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A B S T R A C T   

In this study, we examined the adsorption capacity (Qe) of superparamagnetic MoS2/γ-Fe2O3 nanocomposite 
with varying percentages of loaded γ-Fe2O3 nanoparticles (10 %, 20 %, and 30 %) for rapid and effective removal 
of Ni+2 and NO−

3 ions from water using response surface methodology combined with the central composite 
design (RSM-CCD). In essence, the adsorption properties of MoS2 3D ball-flower-like are increased by loaded 
γ-Fe2O3 nanoparticles by forming nanocomposite. Magnetic nanocomposites were checked under optimum 
conditions to remove Ni+2 and NO−

3 ions several times, which showed the material’s ability for regeneration and 
reuse as adsorptions. In experimental design, in the first step, we attempt to present models for the adsorption 
capacity (Qe) and removal percent and detect the influence of the parameters of the process using response 
surface methodology (RSM) by historical data. In the next step, with regard to the detection of impressive 
variables using obtained results in the previous step, the central composite design (CCD), by consideration of 
independent variables for the experimental design was done. By interpreting ANOVA and diagnostic plots, the 
effect of individual and binary effect of variables was discussed. The optimal conditions for maximizing 
adsorption capacity (Qe) and removal percent were predicted, and the validation of the predicted conditions was 
experimentally evaluated, which confirmed an agreeable agreement. The optimization of predicted conditions 
for Ni+2 and NO−

3 species are reported in the concentration of (0.49 mol.L− 1) Ni+2 and (0.50 £ 10-4 mol.L− 1) 
NO−

3 with weight percent of γ-Fe2O3 = 26.72 % and 27.55 %, respectively. Predicted adsorption capacity (Qe) 
and removal percent of species concentration for Ni+2 and NO−

3 ions of optimized nanocomposite concluded 
0.98, 9.59 × 10-5 (mg/g), 100, and 96 (%), respectively, which was confirmed by experimental research studies. 
To optimize experimental conditions, the Ni+2 and NO−

3 concentrations were o.5 and 0.5 × 10-4 mol.L− 1, 
respectively. Furthermore, nanocomposites of MoS2/γ-Fe2O3 with a loaded dose of 26.72 % and 27.55 % γ-Fe2O3 
for Ni+2 and NO−

3 were synthesized, respectively. The experimental of the adsorption capacity (Qe) and removal 
percent of species concentration for Ni+2 and NO−

3 ions concluded 0.95, 9.23 × 10-5 (mg/g), 96, and 93 (%) using 
MoS2/γ-Fe2O3, respectively.   

1. Introduction 

In view of rapid growth in industrialization, population, and ur-
banization, the disposal of untreated organic/ inorganic toxic effluents 
from aqueous media remains a great challenge for public health and 
environmental protection (Madima et al., 2020; Kiani et al., 2021; 
Alsubih et al., 2022; Anderson et al., 2022; Ostovar et al., 2023b). 
Wastewater discharge without proper treatment leads to increased 

environmental pollution that affects the quality of surface and ground-
water resources (Runnan Zhang et al., 2016; Choudhary et al., 2020; 
Kesari et al., 2021). These distressing situations for human beings and 
ecosystems have led to creating of novelty strategies to increase water 
quality for the purification of the wastewater process and to preserve 
freshwater sources (Ighalo and Adeniyi, 2020; Hmoud Al-Adhaileh and 
Waselallah Alsaade, 2021). A promising strategy for the purification of 
wastewater and to preserve freshwater sources has developed various 
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water treatment technologies for both industrial applications and envi-
ronmental remediation (Hao et al., 2020; Hoang et al., 2022; Ama-
nollahi et al., 2023; Ostovar et al., 2023a). 

Among various wastewater remediation techniques, (Bolisetty et al., 
2019; Ostovar et al., 2023a; Rahman et al., 2023a) membrane filtration, 
(Buruga et al., 2019; Pronk et al., 2019; Torkashvand et al., 2022) 
flocculation, (Abujazar et al., 2022) adsorption, (Bahrami and Amiri, 
2022) chemical precipitation, (Benalia et al., 2022) ion exchange, 
(Swanckaert et al., 2022) conventional coagulation, (Abujazar et al., 
2022) electrodialysis, (Sedighi et al., 2023) electrolytic removal, 
(Setayesh et al., 2020) reduction (Goswami et al., 2022) and reverse 
osmosis (Sudesh Yadav et al., 2020) have been reported as efficient 
methods to eliminate pollutants from wastewater. However, various 
limitations for these technologies such as costly equipment, high oper-
ational cost, high maintenance cost, partial metal ions removal, high 
energy requirement, and lethal residual metal sludge are presented 
(Chakraborty et al., 2022; Hoang et al., 2022; Mahmoudian et al., 2023). 
Among these techniques, adsorption technique including activated 
carbon, (Mariana et al., 2021; Xiaohong Wang et al., 2022) zeolite, (Rad 
and Anbia, 2021) clays, (Benhammou et al., 2005; Lahnafi et al., 2022) 
and waste biomass (Maharana et al., 2021; Yingjun Wang et al., 2021) is 
suggested as conventional adsorbents to purify water due to its high 
efficiency (Singh and Pant, 2004; Rahman and Khan, 2016; Fei and Hu, 
2022), simplicity (Sheth et al., 2021; Wang et al., 2021), and cost- 
effectiveness (Singh et al., 2020; Maharana et al., 2021) with minimal 
waste production (NB Singh et al., 2018; Saleh et al., 2022). A key 
challenge is to determine target contaminant selectivity with competi-
tive adsorption among these adsorptions that have often poor selec-
tivity. Therefore, producing complex components compromises 
adsorption performance to treat water (Wang et al., 2017a; Pincus et al., 
2019; Yang et al., 2021). The main aim is to create strong interactions 
between target contaminants and adsorbents that will achieve adsor-
bents with high capacity and selectivity (Ma et al., 2016; Ali et al., 2021; 
Liu et al., 2023). Three basic categories of the chemical contaminants in 
water including organic, inorganic, and radioactive have been reported, 
subsequently, several classes of contaminants have been identified 
within each of these categories (Brusseau and Artiola, 2019; Jun et al., 
2021). In turn, Heavy Metal Ions (HMIs) such as arsenic, lead, cadmium, 
nickel, chromium, zinc, copper, mercury, cobalt, etc. have been intro-
duced as a class of inorganic pollutants as one of the most hazardous 
species (Vidu et al., 2020; Numan et al., 2021). Due to their toxic nature, 
heavy metal ions (HMIs) that are added in water resources from 
different industries like mining, metal plating industries, batteries, 
painting, tanneries, fertilizer, etc. are a critical threat to healthy eco-
systems (Vijay Bahadur Yadav et al., 2019; Ghomi Avili, 2021). The 
excess amounts of nitrates in groundwaters as a consequence of the 
intensive use of fertilizers and other anthropogenic sources, such as 
sewage or industrial wastewater discharge can cause significant water 
quality problems (Abascal et al., 2022). Recently, to improve the ob-
tained outcomes of the removal of heavy metallic species from water for 
environmental remediation, active nanoparticles such as nano- adsor-
bents (Tingting Zhang et al., 2021; Janani et al., 2022), nano-catalysts 
(Lande et al., 2020; Lu et al., 2022; Sheerazi and Ahmed, 2022), and 
biological techniques (Priyadarshanee and Das, 2021) are being imple-
mented for water treatment, which have attracted more attention from 
researchers. Nanostructured materials with small dimensions have a 
high specific surface area, and surface area to volume’ ratio, while due 
to these exceptional features, a great number of active sites by catalytic 
potential and high reactivity have advanced the removal efficiency of 
the nanostructured materials (Bethi et al., 2016; Choi and Lee, 2022; 
Ostovar et al., 2023a). Numerous adsorbents for HMIs removal from the 
contaminated water such as activated carbon (Gusain et al., 2020), 
biomaterials (Kothavale et al., 2022), clay/layered double hydroxides 
(Kumar et al., 2017; Kong et al., 2019), hydrogels (Ma et al., 2017), 
zeolites (Huang et al., 2018), silica gel (Niu et al., 2013), and nano-
composites have been reported (Alqadami et al., 2017; Zhao et al., 

2019). Some disadvantages of nano adsorbent materials such as low 
specific active surface area and poor selectivity have been proved. 
Recently, researchers have been looking for promising nano- adsorbents 
to eliminate HMIs from water sources (Harja and Ciobanu, 2020; 
Thangadurai et al., 2020; Vishwakarma, 2021; Zangiabadi and Yazda-
panah, 2021). For example, two-dimensional (2D) nanomaterials, such 
as graphenes (Gs), molybdenum disulfide (MoS2), and carbon nanotubes 
(CNTs) applied as adsorbents (Ren et al., 2011; Shen and Chen, 2015; Yu 
et al., 2015). Among these nanomaterials, flower-like molybdenum di-
sulfide (MoS2) has been employed in various fields such as energy 
storage and transformation, environment protection, and biomedicine. 
Its unique physicochemical properties include various prominent 
chemical, electronic, catalytic, optical, mechanical, and sensing prop-
erties (Najmaei et al., 2014; Singh et al., 2016; Barua et al., 2017; Wang 
et al., 2017b; Li et al., 2020). On the other hand, due to the abundance of 
intrinsic sulfur atoms in layered MoS2 nanosheets, they are reported as 
the efficient purification of water polluted by HMIs (Xu et al., 2020). The 
research studied in this field shows that heavy metals have been 
removed with high selectivity using sulfur-containing or sulfur func-
tionalized adsorbents (Wang and Mi, 2017). The sulfur in adsorbents has 
a high affinity to heavy metal ions via Lewis soft–soft interactions that 
lead to superior adsorbents (Ma et al., 2016; Manos and Kanatzidis, 
2016; Zhang et al., 2017b). Nanosheet samples possess better properties 
than those of bulk ones because sulfur atoms located on both sides of a 
sheet lead to good accessibility of adsorption sites, and thus show an 
absorption capacity higher than the capacity of the best adsorbents (Liu 
et al., 2015; Tanweer et al., 2022). Numerous studies have been reported 
on the adsorption of toxic heavy metal ions such as Hg(II) (Wang et al., 
2018), Co(II) (Aghagoli et al., 2017), Cr(VI) (Wang et al., 2017a), Pb(II) 
(Chang Liu et al., 2017), and Ni(II) (Aghagoli and Shemirani, 2017) by 
2D nanosheets and 3D ball-flower-like molybdenum disulfide (MoS2). 
Another challenge after removal of HMIs is separating the material for 
secondary recycling that has been suggested using a magnetic transition 
metal to facilitate recovery. Identified properties ofFe3O4 nanoparticles 
such as magnetic properties, stability, recyclability and peroxide-like 
properties (Song et al., 2020; Yi et al., 2020) have led to the synthesis 
of efficient composites of MoS2 and Fe3O4 to use in many industrial 
applications. Previous researches have suggested that by loading Fe3O4 
20 wt% nanoparticles on MoS2 nanosheets lead to increase the activity 
of materials and can be recovered by extra magnetic (Zhang et al., 
2017a; Lin et al., 2018; Song et al., 2018). 

Design of experiments (DOE) is a systematic technique to define the 
relationships between variables influencing process and outputs. The 
basic idea of modern DOE is to alternate all variables at the same time 
over a set of designed experiments, then link and interpret the results via 
statistical models (Gabrielsson et al., 2002; Rahman and Raheem, 2023). 
Several advantages have been stated for DOE rather than traditional 
optimization method like OFAT (one factor at a time) (Weissman and 
Anderson, 2015; Karimifard and Moghaddam, 2018). Detection and 
considering the interactions between the chosen variables, extracting 
the maximum quantity of information using performance of the smallest 
amount of experiments, needing less laboratory work, being cost- 
effective in terms of time and money, finding reliable optimal condi-
tions, divorcing the ‘‘noise’’ of a reaction from actual agents and so on. 
Response surface methodology (RSM), among many DOE-based 
methods, has attracted attention in modeling, design of experiments, 
and optimization of different multivariate chemical processes (Rahman 
and Varshney, 2020). 

This work aims to synthesize superparamagnetic MoS2/γ-Fe2O3 
nanocomposites (NCs) as efficient composites via various percentages of 
loaded γ-Fe2O3 (10, 20, and 30 %) nanoparticles (NPs) on the surface of 
3D ball-flower-like MoS2 that have been studied to remove Ni+2 and 
NO−

3 ions. The innovation of the present work the influence of the 
preparation parameters upon the catalytic performance of MoS2/ 
γ-Fe2O3 (10, 20, 30 %) catalyst was investigated using two procedures of 
usual experimental and RSM. In the first section, the removal of Ni+2 and 
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NO−
3 ions is examined by MoS2/γ-Fe2O3 (10, 20, and 30 %) nano-

composites as efficient adsorption, and in the second section, using the 
experimental design in two steps. In order to identify the most effective 
synthesis parameters on the performance of nanocomposites, in the first 
step, modeling is performed based on the effect of four synthesis pa-
rameters such as temperature, amount of catalyst, and Ni+2 and NO−

3 
ions concentrations on the adsorption capacity and removal percentage 
by response surface methodology (RSM) by historical data. Subse-
quently, the experimental design was carried out for independent vari-
ables of weight percent of γ-Fe2O3 nanoparticles, and species 
concentration using the central composite design (CCD). The designed 
experiments were conducted to determine the optimization process by 
design expert 7.0.0 software. The synthesized magnetic nanocomposites 
are prominently efficient, recyclable, economical, less energy-intensive, 
and easier to operate nanocomposites. 

2. Experimental 

The parts related to Materials and reagents, Synthesis of MoS2 
flower-like, Synthesis of γ-Fe2O3 Nanoparticles, and Nanocomposite 
characterization are mentioned in the supporting information file. 

2.1. Synthesis of MoS2/γ-Fe2O3 Nanocomposites 

Superparamagnetic MoS2/γ-Fe3O4 nanocomposites were also syn-
thesized using the hydrothermal method for which various loading 
amounts of 10, 20, and 30 wt% γ-Fe2O3 in the samples were labeled as 
10, 20, and 30 wt%- MoS2/γ-Fe3O4, respectively. To synthesize (1 g) 
nanocomposite (10 wt%), the prepared γ-Fe3O4 (0.1 g) nanoparticles 
were weighed and added in 20 mL absolute ethanol to be probe- 
sonicated for 45 min. (2 mmol) (NH4)6Mo7O24⋅4H2O, and (4.5 mmol) 
H2NCSNH2 were dissolved in 50 mL deionized water to be stirred for 10 
min. The solution was added to disperse γ-Fe3O4 nanoparticles, and the 
mixture was transferred into a stainless-steel autoclave after 30 min 
sonication and was heated for 24 h at 200 ◦C. Next, the prepared 
nanocomposites were separated by an external magnet and washed with 
deionized water several times, and dried in a vacuum at 60 ◦C for 12 h. 

2.2. Adsorption experiments 

At first, Stock solutions of 1 mg.mL− 1 Ni(II) and nitrate ions were 
purchased from Merck, and standard solutions were prepared by 
appropriate dilution with Milli-Q water. The adsorption experiments in 
10 mL of aqueous solutions were conducted under consideration of 
pertinent factors such as ions concentration (0.1–0.5 M) Ni+2 and (0.1 ×
10-4-0.5 × 10-4 M) NO−

3 , temperature (25 and 50 ◦C), pH (4–9), and 
weight of catalyst (0.005 and 0.01 g). In the first section, the prepared 
suspensions were stirred for 1 h to study MoS2/γ-Fe2O3 (10, 20, and 30 
%) nanocomposites as efficient adsorptions. After the adsorption pro-
cess, superparamagnetic nanocomposites were separated from the sus-
pensions using an external magnet. The supernatant was determined by 
a UV–Vis–NIR spectrophotometer (Lambda 950, Perkin Elmer), and the 
spectra were recorded at the wavelength range of 250–800 nm. To reuse 
the catalyst after each step of absorption tests, the catalyst is collected 
and separated from the solution by an external magnet, then it is dried at 
80 ◦C oven for overnight. It will be used several times. 

Adsorption capacity at equilibrium (Qe, mg.g− 1) (Günay et al., 2007) 
and removal efficiency (Boulaiche et al., 2019) of heavy-metal Ni(II) and 
nitrate ions (%) were calculated via the following equations: 

Qe = (C0 − Ce)
V
m  

Removal (%) =
(C0 − Ce)

C0
× 100  

Where C0 and Ce (mg.L− 1) are the initial and equilibrium concentrations 
of heavy metals in the solution, respectively, V symbolizes the volume of 
mine water (L) taken for the adsorption study, and m denotes the weight 
(mg) of adsorption used. 

2.3. Experimental design and central composite design (CCD) 

The numerical optimization of processes employing RSM involves six 
sequential stages: (1) screening independent variables and choosing 
desired responses, (2) deciding on the experimental design strategy, (3) 
performing the designed experiments and collecting the experimental 
results, (4) obtaining the mathematical model correlating the input 
variables and responses, (5) fitting evaluation model via analysis of 
variance and diagnostic graphs, and (6) determination and validation of 
optimum circumstances (Yousefi et al., 2021; Haque et al., 2023; Rah-
man et al., 2023b). Central composite design (CCD) is recognized as the 
most popular response surface method (RSM) design. A CCD contains 
three groups of design points: (a) two-level factorial or fractional 
factorial design points, (b) axial/ star points, and (c) center points. The 
total number of experiments to execute in a CCD is obtained by the 
following formula: 

N = 2k + 2k+N0 (1)  

Where k points to the number of variables and N0 reveals the number of 
replicates in the center point. The quadratic empirical model correlating 
response to input variables can be written by the following equation: 

Y = b0 +
∑n

i=1
biXi +

∑n

i=1
biiX2

i +
∑n

i=1

∑n

j〉1

bijXiXj + ε (2)  

Where Y is the response function, Xi and Xj represent independent 
variables, b0 points to the intercept term, bi reveals the linear effect of 
Xi, bii signifies the quadratic effect of Xi, and bij means the two variable 
interactions between Xi and Xj. 

Fig. 1. Illustration for the synthesis procedure of superparamagnetic MoS2/ 
γ-Fe2O3 nanocomposite. 
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3. 3.Result and discussion 

The synthesis steps of the superparamagnetic nanocomposite with 
various percentages of loaded γ-Fe2O3 (10, 20, and 30 %) nanoparticles 
on flower-like MoS2 are illustrated in Fig. 1. In the present study, MoS2/ 
γ-Fe2O3 nanocomposites are synthesized via the hydrothermal method 
as a recyclable catalyst for removing Ni+2 heavy metal and NO−

3 ions 
from the aquatic systems as efficient adsorptions using experimental 
design. The γ-Fe2O3 NPs were synthesized by a co-precipitation method 
and a mean crystal size of about 9.6 nm was verified by XRD analysis. 

The flower-like MoS2 were employed as catalyst with high efficiency, 
and cost-effective to prepare nanocomposites by in situ growth of 
γ-Fe2O3 nanoparticles on the surfaces of flower-like MoS2. In this study, 
the design of experiments was used in two steps as follows: 

In the first part, using response surface methodology (RSM) models 
for the Qe and removal percent are created. The influence of process 
variables, including the concentration of Ni+2 and NO−

3 , the weight of 
the catalyst, and reaction temperature have been studied; and in the 
following, effective variables were detected. In the second part, using 
the central composite design (CCD), the experimental design is per-
formed for three independent variables of weight percent of γ-Fe2O3, 
kind of removed species, and species concentration. Finally, the iden-
tified optimal conditions are confirmed aiming at maximizing Qe and 
removal percent. 

The XRD spectra of γ-Fe2O3 NPs, flower-like MoS2, and MoS2/ 
γ-Fe2O3 NCs are shown in Fig. 2. Diffraction peaks at 2θ = 30.3◦, 35.7◦, 
43.2◦, 53.3◦, 56.9◦ and 62.8◦ pertain to the crystal planes 220, 311, 400, 
422, 511 and 440 of the magnetite structure (JCPDS no. 04–0755) of the 
cubic lattice of γ-Fe2O3 NPs, respectively (Fig. 2A). Applying the XRD 
analysis, employing the Debye-Scherrer equation to calculate the full 
width at half-height of the 311 reflection peak at 35.7◦ (2θ) the mean 
crystallite size was obtained in the range of 9.5–9.7 nm (Ostovar et al., 
2019; Saberi et al., 2020). Diffraction peaks at 2θ = 13.8◦, 33.4◦, 39.2◦, 
49.4◦ and 58.9◦ could be indexed to (002), (100), (103), (105), and 

Fig. 2. XRD pattern of (A) γ-Fe2O3, (B) MoS2, (C) MoS2/γ-Fe2O3(10%), (D) MoS2/γ-Fe2O3(20%), and (E) MoS2/γ-Fe2O3(30%).  

Table 1 
Surface area, mean pore size and pore volume of γ-Fe2O3 NPs, MoS2, and MoS2/ 
γ-Fe2O3(20%) nanocomposite.  

Sample SBET
(a) (m2.g− 1) DBJH

(b) (nm) VBJH 
(c) (cm3.g− 1) 

γ-Fe2O3  66.10  1.40  0.27 
MoS2  40.28  1.21  0.30 
MoS2/γ-Fe2O3(20%)  47.06  1.64  0.35 

(C) Total pore volume calculated by the Barret-Joyner-Halenda (BJH) equation. 
(a) Specific surface area calculated by the Brunauer-Emmett-Teller equation 

(Sinha et al., 2019). 
(b) Mean pore size diameter calculated by the Barret-Joyner-Halenda (BJH) 

equation (Bardestani et al., 2019). 
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Fig. 3. SEM images of (A1-2) γ-Fe2O3, (B1-2) MoS2, and (C1-2) MoS2/γ-Fe2O3(20%) nanocomposite.  
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(110) planes of MoS2 structure (JCPDS no. 37–1492), respectively 
(Fig. 2B). The strong peak reflections with the very sharp and high in-
tensity of the (002) plane are clearly visible that confirms the well- 
stacked crystalline structure and the structural nature of the flower- 
like MoS2 (Hu et al., 2014; Kumar et al., 2017; Jing Liu et al., 2019). 
Diffraction peaks at 2θ = 13.8◦, 33.4◦, 35.7◦, 39.2◦, 43.2◦, 56.9◦, 58.9◦, 
and 62.8◦ are observed for the synthesized nanocomposites (Fig. 2C-E). 
Comparison of the MoS2/γ-Fe2O3 nanocomposites with γ-Fe2O3 NPs and 
MoS2 patterns suggest that MoS2 synthesized was high crystallinity and 
larger particles and their scattering angle is more than that of pure 
flower-like MoS2, which may be due to the stable structure of MoS2/ 
γ-Fe2O3. The characteristic peaks of nanocomposite in the XRD pattern is 
illustrated to match well with those of γ-Fe2O3 Nps and MoS2 patterns, 
which could confirm that magnetic γ-Fe2O3 NPs are successfully loaded 
on the surface of flower-like MoS2 and thus the XRD pattern of nano-
composite demonstrates nanocomposite (Han et al., 2017; Bagheri and 
Chaibakhsh, 2020; He et al., 2020). 

N2 adsorption–desorption isotherm and pore-size distributions (BJH, 
desorption branch) of γ-Fe2O3 NPs, MoS2, and MoS2/γ-Fe2O3(20%) 
nanocomposites are demonstrated in Fig. S1. All of the samples provide 
type IV isotherms and type H3 hysteresis loops that confirm mesoporous 
structures of the as-synthesized samples. The specific surface area and 
pore volume of the MoS2/γ-Fe2O3(20%) nanocomposites show 47.06 m2. 
g− 1, and 0.35 cm3.g− 1, respectively (Table 1). The high special surface 
area and increased porosity of nanocomposites lead to increasing active 
sites to improve the reaction capacity of the substance. (Gao et al., 2016; 
Chaocheng Li et al., 2017; Mu et al., 2018). 

Fig. 3 displays the nanoparticles’ morphology of the as-synthesized 
γ-Fe2O3 NPs, flower-like MoS2, and MoS2/γ-Fe2O3(20%) NCs in the 
form of a flower-like morphology that is in agreement with the TEM 
analysis (Fig. 4). Detailed observation of SEM images of both MoS2/ 
γ-Fe2O3(10%), and MoS2/γ-Fe2O3(30%) reveal the morphology of flower- 
like in Fig. S2. The morphology of the MoS2/γ-Fe2O3 nanocomposite 
demonstrates a regular surface, and the morphology of the flower-like 
MoS2 is maintained after the addition of γ-Fe2O3 nanoparticles. The 

elemental mapping analysis (Fig. S3) and EDX spectra (Fig. S4, Table S1) 
include the elements of O, Fe, S, and Mo that confirm the successful 
formation of the γ-Fe2O3 NPs with uniform distribution on MoS2/ 
γ-Fe2O3 surface. The masses of γ-Fe2O3 NPs and flower-like MoS2 were 
analyzed by ICP-MS and the amount of flower-like MoS2 was calculated 
to about 43.7 % (Table S1). The transmission electron microscopy TEM 
image of the MoS2/γ-Fe2O3(20%) nanocomposite was carried out to 
examine a sheet-like structure of the nanocomposite, and some well- 
dispersed γ-Fe2O3 NPs loading on the surface of flower-like MoS2 can 
be seen clearly in Fig. 4. To indicate high thermal stability of MoS2 and 
MoS2/γ-Fe2O3(20%) nanocomposite, the thermogravimetric analysis 
(TGA) was carried out, showing mass loss during heating from room 
temperature to 800 ◦C in Fig. S5. For both samples, weight loss below 
150 ◦C was observed, which may be due to the vaporization of the 
adsorbed water and solvent molecules. The total weight loss of MoS2 and 
MoS2/γ-Fe2O3(20%) nanocomposite was 5.1 and 8 (wt%) at 620 and 
700 ◦C, respectively. According to reported literature, the heating pro-
cess MoS2 can lead to the production of molybdenum oxide and Sulfur 
dioxide (SO2) (Jing Li et al., 2014; Gao et al., 2016; Kumar et al., 2017). 

The γ-Fe2O3 NPs, MoS2, and MoS2/γ-Fe2O3 nanocomposites were 
examined by FTIR spectroscopy, and the FTIR spectra are depicted in 
Fig. S6. The FTIR spectra of MoS2 and MoS2/γ-Fe2O3 nanocomposites 
showed a very strong characteristic stretching vibration peak of Mo-S 
around 600 cm− 1 that confirmed the presence of MoS2 at those com-
posites. Absorption peaks around 575 cm− 1 are assigned to the Fe-O in 
γ-Fe2O3 NPs, indicating the successful preparation of γ-Fe2O3 NPs 
formed on the surface of MoS2/γ-Fe2O3 nanocomposites (Ma and Row, 
2020). The magnetic properties of γ-Fe2O3 NPs and MoS2/γ-Fe2O3 
nanocomposites were carried out to examine by VSM at an ambient 
temperature (300 K) in the range of − 10000 to 10,000 G. Field- 
dependent magnetization curves of bare γ-Fe2O3 NPs and MoS2/ 
γ-Fe2O3 nanocomposites are depicted in Fig. S7. The saturation 
magnetization (Nayak et al., 2011) value of γ-Fe2O3 NPs and MoS2/ 
γ-Fe2O3 nanocomposites were found to be 67.2 and 44.6 emu.g− 1 

identified as superparamagnetic. 

Fig. 4. TEM images of MoS2/γ-Fe2O3(20%) nanocomposite.  
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3.1. Study of adsorption tests 

The three superparamagnetic MoS2/γ-Fe2O3 (10, 20, and 30 %) 
nanocomposites as an efficient adsorption were studied to eliminate of 
heavy metal Ni+2 and NO−

3 ions for environmental remediation as effi-
cient adsorption. The individual removal of both solutions contains Ni+2 

and NO−
3 ions by optimizing the concentration of catalysts and ions, 

amount of loading γ-Fe2O3 nanoparticle, pH, reaction time, and reaction 
temperature to evaluate the performance of catalysts. The catalytic tests 
were examined taking into account factors such as ions concentration 
(0.1–0.5 mol.L− 1) Ni+2 and (0.1 × 10-4-0.5 × 10-4 mol.L− 1) NO−

3 , Time 
(10–60 min), pH (4–9), the weight of catalyst (0.005 and 0.01 g), per-
centage of loaded γ-Fe2O3 nanoparticles (10, 20, and 30 %), and tem-
perature (25 and 50 ◦C). 

The adsorption experiments were performed to optimize the ions 

concentration at ambient temperature in the presence of 0.005 g 
nanocomposites for 60 min, which was reported as 0.5 × 10− 4 mol.L− 1 

and 0.5 mol.L− 1 as the optimized concentration for NO−
3 (Fig. 5A) and 

Ni+2 (Fig. 6A) ions, respectively. In the continuance of the optimization 
process, the absorption process was examined every ten min, and the 
optimized time was obtained from the highest percentage of NO−

3 
(Fig. 5B) and Ni+2 (Fig. 6B) ions removal, respectively, 50 and 40 min. 
The optimization pH was received at about pH = 7 for NO−

3 ion (Fig. 5C) 
and pH = 8 for Ni+2 ion(Fig. 6C). 

In Fig. S8, the point charges of zero (pHpzc) of MoS2/γ-Fe2O3(20%) NPs 
based on initial pH and final pH are indicated at about 7.5 point. Point 
zero charge is known as the characteristic pH value at which the surface 
charge of a material becomes zero. It means that all active sites on the 
surface are neutral (Al-Maliky et al., 2021). When the pH value of the 
solution is higher than the PZC point, it means that the charge on the 

Fig. 5. The effect of different (A) NO−
3 concentration ([catalyst] = 0.005 g, temperature = 25 ◦C, time = 60 min), (B) Time ([NO−

3 ] = 0.5 × 10-4M, [catalyst] = 0.005 
g, temperature = 25 ◦C), (C) pH ([NO−

3 ] = 0.5 × 10-4M, [catalyst] = 0.005 g, temperature = 25 ◦C, time = 50 min), (D) catalyst concentration and temperature 
([NO−

3 ] = 0.5 × 10-4M, pH = 7, time = 50 min). 
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nanoparticle surface is negative and leads to the adsorption of positively 
charged pollutants. Therefore, by increasing of solution pH (pH = 8), the 
surface of MoS2/γ-Fe2O3(20%) NPs has negative charges, and the inter-
action between the surface of the nanoparticle and Ni+2 ion increases, 
resulting in a significant increase in Ni+2 uptake. On the contrary, for pH 
lower than the PZC point, the surface of the composite is positive and has 
absorbed polluting cations. The pH of the optimized solution for NO−

3 
ion removal has been reported to be at pH = 7, which is lower than the 
PZC point of the composite and indicates the positive charges on the 
surface and the absorption of nitrate ions (GUILHEN et al., 2022). The 
concentration of nanocomposites and process temperature value were 
optimized that was shown maximum removal of both ions by 0.005 g 
nanocomposites at 50 ◦C (Fig. 5D, 6D). 

The subsequent experiments to determine adsorption capacity (Qe) 
and removal efficiency were carried out only with optimized parame-

ters: i) in Fig. 7A, B for (0.5 × 10-4 mol.L− 1) NO−
3 , pH = 7, time = 50 min, 

temperature = 50 ◦C, 0.005 g catalyst, ii) in Fig. 7C, D for (0.5 mol.L− 1) 
Ni+2 pH = 8, time = 40 min, temperature = 50 ◦C, 0.005 g catalyst. 
Fig. 7 shows adsorption capacity and removal for catalyst based on the 
concentration of both ions. In order to remove Ni+2 and NO−

3 ions in the 
presence of the MoS2/γ-Fe2O3 (10 %) catalyst compared to other MoS2/ 
γ-Fe2O3(20 %-30 %) catalysts do not have well-shown results that due to 
the low percentage of magnetic nanoparticles were led to the low effi-
ciency of nanocomposites. The higher adsorption capacity (Qe) and 
removal efficiency of NO−

3 (0.5 × 10-4 M) and Ni+2 (0.5 M) ions are 
achieved 9.4 × 10-5 mg/g, 94 %, 0.97 mg/g, and 97 %, respectively, 
using 0.005 g MoS2/γ-Fe2O3(20%) nanocomposite at 50 ◦C. 

To evaluate the stability and reusability of the nanocomposite 
(loaded of γ-Fe2O3 20 % percentage) were used as adsorption in suc-
cessive experiments (Fig. 7E). The heavy metal Ni+2 ions were 

Fig. 6. The effect of different (A) Ni + 2 concentration ([catalyst] = 0.005 g, temperature = 25 ◦C, time = 60 min), (B) Time ([Ni + 2] = 0.5 M, [catalyst] = 0.005 g, 
temperature = 25 ◦C), (C) pH ([Ni + 2] = 0.5 M, [catalyst] = 0.005 g, temperature = 25 ◦C, time = 40 min), (D) catalyst concentration and temperature ([Ni + 2] =
0.5 M, pH = 8, time = 40 min). 
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Fig. 7. (A) Removal efficiency for NO−
3 ion, (B) Adsorption capacity for NO−

3 ion, (C) Removal efficiency for Ni+2 ion, and (D) Adsorption capacity for Ni+2 ion (under 
condition for A, B. ([NO−

3 ] = 0.5 × 10–4 M, [catalyst] = 0.005 g, temperature = 50 ◦C, pH = 7, time = 50 min), and for C, D. [Ni+2] = 0.5 M, [catalyst] = 0.005 g, 
temperature = 50 ◦C, pH = 8, time = 40 min), Reusability of (E) the MoS2/γ-Fe2O3(20 %) nanocomposite and (F) the MoS2/γ-Fe2O3(30 %) nanocomposite to 
remove Ni+2 ions after 6th cycle. 
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successfully removed in solution and obtained the same result for MoS2/ 
γ-Fe2O3(30 %) nanocomposite after six repeated runs (Fig. 7F). To study 
the structural stability of recycled nanocomposites, is considered using 
SEM and FTIR analysis after the four successive runs that no obvious 
change is be observed (Fig. S9). 

Several researches have been executed on the mechanism of heavy 
metal adsorption on MoS2 nanosheets. Z. Wang and his colleagues 
(Wang et al., 2018) have associated the mechanism for Hg2+ adsorption 
on MoS2 nanosheets through ion exchange between Hg2+ and cations (e. 
g., H+) on the MoS2 surface. In addition, it has been demonstrated that 
Hg2+ can be adsorbed on MoS2 surface in the form of multilayers, where 
the adsorption of the first layer is attributed to the complexation of Hg2+

with S atoms while the adsorption of subsequent layers mainly results 
from electrostatic interaction (Wang et al., 2018). In addition, M.J. 
Aghagoli, et al have stated that the adsorption of Ni(II) ions on MoS2 is 
mainly due to the electrostatic interaction of ions on molybdenum di-
sulfide surface (AghagoliShemirani, 2017). To study the adsorption of 
MoS2-based catalysts, the comparison Table S21 is reported. In the next 
section, we investigated the adsorptions nanocomposites by using 
experimental design approach in two parts as follows: 

3.2. The experimental design Approach 

3.2.1. The experimental design Approach: Part I: Detection of significant 
parameters on Qe and removal percent responses of different 
nanocompposites 

In this section, in the first step, the modeling of the effect of inde-
pendent synthesis conditions on the Qe and removal percent of the 
various percentages of superparamagnetic nanocomposites has been 
considered using response surface methodology (RSM) and historical 
data. Consequently, with regard to developed mathematical models and 

coefficient estimations of different terms, the most effective variables 
were detected. Here, the superparamagnetic nanocomposites comprise 
MoS2/γ-Fe2O3(10%), MoS2/γ-Fe2O3(20%), and MoS2/γ-Fe2O3(30%), and the 
four input variables contain a concentration of Ni+2 and NO−

3 ions, the 
weight of the catalyst, and reaction temperature. The four considered 
independent variables, symbols, and experimental ranges are summa-
rized in Table 2, which is reported all obtained experimental results in 
Figs. S10, and 11. The used experimental data and obtained responses 
for the three superparamagnetic nanocomposites were tabulated in 
Tables S2-4. The modeling study and assessment of the prominence of 
individual/binary impacts of synthesis variables on responses, ANOVA, 
and optimization were performed by response surface and design expert 
7.0.0 software. 

In order to depict the mathematical relationships between indepen-
dent variables and response values, empirical models were obtained via 
the least square of error. If the fitted model developed by the least square 
regression has an adequate estimation of experimental results, it can be 
employed to evaluate the real system (Akbari et al., 2019; Mirzaei et al., 
2021). As illustrated in Equation (2), the general quadratic models cover 
linear (A, B, C and, D), interaction (A × B, A × C, A × D, B × C, B × D, 
and C × D) and squared terms (A2, B2, C2, and D2) of independent 
variables applied to predict the influence of independent variables on 
response behavior. The empirical data from Tables S2-4 were employed 
to generate second-order quadratic equations. After taking out the 
insignificant terms with regard to p-values on ANOVA, the final reduced 
quadratic equations in terms of coded variables for sufficiently fore-
casting Qe and removal percent were created as follows (Equations (3) 
-(14)): 

MoS2/γ-Fe2O3(10%): Ni+2 

Qe = +0.24 + 0.26A − 0.10B + 0.017C
− 0.092AB + 0.068A2 (3) 

MoS2/γ-Fe2O3(10%): Ni+2 

Removal = + 52.34+ 21.60A − 2.45B+ 3.85C (4) 

MoS2/γ-Fe2O3(10%):NO−
3 

Qe = +(2.268E − 005)
+(2.265E − 005)A − (9.104E − 006)B + (1.351E − 006)C

− (7.959E − 006)AB + (7.922E − 007)AC
+(4.977E − 006)A2

(5) 

MoS2/γ-Fe2O3(10%):NO−
3 

Table 2 
List of actual and coded variables, and corresponding experimental ranges used for modeling.  

Actual variables Unit Type Symbol Low actual High actual 

Ni2+ Concentration mol/L Numeric Ni2+ Conc.  0.1  0.5 
NO−

3 Concentration mol/L Numeric NO−
3 Conc.  0.1 × 10-4  0.5 × 10-4 

Weight of adsorbent g Numeric Cat.  5.000E-003  1.000E-002 
Temperature ◦C Numeric T  25.00  50.00  

Table 3 
ANOVA table of Qe and removal percent of MoS2/γ-Fe2O3 nanocomposites.  

Nanocomposites Model F-value p-value Std.Dev R2 adj-R2 Pred-R2 adequate precision 

MoS2/γ-Fe2O3(10 %) Niþ2 Qe  639.91 < 0.0001  0.018  0.9956  0.9941  0.9902  78.601  
Removal  604.34 < 0.0001  1.67  0.9913  0.9896  0.9870  74.524 

MoS2/γ-Fe2O3(10 %)NO−
3 Qe  1278.67 < 0.0001  9.922E-007  0.9983  0.9975  0.9953  112.810  

Removal  2511.51 < 0.0001  0.64  0.9979  0.9975  0.9966  151.735 
MoS2/γ-Fe2O3(20 %) Niþ2 Qe  2386.85 < 0.0001  0.011  0.9988  0.9984  0.9974  151.770  

Removal  355.39 < 0.0001  1.25  0.9896  0.9868  0.9813  60.140 
MoS2/γ-Fe2O3(20 %)NO−

3 Qe  1605.22 < 0.0001  1.280E-006  0.9983  0.9976  0.9961  124.101  
Removal  603.96 < 0.0001  1.16  0.9912  0.9896  0.9871  75.405 

MoS2/γ-Fe2O3(30 %) Niþ2 Qe  2517.80 < 0.0001  0.011  0.9989  0.9985  0.9975  155.892  
Removal  257.50 < 0.0001  1.47  0.9856  0.9818  0.9750  50.837 

MoS2/γ-Fe2O3(30 %)NO−
3 Qe  2688.93 < 0.0001  8.417E-007  0.9994  0.9990  0.9977  164.910  

Removal  1383.08 < 0.0001  0.64  0.9973  0.9966  0.9954  115.973  

Table 4 
CCD design summary.  

Name Symbol Unit Type Low 
actual 

High 
actual 

weight percent of 
γ-Fe2O3 

γ-Fe2O3 % Numeric  10.00  30.00 

NO−
3 concentration 

(×10-4) 
Conc. 
(×10-4) 

mol. 
L− 1 

Numeric  0.10  0.50 

Ni+2 concentration Conc. mol. 
L− 1 

Numeric  0.10  0.50  
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Fig. 8. Percent contribution of different terms upon (1) Qe and (2) removal percent, for MoS2/γ-Fe2O3(10%) (a), MoS2/γ-Fe2O3(20%) (b) and MoS2/γ-Fe2O3(30%) (c) 
nanocomposites (A. Ni+2 concentration, B. weight of the nanocomposites, and C. reaction temperature. 
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Removal = + 49.40+ 16.85A − 1.80B+ 3.10C (6) 

MoS2/γ-Fe2O3(20%): Ni+2 

Qe = +0.37 + 0.31A − 0.14B + 0.012C
− 0.11AB + 0.027A2 (7) 

MoS2/γ-Fe2O3(20%): Ni+2 

Removal = + 82.02+ 13.95A − 1.90B+ 2.90C − 2.64A2 (8) 

MoS2/γ-Fe2O3(20%):NO−
3 

Qe = +(3.385E − 005)
+(2.945E − 005)A − (1.281E − 005)B + (1.240E − 006)C

− (1.040E − 005)AB + (4.819E − 006)A2
(9) 

Fig. 9. Percent contribution of different terms upon (1) Qe and (2) removal percent, for MoS2/γ-Fe2O3(10%) (a), MoS2/γ-Fe2O3(20%) (b) and MoS2/γ-Fe2O3(30%) (c) 
nanocomposites (A. NO−

3 concentration, B. weight of the nanocomposites, and C. reaction temperature. 
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MoS2/γ-Fe2O3(20%):NO−
3 

Removal = + 74.60+ 14.80A − 1.80B+ 2.90C (10) 

MoS2/γ-Fe2O3(30%): Ni+2 

Qe = +0.39 + 0.31A − 0.14B + 0.012C
− 0.11AB + 0.021A2 (11) 

MoS2/γ-Fe2O3(30%): Ni+2 

Removal = + 84.05+ 13.95A − 1.90B+ 2.80C − 3.50A2 (12) 

MoS2/γ-Fe2O3(30%):NO−
3 

MoS2/γ-Fe2O3(30%):NO−
3 

Removal = +75.86 + 14.30A − 1.35B + 2.85C
+1.57A2 (14)  

With regard to developed equations, parameter A has a positive effect on 
whole responses (Qe and removal percent) for all weight percent of 
γ-Fe2O3. In other word, with an increase in parameter A (concentration 
of Ni+2 or NO−

3 ), Qe and removal percent responses increased. In the 
following, parameter B (weight of catalyst) has a negative influence in 
both responses of Qe and removal percent and for all weight percent of 
γ-Fe2O3, as found from negative coefficient. With the decrease in weight 
of catalyst, Qe and removal percent responses increased. An increase in 
parameter C (reaction temperature) led to an increase in Qe and removal 
percent, due to a positive coefficient. Regarding obtained equations, the 
maximum influence of parameters belong to Ni+2 and NO−

3 concentra-
tions, because of their high coefficients. It is worth mentioning in the 
final obtained equations, some interaction and binary terms have been 
omitted, because of their minimal effect on the model (recognized by 
their high p-values (greater than 0.05)). 

The statistical importance of the created quadratic models was 
assessed using analysis of variance (ANOVA). This includes a full anal-
ysis of variance, prediction equations, and case statistics comprising F- 
value, p-value < 0.05, predicted R2, R2, adjusted R2, and adequate 
precision. In order to assess the acceptability of the model, the diag-
nostic schemes were considered, too. The R2 value is improved by 
omitting and adding some terms in the equation. 

The ANOVA analysis for developed quadratic models were illus-
trated in Tables S5-S16 and summarized in Table 3. 

Model F-value and related probability value (p-value) are used to 
approve model significance. In plain language, if the p-value is less than 
0.05, then the model or terms in the model have a significant effect on 
the response. The small values of model p-values (<0.0001) confirmed 
the accuracy and reliability of the developed model. 

R2 is a measure of the amount of variation about the mean illumi-
nated by the model. Adjusted R2 is a measure of the amount of deviation 
about the mean illuminated by the model and adjusted for the number of 
terms in it. In better words, if the number of unimportant terms in the 
model increases, the adjusted R2 decreases. Therefore, adjusted R2 is a 
more unbiased statistical parameter rather than R2. High values of the R2 

and adjusted R2 (higher than 0.95) for whole responses (Table 3) 
revealed suitable fitting of the experimental data. Predicted R2 is a 
measure of the amount of variation in new data enlightened by the 
model. The difference between predicted R2 and adjusted R2 should be 
less than 0.20. If not, there may be a problem with either the model or 
data. The very small differences between adjusted R2 and predicted R2 

(<0.2) for all responses proved the perfect prediction of developed 
models. 

Adequate precision compares the span of the predicted values at the 
design space with the average prediction error, and hence is a signal-to- 
noise ratio. Values more than 4 point to acceptable model discrimina-
tion. As presented in Table 3, all responses showed adequate precision. 

The statistical validation and goodness of the fitting of developed 
models could be graphically scanned using the diagnostics plots, too. 
Most of the plots demonstrating residuals express how well the model 
satisfies the assumptions of the analysis of variance. According to 
Figs. S12-S17 (a1 and a2) for Qe and removal percent of different 
nanocomposites, a normal scattering of residuals close a straight line, 

with no specific arrangements, approves that the residuals tail a normal 
distribution. The residuals versus predicted plot demonstrate the re-
siduals versus the rising predicted response values and check the 

Qe = +(3.464E − 005) + (2.974E − 005)A − (1.288E − 005)B + (1.270E − 006)C
− (1.025E − 005)AB + (7.922E − 007)AC − (4.207E − 007)BC

+(4.699E − 006)A2
(13)   

Table 5 
The central composite design of independent variables and related laboratory 
responses.  

(a) 
Run 

A 
γ-Fe2O3 

(%) 

B 
NO−

3 concentration (£10-4) 
(mol/L) 

Qe (mg/g) removal 
(%) 

1  20.00  0.10 1.3008E- 
005 

65 

2  10.00  0.30 3.33365E- 
005 

55 

3  20.00  0.30 4.65934E- 
005 

77 

4  20.00  0.50 9.40771E- 
005 

94 

5  20.00  0.30 5.05934E- 
005 

76 

6  30.00  0.30 4.85178E- 
005 

80 

7  10.00  0.10 7.44868E- 
006 

37 

8  30.00  0.50 9.51463E- 
005 

95 

9  20.00  0.30 4.25934E- 
005 

78 

10  20.00  0.30 4.85934E- 
005 

76 

11  10.00  0.50 7.0343E- 
005 

70 

12  30.00  0.10 1.34357E- 
005 

67 

13  20.00  0.30 4.70934E- 
005 

77  

(b) 
Run 

A 
γ-Fe2O3 

(%) 

B 
Niþ2concentration (mol/ 
L) 

Qe (mg/g) removal 
(%) 

14  20.00  0.50  0.970531 97 
15  10.00  0.10  0.0743961 37 
16  20.00  0.30  0.5244 87 
17  30.00  0.10  0.142754 71 
18  10.00  0.50  0.803865 80 
19  30.00  0.50  0.980193 98 
20  20.00  0.30  0.5951 89 
21  10.00  0.30  0.355556 59 
22  20.00  0.30  0.5048 86 
23  20.00  0.30  0.625 90 
24  20.00  0.10  0.14058 70 
25  30.00  0.30  0.543961 90 
26  20.00  0.30  0.524638 87  
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assumption of constant variance. This plot should be a random distri-
bution within the constant limitation of residuals across the graph. This 
random scattering is observed in Figs S12-S17 (b1 and b2) for both re-
sponses of all three nanocomposites. The predicted versus actual plot 
helps distinguish a value, or assembly of values, that are not easily 
predicted by the model. The data in this plot should be split through the 
45-degree line. The presence of data close to 45-degree line in Figs S12- 
S17 (c1 and c2) indicates a good correlation between the experimental 
and predicted results (achieved by developed models) for both responses 
and whole nanocomposites (R2 > 0.96). 

As can be understood, the developed models passed the ANOVA 
standards well and can be applied to the detection of the most effective 
variables. 

With regard to ANOVA analysis, and in order to compare the effec-
tiveness of variables better, the percentage contribution of each term in 
the final developed models (according to estimation coefficients) for 
different responses are illustrated in Figs. 8 and 9. As revealed in Figs. 8 
and 9, among the individual terms, the variable of species concentration 
(Ni+2 and NO−

3 ) (A) are the most effective parameters on both Qe and 
removal responses. According to Figs. 8 and 9, for all nanocomposites 
upon Qe and removal percent responses, the interaction and squared 
terms have different contributions. 

In fact, up to this step, using modeling of comprehensive experi-
mental data and evaluation of estimation coefficients of different terms 
in developed models, it was revealed that the most effective variables on 
Qe and Removal percent responses for all three studied nanocomposites 
are species (Ni+2 or NO−

3 ) concentration (A). In the next step, with re-
gard to the detection of impressive variables using obtained results in 
the previous step, the central composite design (CCD) was done by 

considering three independent variables of weight percent of γ-Fe2O3, 
Ni+2 and NO−

3 concentration and the experimental design. 

3.2.2. The experimental design Approach: Part II: Response surface 
methodology combined with central composite design (CCD) 

Without expending a complete full factorial design of experiments, a 
face-centered central composite design matrix led to 13 experimental 
conditions (for each species (Ni+2 or NO−

3 )) established to create poly-
nomials with quadratic terms. It is worth mentioning that because of 
different ranges of removed species concentrations (Ni+2 or NO−

3 ), the 
designed experiments were illustrated in two tables. In CCD, each 
numeric variable is changed over 5 levels: plus, and minus one (factorial 
points), plus and minus alpha (axial points), and the center point. If 
categorical variables are added, the central composite design will be 
doubled for every combination of the categorical variable levels. Among 
26 experiments designed, there are 5 center point runs for assessing pure 
error (for each species) due to random variation in the observed 
response. The considered independent variables in this part consist of 
weight percent of Fe2O3 in MoS2/γ-Fe2O3 nanocomposites, Ni+2 con-
centration, and NO−

3 concentration, and selected responses are Qe and 
removal percent. It is worth mentioning that the reaction temperature 
and weight of nanocomposites were considered constant and at 50 ◦C 
and 0.005 g, respectively. The design summary, 26 runs performed, and 
related laboratory responses are provided in Tables 4 and 5. 

With regard to the “sequential model sum of square” table provided 
by the software, the quadratic models with p-values < 0.0001 have been 
suggested as the most appropriate models for the Qe and removal 
percent responses. The statistical modeling of results was done sepa-
rately for each species, and the final quadratic equations in terms of 

Fig. 10. The comparison of the empirical/ actual and predicted Qe (a and c) and removal percent (b and d) response values for Ni+2 (a and b) and NO−
3 (c and 

d) species. 
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actual variables for sufficiently forecasting Qe and removal percent were 
created as follows (Equations (15)-(18)): 

For Ni+2 

Qe = − 0.38288 + (0.035569 × Fe2O3) + (1.35549 × (Conc.× 10− 4))

+(0.013496 × Fe2O3 × (Conc.× 10− 4))

− (8.09995E − 004 × Fe2O2
3) + (0.61994 × (Conc.× 10− 4)

2
)

(15)  

Removal= − 35.24856+(7.05230×Fe2O3)+(175.91954×(Conc.×10− 4))

− (2.0000×Fe2O3 ×(Conc.×10− 4))

− (0.12672×Fe2O2
3) − (91.81034×(Conc.×10− 4)

2
)

(16) 

For NO−
3 

Removal= − 15.73563+(5.81049×Fe2O3)+(68.36207×(Conc.×10− 4))

− (0.62500×Fe2O3 ×(Conc.×10− 4))

− (0.10724×Fe2O2
3)+(31.89655×(Conc.×10− 4)

2
)

(18)  

The statistical significance of models, the influence of individual and 
interaction of variables are confirmed by analysis of variance 
(Tables S17-S20). 

As can be seen from Tables S17-S20, the obtained models passed the 
ANOVA standards well, and these developed models can be used to 
navigate the design space. The critical criteria that are well passed by the 
attained equations are summarized below (more detailed explanations 
about the interpretation of statistical parameters are given for Table 3 in 
the previous step): the high model F-value for Qe and removal percent 
responses and Ni+2 and NO−

3 species imply that the models are signifi-
cant, values of “Prob > F” less than 0.0500 (<0.0001) indicate that the 
models terms are significant, the high amount of R2 (>0.98), the “Pred 
R2″ are in reasonable agreement with the ”Adj R2″ (the difference be-
tween these two parameters is less than 0.2), adequate precision of re-
sponses is desirable (greater than 4) and indicates an adequate signal, 
the non-significance of the lack of fit in whole responses (this parameter 
is an undesirable characteristic for a model, and then insignificant lack 
of fit is good). 

The statistical validation of developed models could be graphically 
confirmed using the diagnostics plots, too. The obtained observations 
from different diagnostics graphs of both responses are as below (more 
detailed descriptions about the interpretation of diagnostic plots are 
given for Figs. S12-S17 in the previous step): a normal scattering of 
residuals closes a straight line in the “normal probability plot of re-
siduals” (Fig. S18, a1-a4), a random distribution within the constant 
limitation of residuals across the “residuals versus predicted graph” 
(Fig. S18, b1-b4), good correlation between the experimental and pre-
dicted results in “predicted versus actual plots” (Fig. S18 c1-c4). 

The good fitting potency of developed models is confirmed by 
comparison of empirical and predicted response values, as shown in 
Fig. 10. 

In the following, in order to gain graphical insight into the binary 
effect of two independent variables of the weight percent of γ-Fe2O3 (A) 
and species concentration (B) on the Qe and removal percent responses, 

for each species of Ni+2 and NO−
3 , 3D and 2D (contour) plots were 

investigated. In the case of the binary influence of weight percent of 
γ-Fe2O3 (A) and species concentration (B) on the Qe response of Ni+2 

species (Fig. 11a), it was revealed that an increase in both A and B pa-
rameters leads to an increase in Qe response, but this increase is steeper 
for B rather than variations. A maximum in Qe was found at a weight 
percent of γ-Fe2O3 of around 30 % and Ni+2 concentration of 0.5 × 10-4 

mol.L− 1. As revealed from Fig. 11a, both parameters had a positive effect 
on Qe, but parameter B (species concentration) was the most significant. 
These evidences are in good agreement with the consequences of the 
ANOVA study. 

The binary effect of weight percent of γ-Fe2O3 (A) and species con-
centration (B) on the removal percent response of Ni+2 species is shown 
in Fig. 11b. As shown, a sharp increase in removal percent was observed 
with an increase in Ni+2 concentration at a low weight percent of 
γ-Fe2O3 and an increase in weight percent of γ-Fe2O3 at low Ni+2 con-

centration, while a soft increase in removal percent was detected at high 
Ni+2 concentration and weight percent of γ-Fe2O3. It can be seen that the 
effect of one parameter (A or B) on the considered response depended on 
the other one (B or A). This behavior points to the binary effect between 
parameters (A and B). According to Fig. 11b, minimum removal percent 
was associated with low weight percent of γ-Fe2O3 and Ni+2 

concentration. 
Similar results were found from Qe and removal percent plot for NO−

3 
species. 

Using the output functions of the DoE (Eqs. 15–18) to establish the 
relationships between variables and responses, the multiple-objective 
optimization of the process was investigated. One of the solutions for 
maximizing Qe and removal percent for Ni+2 species with a desirability 
value of one was 26.72 % for weight percent of γ-Fe2O3 and Ni+2 con-
centration of 0.49 mol.L− 1 with a predicted Qe and removal percent of 
0.98 mg/g and 100 %, respectively. One of the predicted values for 
maximizing Qe and removal percent for NO−

3 species with a desirability 
value of one was 27.55 % for weight percent of γ-Fe2O3 and NO−

3 con-
centration of 0.50 × 10-4 mol.L− 1 with a predicted Qe and removal 
percent of 9.59 × 10-5 mg/g and 96.33 %, respectively. To validate the 
optimized result, a fresh nanocomposite with recommended conditions 
was fabricated in the lab. The empirical and software predicted results 
demonstrated a good correlation (Table 6). 

4. Conclusion 

In this work, superparamagnetic MoS2/γ-Fe2O3 (10, 20, and 30 %) 
nanocomposites (with the morphology of like-flower) were prepared by 
loading various percentages of γ-Fe2O3 (10, 20, and 30 %) nanoparticles 
on surface MoS2. Nanocomposites are reported as efficient adsorptions 
for removal of Ni+2 and NO−

3 ions from aqueous media that were studied 
by using the experimental design in two steps. In the first step, the 
modeling of the effect of independent synthesis conditions including the 
concentration of Ni+2 and NO−

3 , the weight of the catalyst, and reaction 
temperature, for the adsorption capacities and removal percent of the 
three superparamagnetic nanocomposites were performed using 
response surface methodology (RSM); and the most effective variables 
were recognized (species concentrations). In the following, the central 
composite design and optimization of synthesis parameters were per-
formed using the most important variables recognized. The maximum 

Qe = − 2.29453E − 005 + (2.67826E − 006 × Fe2O3) + (4.99529E − 005 × (Conc.× 10− 4))

+(2.35203E − 006 × Fe2O3 × (Conc.× 10− 4))

− (6.54419E − 008 × Fe2O2
3) + (1.51780E − 004 × (Conc.× 10− 4)

2
)

(17)   
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Fig. 11. 3D and contour plots for Qe (a1-2 and c1-2) and removal percent (b1-2 and d1-2) of Ni+2 (a and b) and NO−
3 (c and d) species.  
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adsorption capacities and removal percent of the MoS2/γ-Fe2O3 nano-
composites were forecast and empirically approved which proved a 
suitable agreement. The optimized conditions for Ni+2 species are Ni+2 

concentration = 0.49 mol.L− 1, and weight percent of γ-Fe2O3 = 26.72 % 
with predicted Qe = 0.98 mg/g and removal percent = 100 %, and for 
NO-3 species are NO-3 concentration = 0.50 × 10-4 mol.L− 1 and weight 

percent of γ-Fe2O3 = 27.55 % with predicted Qe = 9.59 × 10-5 mg/g and 
removal percent = 96.33 %. The results obtained from Ni2+ and NO-3 

ions indicate the experimental Qe of 0.95 and 9.23 × 10-5 (mg/g), and 
the removal percentage of 96 and 93(%), the presence 26.72 and 27.55 
(%) dose of MoS2/γ-Fe2O3 nanocomposites. Experimental investigations 
showed that the application of nanocomposites with recyclability is 
favorable to water treatment and the retention of the environment from 
wastewater pollution. The modeling study with the purpose of assess-
ment of the prominence of individual/binary impacts of synthesis var-
iables on responses, ANOVA, and optimization were successfully 
performed by response surface and design expert 7.0.0 software. 
Regarding the using of the RSM method, it should be mentioned that by 
using the usual experimental method we can see the influence of each 
selected parameter lonely on the catalyst performance while all of the 
other factors were kept constant. However, RSM method enables us to 
observe the influence of all of these selected parameters concurrently 

Fig. 11. (continued). 

Table 6 
Comparison of predicted and obtained results for DoE optimized nanocomposite.  

Species Niþ2 NO−
3 

Species concentration (mol.L¡1) 0.49 0.50 £ 10-4 

Weight percent of γ-Fe2O3 (%) 26.72 27.55 
Predicted Qe (mg/g) 0.98 9.59 × 10-5 

Experimental Qe (mg/g) 0.95 9.23 × 10-5 

Predicted removal percent (%) 100 96.33 
Experimental removal percent (%) 96 93  
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upon the catalyst performance. 
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