3 0.2375 0.9025 1 0.9025 1.43 0.2586

Interaction terms

X1X2 �0.0250 0.0050 1 0.0050 0.0079 0.9307

X1X3 �1.38 15.24 1 15.24 24.22 0.0006 Significant

X2X3 0.5325 2.27 1 2.27 3.61 0.0868

Quadratic terms

X12 �4.30 472.67 1 472.67 751.40 < 0.0001 Significant

X22 �8.14 894.88 1 894.88 1422.58 < 0.0001 Significant

X32 �3.12 248.70 1 248.70 395.35 < 0.0001 Significant

Lack of Fit 3.93 5 0.7861 1.67 0.2946 Non-Significant

Pure error 2.36 5 0.4720

R2 0.9956

Adjusted R2 0.9916

Adeq Precision 41.8660

C.V. % 2.54

ANOVA for quadratic model for DPPH

Model 3330.37 9 370.04 412.69 < 0.0001 Significant

Intercept 41.13

Linear terms

X1 7.15 818.25 1 818.25 912.55 < 0.0001 Significant

X2 1.61 35.01 1 35.01 39.04 < 0.0001 Significant

X3 3.41 186.32 1 186.32 207.80 < 0.0001 Significant

Interaction terms

X1X2 �0.3150 0.7938 1 0.7938 0.8853 0.3689

X1X3 �1.16 10.72 1 10.72 11.95 0.0061 Significant

X2X3 0.6075 2.95 1 2.95 3.29 0.0997

Quadratic terms

X12 �6.52 1085.41 1 1085.41 1210.51 < 0.0001 Significant

X22 �8.49 974.81 1 974.81 1087.16 < 0.0001 Significant

X32 �6.42 1052.36 1 1052.36 1173.65 < 0.0001 Significant

Lack of Fit 5.90 5 1.18 1.92 0.2449 Non-significant

Pure error 3.07 5 0.6132

R2 0.9973

Adjusted R2 0.9949

Adeq Precision 60.2976

C.V. % 3.78

6 F. Alshammari et al.



Table 2 (continued)

ANOVA for quadratic model for TPC

Source RC SS DF MS F-value p-value

ANOVA for quadratic model for FRAP

Model 1975.64 9 219.52 900.96 < 0.0001 Significant

Intercept 35.30

Linear terms

X1 5.82 542.31 1 542.31 2225.80 < 0.0001 Significant

X2 0.5651 4.33 1 4.33 17.77 0.0018 Significant

X3 2.49 99.35 1 99.35 407.77 < 0.0001 Significant

Interaction terms

X1X2 0.2988 0.7140 1 0.7140 2.93 0.1177

X1X3 �0.5112 2.09 1 2.09 8.58 0.0151 Significant

X2X3 0.5038 2.03 1 2.03 8.33 0.0162 Significant

Quadratic terms

X12 �5.23 698.20 1 698.20 2865.65 < 0.0001 Significant

X22 �6.39 551.56 1 551.56 2263.76 < 0.0001 Significant

X32 �4.68 559.01 1 559.01 2294.37 < 0.0001 Significant

Lack of Fit 1.72 5 0.3435 2.39 0.1806 Non-significant

Pure error 0.7190 5 0.1438

R2 0.9988

Adjusted R2 0.9977

Adeq Precision 93.2690

C.V. % 2.14

RC. Regression coefficient; SS. sum of squares; MS. mean square.
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dependent variables. The AAD gauges the deviation between
projected and actual data, while RMSE shows model fit. The

ANN outperformed RSM by having lower AAD and RMSE
values. The ANN model also showed low SEP values, which
ranged from 0.0813 to 0.3126. The ANN model is more predic-

tive than the RSM model because it can approximate nonlin-
ear systems, while the RSM model requires second-order
polynomial regression. The ANN model is also unaffected by

experimental design and calculates several replies in a single
run, while the RSM model takes multiple runs for multi-
response optimization (Dadgar et al., 2015).

3.3. Influence of HRE parameters on TPC and TFC

In APO extracts, TPC and TFC contents ranged from
1.25 ± 0.41 to 8.12 ± 0.34 mgGAE/g and 19.76 ± 0.32 to

43.23 ± 0.91 mgCAE/g, respectively (Table 1). Both the
TPC and TFC exhibited a substantial linear influence of X1

and the quadratic component of (X1
2), (X2

2), and (X3
2) (supple-

mentary data Figure S1). The second-order polynomial equa-
tions in eqs. (8) and (9) illustrate the relationships between
TPC, TFC, and their variables.

TPC Y1ð Þ ¼ 7:82þ 1:17X1 þ 0:3091X2 þ 0:6681X3

� 1:08X2
1 � 1:20X2

2 � 0:8696X2
3

� 0:2012X1X2 þ 0:0912X1X3 þ 0:2637X2X3 ð8Þ

TFC Y2ð Þ ¼ 42:67þ 3:14X1 þ 0:0757X2 þ 0:2375X3

� 4:30X2
1 � 8:14X2

2 � 3:12X2
3 � 0:0250X1X2

� 1:38X1X3 þ 0:5325X2X3 ð9Þ
The TPC and TFC showed nonsignificant lack of fit values
(F = 1.16 and 1.67, respectively) showing the model accurately

predicted R2 = 0. 9892 (TPC) and 0.9956 (TFC) and Adj.
R2 = 0. 9795 (TPC) and 0.9949 (TFC) (Table 2). The RSM
model accurately predicted the parameter impacts on TPC

and TFC of the APO extract. As depicted in Fig. 2(A, B), at
50 �C, 50 % ethanol produced the most TPC and TFC in
90 min. Previous studies revealed that medium-concentration

ethanol may make the solvent more polar, dissolving more
polar and moderately polar phenolic compounds (Sedraoui
et al., 2020). Moderate ethanol in water can affect the architec-
ture and structure of membrane phospholipids. This affects

plant cell penetrability, allowing higher polyphenol extraction
and diffusion (Gurtovenko and Anwar 2009). Experiments in a
prior comparison investigation found that extraction of phe-

nolic compounds from green tea leaves under high hydrostatic
pressure increased with ethanol in the solvent; peaked at 50 %
ethanol and fell after that (Xi and Wang 2013).

3.4. Effect of HRE parameters on the in vitro antioxidant

capacity (AC)

A linear significant influence of ethanol content (X1), a quad-
ratic effect of concentration (X1), time (X2) and temperature
(X3) as well as interaction between concentration and temper-
ature (X1X3) (supplementary data Figure S1) on antioxidant

activity were found using DPPH radical scavenging activity
and FRAP analyses. Eqs. (10) and (11) display the fitted
second-order polynomial equations for DPPH (% inhibition)

and FRAP (ascorbic acid equivalent lM):



Fig. 2 The three-dimensional (3D) response surface plots of APO extraction for TPC (A), TFC (B), DPPH-radical scavenging activity

(C), and FRAP (D) for ethanol concentration, time, and temperature as a function of key interaction factors for RSM.

Table 3 Comparison of the prediction abilities of the RSM and ANN models.

Parameters TPC TFC DPPH FRAP

RSM ANN RSM ANN RSM ANN RSM ANN

R2 0.9892 0.9976 0.9956 0.9997 0.9973 0.9985 0.9988 0.9995

RMSE 0.1299 0.0753 2.3413 1.7888 1.6655 1.0867 1.3608 1.1492

AAD (%) 2.2909 1.1408 6.6496 3.0372 28.8295 14.4468 4.9237 3.1221

SEP (%) 0.1401 0.0813 0.4091 0.3126 0.4675 0.3050 0.3567 0.3012

R2. correlation coefficient; RMSE. root-mean-square error; AAD. absolute average deviation; SEP. standard error of prediction.
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DPPH Y3ð Þ ¼ 41:13þ 7:15X1 þ 1:61X2 þ 3:41X3

� 6:52X2
1 � 8:49X2

2 � 6:42X2
3

� 0:3150X1X2 � 1:16X1X3 þ 0:6075X2X3 ð10Þ

FRAP Y4ð Þ ¼ 35:30þ 5:82X1 þ 0:5651X2 þ 2:49X3

� 5:23X2
1 � 6:39X2

2 � 4:68X2
3

þ 0:2988X1X2 � 0:5112X1X3

þ 0:5038X2X3 ð11Þ
The AC values ranged from 0.66 ± 1.00 % to 41.89 ± 0.

22 % inhibition of DPPH and from 3.04 ± 0.07 to 36.09 ± 0
.34 lM ascorbic acid equivalent (Table 1). The ANOVA
results show that the data fitted the model results for DPPH
(R2 = 0.9973 and Adj. R2 = 0.9949) and FRAP response
(R2 = 0.9988 and Adj. R2 = 0.9977), and the lack of fit was
nonsignificant (F = 1.92 for DPPH and 2.39 for FRAP)

(Table 2). As depicted in Fig. 2(C, D), at 50 �C, 50 % ethanol
produced the highest DPPH inhibition and FRAP value in
90 min. This indicates that the capacity for electron and proton

donation improves with increasing amounts of the organic sol-
vent. This outcome is in line with the earlier discovery for TFC
that maximum extraction calls for 75 percent ethanol (Do

et al., 2014). The extraction of considerable polyphenolics
from APO, both in terms of quality and quantity, is made pos-
sible by raising the ethanol concentration. There is growing
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evidence that ethanol concentrations affect antioxidant activity
and polyphenolic compound quality and amount (Zhu et al.,
2011, Do et al., 2014).

3.5. Model validation

The desirability function optimizes TPC, TFC, DPPH, and

FRAP simultaneously. Derringer’s desirability function was
used to anticipate the parameters, allowing a multivariate anal-
ysis to find the best level for all replies in a single extraction. In

this study, the following conditions (X1, 60 %), (X2: 90.5 min),
and (X3, 50 �C), was used to achieve the maximal overall desir-
ability D = 0.999 (on a scale of 0 to 1). Under these optimal

conditions, the predicted values for TPC, TFC, percentage
inhibition of DPPH, and mM ascorbic acid equivalent FRAP
are 8.12 mgGAE/g, 43.23 mgCAE/g, and 42.98 %, and
36.81, respectively. To verify the sufficiency of the model equa-

tions, a duplicate experiment was conducted in the optimal
conditions predicted by Derringer’s desire model. The follow-
ing results were obtained: TPC = 8.23 ± 1.06 mgGAE/g,

TFC = 43.12 ± 1.15 mgCAE/g, % inhibition of DPPH =
43.01 ± 1.25 %, and mM ascorbic acid equivalent FRAP =
35.98 ± 0.19. The model efficiently optimized the common

extraction parameters for all responses, as evidenced by the
good agreement between experimental and expected values
(supplementary data Table S3).

Additionally, comparison research between this study and

earlier studies was carried out to confirm the high extractabil-
ity of hydro-alcoholic solvents for polyphenols and the antiox-
idant properties of APO. The hydro-alcoholic solvent had

more TPC and DPPH scavenging action than other solvents,
as indicated in Table 4. When compared to alternative sol-
vents, which were typically utilized in earlier studies, these

comparisons showed that the HRE technique using hydro-
alcoholic solvent was a high-efficiency technique.

3.6. Identification of secondary metabolites in APO by high-
resolution mass spectroscopy

The ESI-MS/MS in negative ionization techniques detected
secondary metabolites in APO extracts. Table 4 shows that

93 compounds were identified in negative mode utilizing
MSn data from the precursor ion mass, fragments, recognized
fragmentation patterns for the provided classes of compounds,

and neutral mass loss, as well as literature and online database
searches. The confidence level determined the significance of
these results. Level 2 shows the likely structure of the detected

substance, whereas Level 3 denotes a speculative candidate.
(Schymanski et al., 2014).

3.6.1. Phenolic acids

A phenolic acid can lose methyl (15 Da), hydroxyl (18 Da), or
carboxyl (44 Da) to form a fragment ion. Fragmentation of a
phenolic acid glycoside begins with cleavage of the glycosidic

bond to give phenolic acid m/z and sugar loss (neutral mass
loss of 162 Da) (Choi et al., 2022). In addition, hydroxycin-
namic acid conjugates yield quinate (m/z 191) by loss of the
acyl group and dehydrated quinate (m/z 173), coumarate (m/

z 163), caffeate (m/z 179), ferulate (m/z 193) and sinapate
(m/z 223) through b-elimination of a carboxylic acid (Jaiswal
et al., 2010, Parveen et al., 2011). Thus, compounds 1–3, 5,
7, 8, 10–16, and 20 were tentatively identified as hydroxy ben-
zoic acid, coumaric acid, ferulic acid, caffeic acid phenethyl
ester, ellagic acid, protocatechuic acid glucoside, coumaroyl-

quinic acid, caffeic acid hexoside, ferulylshikimic acid, ferulic
acid hexoside, syringoylquinic acid, caffeic acid derivatives,
feruloyl galactaric acid and hexosyl caffeoyl hexose (Islam

et al., 2020, Alam et al., 2021, Fernández-Poyatos et al.,
2021, Choi et al., 2022). In addition, by comparing the frag-
mentation patterns to those previously published in the litera-

ture, compound 4, 6, 17, 18 and 21 was identified as maclurin
(C13H10O6), uralenneoside (C12H14O8), picraquassioside A
(C18H22O10), methylpicraquassioside A (C19H24O10) and aril-
latose B (C22H29O14), respectively which yielded a precursor

ion [M�H]� at m/z 261.0401, 285.0612, 397.1142, 411.1302,
and 517.1563, respectively (Berardini et al., 2004,
Abdelrahman et al., 2017, Llorach et al., 2019, Tang et al.,

2020). All of these substances were intriguingly discovered
for the first time in APO. Furthermore, compound 9 generated
a monoisotopic ion [M�H]� at m/z 333.0618 and produced

fragment ions at m/z 289.07 by lose of carboxyl (-44 Da) group
and at m/z 271.06 through successive loss of H2O. It also
yielded a characteristic ion at m/z 167.03 by cleavage of ether

bond between C7-C9 and tentatively confirmed as berceloneic
acid B, which has been identified as first time in APO
(Fig. 3A). In addition, compound 19 was tentatively identified
as paederol B with molecular formula (C20H28O12), generated

a deprotonated ion at m/z 459.1511 and yielded the following
fragment ions: m/z at 399.12 ([M�H�61 Da]), 341.08
([M�H�C4H10O3�CH3]), 281.08 ([M�H�178 Da]) and

193.05 (ferulate ion) through b-elimination of a carboxylic acid
(Fig. 3B). This compound has also been first time identified in
APO.

3.6.2. Flavonoids

According to a prior study, each subgroup of flavonoids exhi-
bits a distinct fragmentation pattern during mass analysis. The

most common fragmentation of flavonoids is the cleavage of
the C-ring bonds (retro-Diels-Alder, i.e., RDA mechanism),
which forms ions with the A- or B-ring and a portion of the

C-ring. There may also be significant losses of tiny neutral
molecules, such as CO (28 Da), C2H2O (42 Da), COO
(44 Da), 2CO (56 Da), CO + COO (72 Da), and 3CO
(84 Da). A unique ion [M�H�CH3], distinguished by the loss

of 15 Da, is also present in methylated flavonoids (Alam et al.,
2021, Choi et al., 2022). Flavonoids typically undergo glycosy-
lation. O-glycosides, C-glycosides, and OACAglycosides are

formed when the glycoside residues are connected to the O
and C atoms of the flavonoids. Hexoses (162 Da), deoxyhex-
oses (146 Da), pentoses (132 Da), and an aglycone ion are

the neutral species that result from the usual fragmentation
of O-glycosides. As opposed to this, C-glucosides result in a
series of fragments due to the cleavage of the CAC bonds with

the sugar moiety. Some examples of these fragments include
[M�H�60]�, [M�H�90]�, and [M�H�120]�, which are used
as the distinctive diagnostic ions of glycone (Vukics and
Guttman 2010, Kachlicki et al., 2016). Compounds 22–29 were

identified as eriodictyol, catechin, dactylorhin C, taxifolin-7-
sulfate, diadzin, cajanone, phenethylrutinoside, and kaemp-
ferol glucoside respectively, based on the similarities noticed

in their fragmentation behaviors and the behaviors mentioned



Table 4 Comparative study of the polyphenolic content and antioxidant activity of APO with prior study report.

Methods Solvent TPC (mgGAE/g) DPPH IC50 (mg/ml) Ref.

HRE HM 8.23 1.01 Present study

HRE M 4.78 1.78

HRE M 6.98 2.52

HRE E 3.60 3.56

HRE W 4.41 2.35

HM. 60% methanol; M. 100% methanol; E. 100% ethanol and W. 100% aqueous solvent.

Fig. 3 Possible mass fragmentation pattern of (A) barceloneic acid B, (B) paederol B and (C) Oleracein E.
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Table 5 List of possible identified compounds of the optimized extract of Potulaca oleracea by ESI-MS/MS.

No. Compound name EF OM (m/

z)-
CM (m/

z)-
MS/MS (negative mode) CL

Phenolic

acid

1 4-Hydroxy benzoic acid C7H6O3 137.0253 137.0244 119.03, 93.01 2

2 Coumaric acid C9H8O3 163.0402 163.0401 119.04, 2

3 Ferulic acid C10H10O4 193.0521 193.0506 179.03, 149.06, 135.04 2

4 Maclurin# C13H10O6 261.0401 261.0405 151.00, 107.01 3

5 Caffeic acid phenethyl ester C17H16O4 283.0967 283.097 265.08, 239.07, 179.03,

163.04, 135.04

3

6 Uralenneoside# C12H14O8 285.0612 285.0616 153.01, 109.02 3

7 Ellagic acid C14H6O8 300.9893 300.9984 283.99, 245.00, 229.01,

200.01, 185.02

2

8 Protocatechuic acid glucoside C13H16O9 315.072 315.0716 162.02, 153.01 2

9 Barceloneic acid B# C16H14O8 333.0618 333.0618 289.07, 271.06, 167.03 3

10 Coumaroylquinic acid C16H18O8 337.0924 337.0626 191.05, 163.03 2

11 Caffeic acid hexoside C15H18O9 341.1084 341.0872 215.03, 179.06, 161.04,

135.04

2

12 Ferulylshikimic acid C17H18O8 349.0927 349.0923 193.05, 177.01, 173.04,

155.03, 129.02

2

13 Ferulic acid hexoside C15H16O10 355.0666 355.0665 193.05, 179.02, 149.05,

134.02

2

14 Syringoylquinic acid C16H20O10 371.0981 371.0978 353.08, 191.05, 173.04,

135.04

2

15 caffeic acid derivatives C18H18O9 377.0885 377.0878 341.11, 215.03, 179.05,

161.03

2

16 Feruloyl-galactaric acid C16H18O11 385.0828 385.0776 341.08, 209.03, 191.03,

147.02

2

17 Picraquassioside A# C18H22O10 397.1142 397.1135 235.06, 217.05, 191.07,

187.04, 177.05

3

18 Methylpicraquassioside A# C19H24O10 411.1302 411.1297 397.11, 249.07, 231.06,

219.06, 201.05

3

19 Paederol B# C20H28O12 459.1511 459.1508 399.12, 341.12, 281.10,

193.05

3

20 Hexosyl caffeoyl hexose C21H28O14 503.1393 503.1401 341.0.08, 179.03, 161.02 2

21 Arillatose B# C22H29O14 517.1563 517.1557 313.05, 193.05 3

Flavonoids 22 Eriodictyol C15H12O6 287.0565 287.0555 179.01, 151.00, 135.04,

125.01, 107.03

2

23 Catechin C15H14O7 289.0721 289.0712 245.08, 205.05, 179.03,

135.04

2

24 Dactylorhin C C14H24O10 351.1293 351.1291 189.07, 179.05, 171.06,

163.06, 127.07

2

25 Taxifolin-7-sulfate C15H12O10S 383.0105 383.0079 303.05, 285.04, 275.05,

151.00, 125.03

2

26 Daidzin C21H20O9 415.1029 415.1035 253.05, 235.04, 225.02,

135.00, 119.05

2

27 Cajanone C25H26O6 421.1662 421.1651 383.12, 217.05, 197.09,

165.07, 151.00

2

28 Phenethylrutinoside C20H30O10 429.1767 429.1761 249.09, 205.01, 161.04,

145.05, 119.05,

2

29 Kaempferol-3-O-glucoside C21H20O11 447.0932 447.0928 285.04, 271.06, 256.02,

240.04, 151.00

2

Alkaloids 30 Oleracein E C12H13NO3 218.0833 218.0823 200.07, 190.08, 160.04,

121.02

2

31 Feruloylglycine C12H13NO5 250.0724 250.0721 206.08, 191.07, 177.05,

149.06

2

32 Coumaroyltyramine C17H17NO3 282.1128 282.1123 279.01, 162.03, 145.03,

134.02, 119.02

2

33 Caffeoyltyramine C17H17NO4 298.1085 298.1079 280.09, 178.05, 160.04,

136.07, 121.06

2

34 Feruloyltyramine C18H19NO4 312.1235 312.1241 177.05, 149.06, 136.07,

121.06, 119.05

2

35 Feruloyloctopamine C18H19NO5 328.1181 328.1184 310.02, 161.05, 133.02 2

36 Oleracein U C18H15NO6 340.0831 340.0827 322.07, 296.09, 194.04,

145.02, 132.04

2

(continued on next page)
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Table 5 (continued)

No. Compound name EF OM (m/

z)-
CM (m/

z)-
MS/MS (negative mode) CL

37 Oleracein A C24H25NO11 502.1351 502.1349 340.08, 296.09, 194.05,

145.02

2

38 Oleracein B C25H27NO12 532.1463 532.1455 370.09, 326.10, 194.05,

175.04, 161.02

2

39 Oleracein C C30H35NO16 664.1883 664.1877 502.13, 340.08, 296.09,

194.04, 145.02

2

40 Oleracein I C31H37NO17 694.1989 694.1983 518.15, 370.09, 326.10,

194.04, 175.04

2

41 Oleracein P C36H45NO21 826.2395 826.2405 664.18, 502.13, 340.08,

194.04, 145.02

2

42 Oleracein N/S C40H43NO19 840.2336 840.2351 694.19, 664.18, 340.08,

194.04, 145.02

2

43 Oleracein L/J C40H43NO20 856.2276 856.2300 694.19, 518.15, 326.10,

194.04, 161.02

2

44 Oleracein O C41H45NO20 870.2443 870.2456 694.19, 518.15, 194.04,

175.04, 161.02

2

Fatty acids 45 Citramalic acid C5H8O5 147.0319 147.0299 129.01, 115.00, 103.04 2

46 2-Isopropylmalic acid C7H12O5 175.0625 175.0612 157.05, 115.04, 113.06 2

47 Citric acid C6H8O7 191.0217 191.0197 145.01, 129.01, 111.00 2

48 Oxaloglutaric acid C7H8O7 203.0189 203.0197 141.01, 97.02, 69.03 2

49 Homocitric acid C7H10O7 205.0351 205.0354 161.04, 143.04, 117.05 2

50 Jasmonic acid# C12H18O3 209.1176 209.1183 165.09, 133.01, 109.03 3

51 Tuberonic acid# C12H18O4 225.1125 225.1127 207.10, 181.12, 163.11,

135.08

3

52 Palmitic acid C16H32O2 255.2314 255.2324 237.22, 211.24, 195.21, 59.01 2

53 2-Hydroxypalmitic acid C16H32O3 271.2274 271.2273 253.21, 227.12, 2

54 Linolenic acid C18H30O2 277.2165 277.2169 259.20, 233.22, 205.21,

179.25, 165.23

2

55 alpha-Linoleic acid C18H32O2 279.2331 279.233 261.22 2

56 Oleic acid C18H34O2 281.2487 281.2486 263.25, 181.21, 127.25 2

57 Stearic acid C18H36O2 283.2643 283.2637 265.24, 239.25, 209.22,

183.19, 171.12

2

58 Hydroxy octadecatrienoic acid C18H30O3 293.2112 293.2116 275.20, 223.03, 195.13,

183.13, 171.10

2

59 Hydroxy octadecadienoic acid C18H32O3 295.2312 295.2276 277.20, 253.02, 223.03,

167.05

2

60 Hydroxy octadecenoic acid C18H34O3 297.2433 297.2429 279.23, 255.12, 225.05,

127.05

2

61 Arachidonic acid C20H32O2 303.2326 303.2324 285.22, 269.19, 259.24,

205.12

2

62 Dihydroxy octadecatrienoic acid C18H30O4 309.2075 309.2069 291.19, 199.85, 179.14,

110.03

2

63 Trihydroxy-octadecadienoic acid C18H32O5 327.217 327.2171 299.12, 285.21, 229.14,

211.13, 171.10

2

64 Pinellic acid# C18H34O5 329.2329 329.2328 229.14, 211.13, 171.10 3

65 Tuberonic acid glucoside# C18H27O9 387.1656 387.1655 207.10, 163.11, 101.02 3

66 Methyl tuberonic acid glucoside# C19H30O9 401.1823 401.1817 239.12, 221.11, 207.10,

163.06

3

Amino

acids

67 Phenylalanine C9H11NO2 164.0732 164.0717 147.04, 120.08 2

68 Tyrosine C9H11NO3 180.0674 180.0666 163.04, 134.06 2

69 3,4-Dihydroxyphenylalanine C9H11NO4 196.0571 196.0615 181.05, 152.07 2

70 N-acetyl phenylalanine C11H13NO3 206.0816 206.0823 164.07, 147.04 2

71 N-Acetyl tyrosine C11H13NO4 222.0766 222.0772 180.06, 178.08, 163.04 2

72 N-benzoylaspartic acid C11H11NO5 236.0558 236.0564 218.05, 192.06, 174.05,

120.04, 115.00

2

73 N-glucosyl ethanolamine C8H17NO7 238.0927 238.0932 220.08, 202.07, 139.00 2

74 N-Acetyl tryptophan C13H14N2O3 245.0925 245.0932 203.08, 185.07, 170.06,

116.05,

2

Terpenoids 75 Triptophenolide A1# C20H24O3 311.1682 311.1653 295.13, 283.16, 267.17,

251.14, 237.12,

3

76 Menthane-1,2,8,9-tetrol 2-glucoside# C16H30O9 365.1807 365.1812 204.13, 186.12, 168.11 3
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Table 5 (continued)

No. Compound name EF OM (m/

z)-
CM (m/

z)-
MS/MS (negative mode) CL

77 a,g-Onoceradienedione C30H46O2 437.3426 437.342 219.17, 205.15 2

78 4,5-dioxo 10-epi-4,5-seco-c-eudesmol 20-O-

acetyl-fucopyranoside#

C23H38O8 441.2508 441.2488 399.23, 253.18, 221.15,

191.14

3

79 Oleanolic acid C30H48O3 455.353 455.3525 407.33, 391.30, 377.28,

363.26

2

Others 80 Glucose C6H12O6 179.0572 179.0561 163.06, 147.06, 115.04 2

81 Psoralen C11H6O3 185.025 185.0244 157.02, 141.03, 129.03,

115.01

2

82 Gluconic acid C6H12O7 195.0522 195.051 177.01, 151.06, 129.02,

121.04

2

83 Ethyl glucoside C8H16O6 207.0854 207.0847 179.05, 163.06, 147.06,

115.04

2

84 Bargapten C12H8O4 215.0348 215.0344 185.02, 157.02, 141.03,

129.03, 115.01

2

85 Glucosylglycolate C8H14O8 237.0619 237.0616 220.05, 207.05,

193.07,163.06, 147.02

2

86 Oxyresveratrol C14H12O4 243.0656 243.0663 225.05, 199.05, 161.06,

135.04

2

87 2-deoxy-2,3-dehydro-N-acetylneuraminic acid# C11H17NO8 290.0876 290.0876 230.06, 200.05, 169.01,

128.07

3

88 Diphyllin C21H16O7 379.0823 379.0817 363.05, 347.01, 333.04,

319.06, 305.04

2

89 Piceatannol glucoside C20H22O9 405.1172 405.1178 243.06, 201.05, 159.04 2

90 Benzyl alcohol dihexoside C19H28O11 431.1564 431.1553 341.10, 269.10, 251.09,

179.05, 163.06

2

91 Daphylloside C19H26O12 445.135 445.1346 409.11, 387.12, 267.08,

179.05

2

EF. elemental formula; OM. observed mass; CM. calculated mass; CL. confidence level; (-). Negative mode. # First time identification in

Portulaca oleracea.
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in the literature (Alam et al., 2021, Islam et al., 2021, Choi
et al., 2022).

3.6.3. Alkaloids

APO contains oleraceins, a type of indoline amide glycosides.
Many of these compounds are glucosylated and have 5,6-dihy

droxyindoline-2-carboxylic acid N-acylated with cinnamic acid
derivatives such as hydroxybenzoyl, coumaroyl, caffeoyl, feru-
loyl, and sinapoyl. The following fragment ions indicate the

types of hydroxy cinnamic acid N-linked to the indoline core,
at m/z 340.08, 356.07, and 370.09 for coumaroyl, caffeoyl and
feruloyl, respectively. Furthermore, oleraceins also yielded

characteristics ions by neutral loss of CO (28 Da), COO
(44 Da), hydroxybenzoyl (120 Da), coumaroyl (146 Da), caf-
feoyl (162 Da), feruloyl (176 Da), sinapoyl (206 Da), glucosyl
(162 Da), double glucosyl (324 Da) and triple glucosyl

(486 Da). The first oleracein compound found in this study
was oleracein E (compound 30), which has the chemical for-
mula C12H13NO3 and produces a deprotonated ion at m/z

218.0833. The loss of an HCHO molecule and an
HCOCH = CH2 molecule, respectively, resulted in the pro-
duction of the fragment ions with m/z 188.07 and 162.05

respectively. It also undergoes i-cleavage of the middle ring’s
phenyl and CAC connections, producing fragment ions with
m/z values of 135.04 and 121.02, respectively (Fig. 3C). More-

over, compounds 36–44 were identified as oleracein U, A, B, C,
I, P, N/S, L/J, and O, respectively, based on commonalities
seen between their fragmentation behaviors and those reported
in the literature (Voynikov et al., 2021).

Furthermore, hydroxycinnamic acid amide yielded the base
ion at m/z 147.04 (coumaroyl), m/z 163.04 (caffeoyl), m/z
177.05 (feruloyl) and m/z 207.06 (sinapoyl) by elimination of

tyramine (137 Da) moiety. Further fragmentation was gener-
ated by the loss of a molecule of CO from the base peak. In
addition, the tyramine moiety was further loss of NH3 to yield

ion at m/z 121 (Liu et al., 2021). On the basis of the above frag-
mentation behavior, compound 32–36 was identified as feru-
loylglycine, coumaroyltyramine, caffeoyltyramine,
feruloyltyramine and feruloyloctopamine, respectively (Zhou

et al., 2015).

3.6.4. Carboxylic acids, fatty acids and amino acids

From comparisons of the mass and the fragmentation behav-

iors of the precursor ion based on mass spectroscopic analysis
reported in literature and various online databases, com-
pounds 45–49, and 52–64 were identified as carboxylic acids,

and fatty acids, respectively (Table 5). In addition, compound
67–74 were characterized as amino acids (Guijas et al., 2018,
Naveja et al., 2018, Nematallah et al., 2018, Ruan et al.,

2019, Islam et al., 2020, Alam et al., 2021, Najm et al., 2021,
Wang et al., 2021). Furthermore, molecule 50, 51, 65, and 66
were recognized as jasmonic acid and its derivatives (tuberonic

acid, tuberonic acid glucoside, and methyl tuberonic acid glu-
coside) based on the mass fragmentation behavior described by



Fig. 4 Possible mass fragmentation pattern of (A) tuberonic acid glucoside, (B) menthane-1,2,8,9-tetrol glucoside and (C) 4–5-dioxo 10-

epi-4,5-seco-c-eudesmol 20-O-acetyl-fucopyranoside.
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Quirantes-Pine et al (Quirantes-Piné et al., 2010) (Fig. 4A).
The jasmonic acid and its all derivaties are discovered for

the first time in APO.

3.6.5. Terpenoids

For the first time in APO, compounds 75–79 was tentatively

identified as terpenoids (Table 5). Compounds 75 was identi-
fied as triptophenolide A1 (m/z 311.1682) with molecular for-
mula C20H24O3, based on the mass fragmentation behaviour

described by Li et al., (Li et al., 2008). Compounds 76 pro-
duced the deprotonated ion [M�H]- at m/z 365.1812, yielded
a fragment ion at m/z 204.13 by losing the glucosyl (162 Da)

moiety, which was followed by the loss of one and two mole-
cules of H2O to form the fragment ions at m/z 186.12 and
168.11, respectively. Accordingly, the compound was tenta-

tively identified as menthane-1,2,8,9-tetrol glucoside (Fig. 4B)
(Matsumura et al., 2002). Moreover, compound 78 generated
a monoisotopic mass [M�H]- at m/z 441.2504, yielded frag-
ment ions at m/z 399.23 ([M�H�acetyl]-), 253.18

([M�H�acetyl�rhamnosyl]-), 221.15 ([M�H�253.18-
CH3OH]-) and 191.14 ([M�H�221.15-CO]-) and was tenta-



Optimization of Portulaca oleracea L. extract 15
tively identified as 4,5-dioxo 10-epi-4,5-seco-c-eudesmol 20-O-
acetyl-fucopyranoside with molecular formula C23H38O8

(Fig. 4C).

3.6.6. Others

compounds 80–91 were identified as glucose (m/z 179.0572),
psoralen (m/z 185.0250), gluconic acid (m/z 195.0522), ethyl

glucoside (m/z 207.0854), bergapten (m/z 215.0384), glucosyl-
glycolate (m/z 237.0619), oxyresveratrol (m/z 243.0656), 2-
deoxy-2,3-dehydro-N-acetylneuraminic acid (m/z 290.0876),

diphyllin (m/z 379.0823), piceatannol glucoside (m/z
405.1178), benzyl alcohol glucoside (m/z 431.1564) and
daphylloside (m/z 445.1346), based on the similarities noticed

in their fragmentation behaviors and the behaviors mentioned
in the literature.

4. Conclusions

This work, which was the first investigation into optimizing the HRE

conditions on APO using two modeling approaches (RSM and ANN),

revealed the presence of phenolic acids, flavonoids, alkaloids, fatty acid

and terpenoids, through high-resolution mass spectroscopy examina-

tion. The ANN model is more accurate and sophisticated than the

RSM model, as evidenced by the fact that it had a higher R2 and lower

RMSE, AAD, and SEP values than the latter. The ideal parameters

were identified as 60 % ethanol, extraction time of 90.5 min of extrac-

tion time, and 50 �C of extraction temperature. The highest values of

TPC, TFC, DPPH radical scavenging effect, and ascorbic acid equiv-

alent FRAP were found as 8.23 ± 1.06 mgGAE/g, 43.12 ± 1.15

mgCAE/g, 43.01 ± 1.25 %, and 35.98 ± 0.19, respectively, under

these circumstances. These results lead us to the conclusion that

APO, a viable candidate for an antioxidant functional food, can be

widely used commercially in the nutraceutical food and pharmaceuti-

cal industries.
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