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Abstract The sorption potential of the particles of ignimbrite to uptake Fe3+ ions from an aqueous

solution was investigated using a fixed-bed sorption column. The effects of inlet Fe3+ concentration

(20–75 mg L�1), feed flow rate (5–15 mL min�1) and bed height (5–20 cm), initial solution pH (1.7–4)

and particle size (0.25–0.5, 0.5–1 and 1–2 mm) on the breakthrough characteristics of the sorption

system were investigated. The experimental and neural network sorption capacities of the sorbent

at different particle sizes (0.25–0.5, 0.5–1, and 1–2 mm) were determined as 3.26, 3.75, 2.12, 2.98

and 1.46, 1.39 mg g�1, respectively. The highest experimental and theoretical bed capacities were

obtained to be 3.65 and 3.29 mg g�1 at inlet Feo
3+ concentration of 75 mg L�1, bed height of

5 cm and flow rate of 5 mL min�1, pH of 4 and particle size of 0.25–0.5 mm. The ANNmodel yielded

determination coefficient was 0.980 and the root mean square error was 0.65.
ª 2014 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

One of the most commonly used metals in the world metal pro-

duction is iron because of its low price and hardness. Excessive
concentrations of Fe3+ in public water supplies cause turbid-
ity, unpleasant taste and odour. It imparts a brownish colour

to laundered cloths and stains plumbing fixtures. It also causes
difficulties in distribution systems by supporting the growth of
iron bacteria, resulting in the clogging of pipes (Onganer and

Temur, 1998). Therefore, the presence of Fe3+ is objectionable
in certain industries such as food, textiles and paper (Sag and
Kutsal, 1996). While Fe3+ is found naturally in large concen-

trations in an insoluble form, it can be converted to soluble
forms that often result in water contamination (Indianara
et al., 2009).

At present, various traditional treatment technologies
including chemical precipitation, filtration, ion exchange and
activated carbon adsorption on a solid heterogeneous surface
are widely applied and have been developed (Khan et al.,

2007; Peters and Ku, 1984; Kanzelmeyer and Adama, 1996;
Gode and Pehlivan, 2003; Aksu and Alperis, 2005). These
methods, however, display one or more limitations, such as

being ineffective, expensive, generation of secondary pollution
and narrow appliance range. In order to overcome these
limitations, chemists have been devoted to searching for effec-

tive, economic and easily implemented materials (Pehlivan and
Arslan, 2007; Khan et al., 1995; Keane, 1998; Gupta and Ali,
2000; Gupta and Rastogi, 2008).
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Figure 1 Schematic diagram of experimental set up: (1) feed

tank; (2) peristaltic pump; (3) fixed bed of the particles of

ignimbrite; (4) bed support; (5) sampling port measuring Fe3+

concentration and (6) effluent collector.
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Adsorption is an attractive method because it is easy to
operate and is highly effective in removing heavy metals from
effluents (Popuri et al., 2009). However, the utilisation of com-

mercialised adsorbents like activated carbon is expensive,
which leads to high operational costs (Tor et al., 2009).
Research on low-cost, natural adsorbents such as montmoril-

lonite, agricultural waste and seafood processing waste has
recently gaining ground due to their availability, short opera-
tional time and non-generation of sludge.

Ignimbrite, which is a building material, is included in the
light concrete category. One of the main advantages of Fe3+

removal by using ignimbrite particles over the other chemical
treatment methods is that it does not produce any chemical

sludge. In addition, after ignimbrite has been used in building
works, its residues can easily be used to remove Fe3+ from
aqueous solutions. In the present study, an attempt was made

to investigate the Fe3+ removal potential of ignimbrite particles
under different environmental conditions. Ignimbrite is an eco-
nomical rock, and is included in the light concrete category.

The chemical components of ignimbrite consist of SiO2,
Fe2O3, Al2O3, CaO, MgO, K2O and other components
(Aydin et al., 2010). An important advantage of ignimbrite is

its occurrence in active fault zones all over the world. These
rocks are widely used as building stones in low storeyed build-
ings and especially in important buildings in the past. Nowa-
days, they have an increasing usage in outer surface coverings

of the buildings, stairs, floorings, banisters, pools and their sur-
roundings, arches, columns, fireplaces, balcony decorations
and restoration applications because of their decorative proper-

ties (Korkanc, 2007). One of the main advantages of Fe3+

removal using ignimbrite over the other chemical treatment
methods is that no chemical sludge is produced after sorption.

In practice the column type continuous flow operations,
which are more useful in large-scale wastewater treatment,
have distinct advantages over batch treatment. It is simple to

operate, attain a high yield and it can be easily scaled up from
a laboratory-scale procedure. The stages in the separation pro-
cess can also be automated and high degrees of purification
can often be achieved in a single step process. A packed bed

is also an effective process for sorption/desorption, as it makes
the best use of the concentration difference known to be a driv-
ing force for sorption and allows more efficient utilisation of

the sorbent capacity and results in a better quality of the efflu-
ent. A large volume of wastewater can be continuously treated
using a defined quantity of sorbent in the column (Valdman

et al., 2001; Zulfadhly et al., 2001; Robinson et al., 2002;
Rozada et al., 2003; Oguz and Ersoy, 2010).

The purpose of this study is to remove Fe3+ ions by the
particles from aqueous solution using a fixed-bed sorption col-

umn. The effects of flow rate, pH value, influent concentration,
bed depth and particle size on metal uptake by the particles of
ignimbrite in a fixed bed column were investigated. A model

based on an artificial neural network (ANN) has been con-
structed to model Fe3+ concentration removed from an aque-
ous solution as a function of empirical parameters.

2. Materials and methods

2.1. Sorbent preparation

The ignimbrite particles were cut into small pieces, ground in a

blender and sieved to obtain particle sizes of 0.25 < x < 0.5,
0.5 < x < 1 and 1 < x < 2 mm. Ignimbrite samples were
washed with distilled water and then dried at 298 K for two
weeks. Samples of 7 g were taken for sorption studies.

Fe3+ solutions were prepared by diluting 483 mg L�1 of
FeCl3Æ6H2O (Merck) stock solution with deionised water to a
desired concentration range between 20 and 75 mg L�1. The

initial concentration of Fe3+ and the samples following the
sorption process were complexometrically determined.

The surface area of the particles of ignimbrite was mea-

sured by the BET method at 77 K using a Quantachrome
QS-17 model apparatus (Brunauer et al., 1938). The surface
area of the particles of ignimbrite was 2.90 m2/g.

2.2. Fe3+ analysis

A sample of 5 mL that has a concentration less than 20 mg
Fe3+/100 mL was added to 10 mL of 1% sulphosalicylic acid

and a few drops of 25% aqueous ammonia solution to keep
the value of pH between 2.1 and 3.3, and then diluted to
50 mL with distilled water. The content of Fe3+ was deter-

mined by titration with 0.05 M EDTA solution. 1 mL,
0.05 M EDTA solution is equivalent to 2.792 mg Fe3+

(Gulensoy, 1984).

2.3. Column experiments

Continuous flow sorption experiments were conducted in
Teflon columns of 1 cm i.d. and 5, 10, 15 and 20 cm heights

as seen from Fig. 1. A known quantity of sorbent was placed
in the column to receive the desired bed height. Fe3+ solution
with an initial concentration of 50 mg L�1 was pumped upward

through the column at a desired flow rate by a peristaltic pump.
Samples were collected from the exit of the column at different
intervals and analysed for Fe3+ concentration. Operation of

the column was stopped when the effluent Fe3+ concentration
equals approximately influent Feo

3+ concentration.
The total quantity of metal sorbated in the column was

calculated from the area above the breakthrough curve (outlet
metal concentration versus time), multiplied by the flow rate.
Dividing the metal mass by the sorbent mass (M) leads to
the uptake capacity (Q) of the sorbent. The total amount of
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metal ions sent to the column can be calculated from (Eq. (1))
(Aksu et al., 2007).

mtotal ¼
CoFte
1000

ð1Þ

where Co is the inlet metal ion concentration (mg L�1), F the
volumetric flow rate (mL min�1) and te is the exhaustion time

(minute). The mass transfer zone can be calculated from the
difference between column exhaustion time (te) and column
breakthrough time (tb). The total metal removal (%) with
respect to flow volume can be calculated from the ratio of

metal mass sorbated (mad) to the total amount of metal ions
sent to the column, given by (Eq. (2)) (Uddin et al., 2009).

Total metal removal ð%Þ ¼ mad

mtotal

� 100 ð2Þ

The amount of metal retained in the column depends on the
influent metal concentration and can be calculated from the
area above the breakthrough curve (Eq. (3)) (Hana et al.,

2009).

q ¼ CoF

m � 1000

Z t

0

1� Ct

Co

� �
dt ð3Þ

where q represents the amount of metal retained (mg of Fe3+

per g of sorbent), Ct and Co are the Fe
3+ concentrations at the

column effluent and influent (mg L�1) respectively, F is the
flow rate (mL min�1), m is the mass of sorbent in the column

(g) and t is the sorption time (minute).
3. Results

3.1. The Effect of experimental conditions on the breakthrough
curve

3.1.1. Effect of initial iron concentration

The effect of influent Feo
3+ concentration on the shape of the

breakthrough curves is shown in Fig. 2. As shown in Fig. 2, in
the interval of 100 min, the value of Ct/Co reached 0.23, 0.53

and 0.77 when influent concentration was 20, 50 and
75 mg L�1, respectively.

It is illustrated in Fig. 2 that the breakthrough time

decreased with the increase of influent Feo
3+ concentration.
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Figure 2 Experimental and theoretical breakthrough curves of

Fe3+ as a function of inlet Fe3+ concentration (T 15 �C, pH 4,

flow rate 5 mL min�1, bed depth 5 cm, particle size 0.25–0.5 mm).
At lower influent Feo
3+ concentration, the breakthrough curve

was dispersed and breakthrough occurred slower. As the influ-
ent concentration increased, sharper breakthrough curves were

observed. These results demonstrate that the change of concen-
tration gradient affects the saturation rate and breakthrough
time. These results also show that the change of concentration

gradient affects the saturation rate of the sorbent and break-
through time, in other words, the diffusion process is concen-
tration dependent. As the influent concentration increases,

Feo
3+ loading rate increases, so does the driving force for mass

transfer, in which the sorption zone length decreases (Goel
et al., 2005).

3.1.2. Effect of flow rate

The effect of flow rate on the sorption of Fe3+ in the fixed-bed
with bed depth of 5 cm was investigated. The flow rate was
changed in the range of 5–15 mL min�1, while the concentra-
tion of Fe3+ in influent was kept constant at 50 ppm. The

sorption breakthrough curves obtained at different flow rates
are shown in Fig. 3.

The obtained results show that the adsorption of Fe3+ on

the particles of ignimbrite was strongly influenced by the flow
rate. All the breakthrough curves had a similar shape. The
breakthrough curves shifted to the origin with increasing flow

rate, and an earlier breakthrough time and saturation time
were observed for a higher flow rate. Fig. 3 shows that Fe3+

concentration in the effluent increased rapidly after the break-

through time, as the solution continued to flow, the fixed-bed
became saturated with Fe3+, and Fe3+ concentration in the
effluent approached the influent concentration. Both equilib-
rium uptake and total removal efficiency of Fe3+ decreased

with increasing flow rate, and their maximum value was
obtained at the lowest flow rate of 5 mL min�1. As shown in
Fig. 3, in the interval of 100 min, the value of Ct/Co reached

0.53, 0.97 and 0.99 when flow rate was 5, 10 and 15 mL min�1,
respectively.

3.1.3. Effect of bed depth

Another important parameter in the sorption process is

relevant to the bed depth. However, because of the pressure
drop and the handling problems of the smaller particle size
<0.25–0.5 mm in the column studies, the particle sizes of
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Figure 3 Experimental and theoretical breakthrough curves of

Fe3+ as a function of flow rate (T 15 �C, pH 4, Co 50 mg L�1, bed

depth 5 cm, particle size 0.25–0.5 mm).
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Figure 5 Experimental and theoretical breakthrough curves of

Fe3+ as a function of pH of solution (T 15 �C, bed depth 5 cm, Co

50 mg L�1, flow rate 5 mL min�1, particle size 0.25–0.5 mm).
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1–2 mm were used to compare Ct/Co with sorbent capacities
for the bed depths of 5, 10, 15 and 20 cm.

The retention of metals in a fixed-bed column depends,

among other factors, on the quantity of sorbent used or, on
the bed depth of the column works. The sorption performance
of the particles of ignimbrite was investigated at various bed

heights of 5, 10, 15 and 20 cm at a flow rate of 5 mL min�1

where the inlet Feo
3+ concentration was kept constant at

50 ppm. Fig. 4 shows the breakthrough profile of Fe3+ sorp-

tion at different bed heights. For the four different bed depths
used, as the bed depth increases, the quantity of the removed
Fe3+ concentration increases, which is also illustrated by the
service time change.

As shown in Fig. 4, in the interval of 100 min, the value of
Ct/Co reached 0.97, 0.60, 0.21 and 0.00 when bed depth was 5,
10, 15 and 20 cm, respectively. At the column depth with 5 cm,

the sorbent becomes saturated very quickly because saturation
at the binding sites is faster.

3.1.4. Effect of pH

The pH value of the solution is an important controlling
parameter in the sorption process, and the pH value of aque-
ous solution has more influence on uptake of Fe3+ ions in

the fixed bed. It influences both the sorbent surface metal bind-
ing sites and the metal chemistry in water. When the pH of the
feed solution was changed from 1.7 to 4, the highest sorbent

capacity and the longest breakthrough time was achieved at
pH 4. As shown in Fig. 5, in the interval of 100 min, the value
of Ct/Co reached 0.98, 0.80 and 0.53 when pH value of the

solution was 1.7, 3 and 4, respectively. At the column depth
with 5 cm, the sorbent becomes saturated very quickly because
saturation at the binding sites is faster.

The pH of the aqueous solution is also an important con-

trolling parameter in the sorption process. At pH between 3
and 4, there are three species present in the solution as
suggested by Araujo et al., 2007. The dominant species

between pH 3 and 4 were Fe(OH)2+, Fe(OH)+2 and Fe(OH)3.
These species are sorbated in an electrostatic and chemical
interaction on the surface of the shells. At low pH, the surface

charge becomes positive due to high concentration of H3O
+

ions. Very low sorption effectiveness at low pH is likely due
to competition for binding sites with protons. Their presence
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Figure 4 Experimental and theoretical breakthrough curves of

Fe3+ as a function of bed depth (T 15 �C, pH 4, Co 50 mg L�1,

flow rate 5 mL min�1, particle size 1–2 mm).
inhibits sorption, as the Fe3+ competes with protons to form
a bond with active sites of functional groups on the sorbent
surface. As the pH decreases, the surface of ignimbrite parti-

cles exhibits an increasing positive characteristic.
These species are sorbated with electrostatic interaction at

the surface of the particles of ignimbrite. As the pH decreases,
the particles of ignimbrite exhibit an increasing positive char-

acteristic, thus breakthrough time decreased. Obviously with
an increase of pH in the influent, the breakthrough curves
shifted from left to right, which indicates that more metal ions

can be removed.
As can be seen from Fig. 6, zeta potential values of the

ignimbrite particles at pH (1.7–4) in the distilled water were

smaller than these of Fe3+ solution. The dominant species in
the Fe3+ solution were electrostatically affected by sorbent
particles and then sorbated on the surface of the sorbent. Sorp-

tion of Fe3+ on the sorbent caused an increase of the zeta
potential values. The increase in the zeta potential values of
the sorbent was a sign of sorption of Fe3+ from aqueous
solutions.

3.1.5. Effect of particle size

Another important parameter in the sorption process is related
to the particle size of the sorbent. The particle sizes were

0.25–0.5, 0.5–1 and 1–2 mm, while the bed depth, influent
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Figure 6 Relation between zeta potentials and pH.
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Figure 7 Experimental and theoretical breakthrough curves of

Fe3+ as a function of particle size (T 15 �C, bed depth 5 cm, Co

50 mg L�1, flow rate 5 mL min�1, pH 4).
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Figure 8 The architecture of the ANNs used in this study.
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Fe3+ concentration and pH were kept constant at 5 cm,
50 mg L�1 and 4, respectively. The breakthrough curves con-
cerning the particle size are given in Fig. 7.

An increase in the particle size appeared to increase the
sharpness of the breakthrough curve. Furthermore, the sorp-
tion capacity for the larger particle size is lower than that for
the smaller particle size. A rapid decrease in the column

adsorption capacity with an increase in the particle size was
observed. The clear shift of the breakthrough curve was
obtained from 0.25–0.5 to 1–2 mm. This is mainly true due

to the higher surface area of the smaller particle size. There-
fore, a higher sorption capacity and shorter intraparticle diffu-
sion path are expected. As shown in Fig. 7, in the interval of

100 min, the value of Ct/Co reached 0.53, 0.80 and 0.97 when
the particle size was 0.25–0.5, 0.5–1 and 1–2 mm, respectively.

4. Application of the artificial neural network

A linear model is not suitable to constitute a satisfying rela-
tionship among the input variables for a sorption process. In

fact, it is reasonable to consider that such variables are not
totally independent. The ANN approach seems to be com-
pletely suitable to the problems where the relations between
variables are not linear and complex (Bernard et al., 2004).

A neuron sums the product of each connection weight (wjk)
from a neuron (j) to the neuron (k) and, input (xj) and the
additional weight called the bias to get the value of sum for

the neuron. The ith neuron has a summer that gathers its
weighted input wijÆpj and the bias bi to form its net input ni,
which is given by (Eq. (4)):

ni ¼
X

wijxj þ bi ð4Þ

where wij denotes the strength of the connection from the jth
input to the ith neuron, xj is the input vector, bi is the ith
neuron bias. The sum of the weighted inputs is further trans-

formed with a transfer function to get the output value. There
are several transfer functions; the most common is the sigmoi-
dal function (Yang and Wei, 2006; Oguz et al., 2008a,b). To

find suitable ws and biases for each neuron, a process training
is essential; it is the first step to build an ANN. Training means
that the weights are corrected to produce prespecified (‘‘cor-
rect’’, known from experiments) target values, and the training
requires sets of pairs (XS, YS) for input: the actual input into

the network is a vector (XS), and the corresponding target is
labelled (YS) after successful training. When correct values of
YS for each vector of XS from the training set are obtained,

it is hoped that the network will give correct predictions of
Y for any new object of X according to the ANN model
fundamentals and with the use of more data for training the
network, better result would be obtained. The most utilised

training method for multilayered neural network is called back
propagation (Kumar et al., 2005; Oguz and Ersoy, 2010; Oguz
and Ersoy, 2014).

Information about errors (differences between the target
and predicted values) is filtered back through the system and
is used to adjust the connections between the layers, therefore

performance improves. In the early standard algorithm, a
random initial set of weights were assigned to the neural net-
work, and then by considering the input data, weights were
adjusted, so the output error would be the minimum (Sozen

et al., 2004). In this study, one-layered back propagation neu-
ral network was used for modelling of the uptake of Fe3+ ions
from aqueous solutions Fig. 8.

The input variables to the neural network are as follows:
pH, the sorption time (t), the concentration of initial Fe3+,
bed depth (B.D.), flow rate (F) and particle size (P.S.) and

Feo
3+ concentration as a function of reaction time was chosen

as the experimental response or output variable. In order to
model the Fet

3+ concentrations with ANN, the Statistica soft-

ware programme was used. The coefficient of Root Mean
Square Error (RMSE) is the main criterion to evaluate the
performance of ANN, which is defined as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðobs� preÞ2

n

s
ð5Þ

A low value of the RMSE satisfies the statistical evaluation
of prediction for the validation (Celik and Tan, 2005; Tortum,
2003). From Fig. 8, it can be observed that the newly con-

structed neural network was precise in predicting the Fe3+

uptake with a high correlation coefficient of 0.980. This shows
that the developed neural network model can be precise in pre-
dicting the removal of Fe3+ by the particles of ignimbrite for

the range of experimental conditions (Kumar et al., 2008).
Before the network was trained, the input and the output

data were normalised. The scale and shift factors used in each

input and output are given in Table 1.
The weight coefficients and the biases given in Table 2

are the values obtained for the normalised data in order to



Table 1 Shift and scale factors.

Parameters Shift Scala

t �0.019 0.004

Cin �0.363 0.018

pH �0.739 0.435

P.S. �0.333 0.888

B.D. �0.333 0.066

F �1.000 0.166

Cout 0.000 1.009

Table 2 Connection weights and biases.

Bias 2.1 2.2 2.3 2.4 3.1

b1 b2
1.444 �0.228 0.423 �0.004 0.013

w1

1.1 �0.879 �4.919 �0.319 1.782

1.2 �0.1339 �0.935 �0.412 0.216

1.3 0.104 2.000 �0.011 �0.471
1.4 0.353 �1.075 �0.012 0.068

1.5 0.135 2.740 0.208 �0.717
1.6 1.247 �1.571 0.175 �0.683 w2

2.1 �0.624
2.2 �0.658
2.3 0.010

2.4 �0.297

Table 3 Sensitivity analysis results.

t Co pH P.S. B.D. F

Ratio 10.03 1.93 4.00 3.79 6.27 3.18

Rank 1 6 3 4 2 5

318 E. Oguz
determine the actual (experimental) Fet
3+ concentration. An

inverse transformation on these data is performed by using shift

and scale factors. After long training phases, the best result was
obtained from the Levenberg–Marquardt algorithm.

The hyperbolic tangent function in the hidden layer and the

linear activation function in the output layer were used in the
model. It was observed that the optimal network was found to
Table 4 Observed and predicted sorbent capacities at different exp

Co (ppm) pH F. rate (mL min�1) P. size (mm)

20 4 5 0.25 < x < 0.

50 4 5 0.25 < x < 0.

75 4 5 0.25 < x < 0.

50 4 5 0.25 < x < 0.

50 3 5 0.25 < x < 0.

50 4 5 0.25 < x < 0.

50 4 10 0.25 < x < 0.

50 4 15 0.25 < x < 0.

50 4 5 0.25 < x < 0.

50 4 5 0.5 < x < 1

50 4 5 1 < x < 2

50 4 5 1 < x < 2

50 4 5 1 < x < 2

50 4 5 1 < x < 2
have six inputs, one hidden layer with four neurons and one
output layer. The optimal network architecture (6:6-4-1:1) is
shown in Fig. 8.

Sensitivity analysis is a useful technique to assess the rela-
tive contribution of the input variables to the performance of
a neural network by testing the neural network when each

input variable is unavailable. This indicates that the input vari-
ables are considered to be the most important ones by a partic-
ular neural network. If the ratio is one or lower, the input

variable has no effect on the performance of the network.
Otherwise, when ratios of input parameters are more than
one, all input variables are meaningful. The results of the sen-
sitivity analysis are given in Table 3.

It can be seen from Table 3 that the most important param-
eters that affect the removal of the Fet

3+ are sorption time (t),
bed depth (B.D.), pH, particle size (P.S.), flow rate (F) and ini-

tial Feo
3+ concentration (Co), respectively.

Before training the network, both the input and output
variables were normalised within the range of 0–1 using a mini-

max algorithm. The minimum and maximum of the data set
were found and scaling factors were selected so that these were
mapped to the desired minimum and maximum values.

The number of experimental data used in the ANN is 586,
which were divided into three sections: the training set (294
data), verification set (146 data) and test set (146 data). Train-
ing algorithms do not use the verification or test sets to adjust

network weights. The verification set may optionally be used
to track error performance of the network to identify the best
network and to stop training, if over-learning occurs. The test

set is not used in training at all, and it is designed to give an
independent assessment of the performance of the network
when the design procedure of an entire network is completed.

The assignment of the cases to the training, verification and
test subsets can sometimes affect the performance of the train-
ing algorithms. In order to eliminate this drawback, the cases

should be shuffled randomly between subsets. The cases can be
left in their original order or grouped together in the subsets.
In this model, the cases were shuffled randomly between the
subsets (training, test and verification). The experimental and

predicted sorbent capacities are given in Table 4.
The prediction of breakthrough curves was obtained using the

Neural Network model. The Neural Network model provided a
erimental conditions.

B. depth (cm) Bed capacity (mg g�1) R2

Exp. N. net.

5 5 1.73 1.68 0.99

5 5 3.26 3.13 0.99

5 5 3.65 3.39 0.99

5 5 3.26 3.75 0.99

5 5 2.32 2.99 0.99

5 5 3.26 3.13 0.99

5 5 3.23 3.73 0.97

5 5 3.14 2.58 0.99

5 5 3.26 3.75 0.99

5 2.12 2.98 0.98

5 1.46 1.39 0.99

10 1.49 1.48 0.99

15 1.52 1.55 0.99

20 1.58 1.58 0.99
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Figure 9 (a) Comparison between observed and predicted values relating to general modelling (R2 0.99), (b) residuals vs. predicted

values, (c) relative error distribution, (d) normal probability plot of residuals.

Fixed-bed column studies on the removal of Fe3+ 319
good correlation in the prediction of the breakthrough curves due
to its acceptable R2 values (0.99–0.98), as well as a good agree-
ment was observed between the simulated breakthrough curves

and the experimental data points. The Neural Network model
was used in predicting the theoretical breakthrough concentra-
tions at different flow rates, pHs, particle sizes, bed depths and

influent concentrations. The predicted values at different experi-
mental conditions were in good agreement, as seen in Table 4.

In the ANN modelling, it was seen that the error distribu-

tions of the model did not show complete normal distribution.
Almost every value predicted in the model and the distribution
of the errors is very close to the zero line as seen in Fig. 9.

Error distributions do not show complete normal distribu-

tion. It was also observed that almost every value predicted in
the model and the distribution of the errors was not in the line
of zero. Every value predicted in the model and the distribution

of the errors is very close to the zero line. The error histogram is
not widely open to the right and left directions. The zero error
frequency is high and also in the model the predicted values

together with the observed values are in good agreement, as seen
from Fig. 9. Furthermore, the explanatory variables in the mod-
els to explain the dependent variable are found to be satisfacto-

rily sufficient. In a good model, the residuals show normal
distribution. The assumption of normality can be checked by
plotting the residual versus expected normal values. The normal
probability plot of the residuals for ANN is shown in Fig. 9

which shows an approximately linear behaviour, indicating that
the residuals follow an approximately normal distribution. The
comparison between experimental and simulated data from the

ANN belonging to all of the parameters is given in Fig. 9.
5. Conclusion

The particles of ignimbrite were used to define the experimental
and theoretical sorbent capacities in a fixed bed column. The
Ct/Co, qexp and qcal are a function of the sorption time, bed
depth, flow rate, sorbate concentration, sorbent particle size
and pH. An artificial neural network modelling has been used

to investigate relation between the cause and effect in the sorp-
tion studies of Fe3+ ions. The ANN model could describe the
behaviour of the sorption with the adopted experimental condi-

tions. A simulation based on the ANN model has then been
performed in order to estimate the behaviour of the system
under different conditions. The model based on the ANN has

predicted the concentrations of Fet
3+ uptake in a fixed bed col-

umn during the sorption time. A relationship between predicted
and observed data has been constructed. In the ANN model,
the value of root mean square error was obtained to be 0.65.

According to the sensitivity analysis results, the most important
parameters affecting the sorbent capacity were found to be
sorption time, bed depth, pH, particle size, flow rate and initial

Feo
3+ concentration (Co), respectively.

References

Aksu, Z., Alperis, I., 2005. Process Biochem. 40, 3031–3044.

Aksu, Z., Sen, S., Gönen, C.F., 2007. J. Hazard. Mater. 143, 362–371.

Araujo, G.C.L., Lemos, S.G., Ferreira, A.G., Freitas, H., Nogueira,

A.R.A., 2007. Chemosphere 68, 537–545.
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