
Arabian Journal of Chemistry 16 (2023) 105272
Contents lists available at ScienceDirect

Arabian Journal of Chemistry

journal homepage: www.sciencedirect .com
Review article
Thermophysical properties of nanofluids and their potential applications
in heat transfer enhancement: A review
https://doi.org/10.1016/j.arabjc.2023.105272
1878-5352/� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding authors.
E-mail addresses: sunilthakur@shooliniuniversity.com (S. Kumar), k.anil@ddn.

upes.ac.in (A. Kumar), tabish.iitr@gmail.com (T. Alam), dan.dobrota@ulbsibiu.ro (D.
Dobrotă).
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aYogananda School of AI, Computers and Data Science, Shoolini University, Solan, India
bDepartment of Mechanical Engineering, UPES, Dehradun 248007, Uttarakhand, India
cCSIR-Central Building Research Institute, Roorkee 247667, Uttarakhand, India
d Faculty of Engineering, Department of Industrial Engineering and Management, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
a r t i c l e i n f o

Article history:
Received 11 June 2023
Accepted 14 September 2023
Available online 7 September 2023

Keywords:
Nanofluids
Thermophysical properties
Heat Exchanger
a b s t r a c t

Colloidal suspensions of nanoparticles in a base fluid, known as nanofluids, have become increasingly
popular in recent years due to their unique thermophysical features and promising heat transfer appli-
cations. This article provides an in-depth look at the latest developments in the field of nanofluids, cov-
ering everything from their synthesis techniques to their thermophysical characteristics. The advantages
and disadvantages of nanofluids and their prospective uses in heat exchangers were also discussed. Study
reveals that hybrid nanofluids are good alternatives in different heat exchangers as compared to simple
fluids because of their better thermal performance. The stability of the thermal system not only influ-
ences the system’s thermophysical parameters but also influences the system’s performance. It has also
been compared to how well nanofluids and conventional fluids function in heat exchangers. In conclu-
sion, this article is a great reference for scientists and engineers who want to learn more about the use
of nanofluids in heat transfer.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nanofluid is an attractive heat transfer fluid for use in better
heat transfer (HT) applications due to its excellent thermal conduc-
tivity and rheological properties (Mikkola et al. 2018). When these
millimeter or micrometer-sized particles are added to the base
fluid, the base fluid’s thermophysical properties change, making
heat transfer better (Sundar et al. 2017). The unique properties of
nanofluids, such as improved heat transfer performance, and
increased stability, have led to their application in various fields.
Adding nanoparticles to the base fluid alter its properties, resulting
in improved performance compared to traditional fluids (Salman
et al. 2020). The heat transfer rate and efficiency improved thermal
performance of heat sinks for cooling electronic processors by
using nanofluids (Afshari & Muratçobanoğlu, 2023). The applica-
tion of nanofluids is broadly classified into two categories: heat
transfer and non-heat transfer applications. In HT applications,
nanofluids are used as coolants in industries such as automotive,
aerospace, and electronics (Saidina et al. 2020). The enhanced ther-
mal conductivity of nanofluids results in improved HT performance
and reduced energy consumption (Kumar et al. 2022b). Overall, the
application of nanofluids is a rapidly growing area that could have
many different uses in various industries. The unique properties of
nanofluids make them promising alternatives to traditional fluids,
and ongoing research is focused on optimizing their performance
for different applications in heat exchangers. The stability of the
nanofluids and sedimentation of particles are operated in the field
of heat exchanger by nanofluids (Afshari et al. 2022). Over the past
ten years, the significance of Nanofluid research has become more
apparent, as shown in Fig. 1, which lists the number of articles
published since 2012 that mention nanofluids. These studies cover
those that deal with their preparation, thermophysical properties
measurement, and use in several applications. The information in
Fig. 1 was discovered by looking through titles, abstracts, and key-
words in Google Scholar for the terms ‘‘Nanofluids” and ‘‘Nanoflu-
ids in Heat Exchanger” over the time displayed. The search
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Nomenclature

Symbols Units
Nu Nusselt number, Dimensionless
Re Reynolds number, Dimensionless
Cp Specific Heat Capacity, J=Kg:K
Knf Thermal conductivity of Nanofluid, W=mK
Kp Thermal conductivity of the particles, W=mK
Kbf Thermal conductivity of base fluid, W=mK
T Temperature, K

Greek Symbols
lbf Base fluid Viscosity, Ns=m2

um Maximum particles packing fraction, Dimensionless
lnf Nanofluid Viscosity, Pa/s
u Volume fraction of particles, Dimensionless
l Viscosity, Pa/s
Tnf Temperature of Nanofluid, K

Abbreviations:
Bf Base fluid
CNT Carbon Nano Tube
HE Heat Exchanger
HT Heat Transfer
HTC Heat Transfer Coefficient
HNF Hybrid Nanofluid
MWCNT Multi-walled carbon nanotube
NFs Nanofluids
NPs Nanoparticles
PEG Polyethylene-glycol
PAS Primary alkyl sulphate
SDS Sodium Dodecyl Sulphate
SDBS Sodium Dodecyl Benzene Sulphonate
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revealed that 26,000 papers were circulated in 2022 alone, and this
trend is expected to continue in the years to come.

The novelty of this review paper would lie in its focus on the lat-
est development in the synthesis, characterization, and application
of developing applications for nanofluids in areas including energy
storage and desalination and biomedical engineering, highlighting
the potential for these materials to enable new technologies and
solutions for important social challenges.

This review article aims to provide a comprehensive summary
of the current state of the art in the subject of nanofluids and their
potential to enhance heat transfer in heat exchangers. In section 2
included an overview of NFs and their preparation. Section 3 out-
lined nanofluids’ discussed most important properties such as
thermal conductivity, viscosity, density, and specific heat capacity
are all vital thermophysical qualities. Section 4 reviewed various
nanofluids’ applications related to heat exchangers, desalination,
and bio-medical applications. The 5th section showed the chal-
Fig. 1. The popularity of Nanofluids in last ten years. (Goo
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lenges in nanofluid applications. Lastly, the section shows some
concluding remarks and suggestions for future research.

2. Nanofluid, preparation and stabilization

Nanofluids are a type of fluid that has been engineered to have
nanoparticles suspended in them. This suspension gives the nano-
fluid enhanced properties, such as increased heat transfer (HT) effi-
ciency and thermal conductivity. NFs can be used to improve the
performance of heating and cooling systems, increase the effi-
ciency of solar cells, and even enhance the delivery of drugs to
specific targets in the body (Nobrega et al. 2022). NFs are promis-
ing new technology that could revolutionize many industries in the
future.

There are many nanofluids which are prepared by the mixture
of nanoparticles and base fluids (BFs), like Copper oxide (CuO), Alu-
mina ðAl2O3Þ, Silver (Ag), Zinc Oxide (ZnO), Titanium Dioxide
gle Scholar for the search of Nanofluids, April 2023).
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(TiO2Þ Carbon Nanotube (CNT), Iron Oxide (Fe2O3), Magnesium
Oxide (MgO), Cerium Oxide (CeO2), Gold Nanoparticle (AU).
Whereas common BFs may include, H2O, ethylene–glycol and
other coolants and lubricants, Bio-fluids etc. Mapping of some
BFs and NPs shown in Fig. 2 the summarizing published articles
related to NFs (Sharma & Mital 2016; Kumar & Arasu 2018),(Ali
et al. 2018) Important reviews cover nanoparticle and nanofluid
synthesis, characterisation, stability, aggregation, characteristics,
and applications.

2.1. Preparations of nanofluids

The preparation of nanofluid is essential because it determines
their stability. In general, researchers created nanofluids using the
one-step and two-step method. The one-step method makes and
disperses nanoparticles in BFs. This method avoids nanoparticle
drying, storage, transportation, and dispersion. NFs have better
thermal conductivity, diffusivity, convective HTC and viscosity
than water or oil (Bakthavatchalam et al. 2020). NFs combine car-
bon, metal, oxide, and ceramic NPs with BFs, including, H2O, ethy-
lene, etc. Method for synthesizing nanoparticles is shown in Fig. 3.
Nanoparticles (NPs) can be synthesised chemically, physically,
physiochemically, or biologically (Asadi et al. 2019).

2.1.1. One step method
In a one-step method, the -size particles are made and dis-

persed into BFs simultaneously, which usually leads to less
agglomeration (Chakraborty & Panigrahi 2020). Fig. 4 demon-
strates the synthesis and dispersion of nanoparticles through this
method. The one-step process had good dispersion stability com-
pared to the two-step method (Aberoumand & Jafarimoghaddam
2018). The benefits and drawbacks of the one-step approach are
laid out in Table 1. The most popular one-step method includes
microwave radiation, laser ablation in liquid (LAL) etc. Microwave
radiation includes microwave irradiating of microwave radiation
includes microwave irradiating the initial solution utilizing the
presence of a reducer. Energy for heating the fluid and driving
the nucleation process comes from microwave irradiation(Zhu
et al. 2004).

2.1.2. Double-Step method
The double-step method involves the dispersion of these

nanoparticles in the BFs using various techniques like ultrasonica-
Fig. 2. Illustration of Various Base Fluids a
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tion, high shear mixing and mechanical or magnetic stirring. The
NPs are produced first and subsequently dispersed into BFs
(Chakraborty & Panigrahi 2020). This method is highly effective
in achieving better performance than the one-step method. How-
ever, when preparing nanofluid using the double-step method, it
tends to result in high, agglomeration, leading to reduced stability
compared to the One-step method (Mohammadpoor et al. 2019).
Then, the dry powder nanoparticles are merged into the BFs using
ultrasonic agitation and mixing, as shown in Fig. 5. There are some
advantages and disadvantages of the double-step method which
are shown in Table 1.

2.2. Stabilization of nanofluids

To prevent this undesirable behaviour and enhance the stability
of nanofluids, surfactant are often used. Surfactants help prevent
the agglomeration of NPs by reducing the surface tension between
the NPs and the BFs (Gülmüs� et al. 2023). Surfactants are contain-
ing both hydrophilic and hydrophobic region in their molecular
structure. They absorb at the liquid–gas or liquid–liquid interfaces,
reducing surface tension and improving the dispersion and stabil-
ity of nanofluids. The stability of nanofluids is directly connected to
their properties (Mukherjee et al. 2018). There are different types
of surfactants to stabilize nanofluids like cationic, anionic, ampho-
teric and non-ionic. They also function as wetting agents, prevent-
ing the formation of droplets on the surface of solid particles
suspended in a liquid. Other standard methods of stabilization
include the use of shear thinning agents, the addition of elec-
trolytes, and high-frequency ultrasound. There are some important
aspects of stability shown in Fig. 6.

There are some drawbacks of using surfactants. Surfactants may
exhibit significantly changes in their properties, particularly at ele-
vated temperature. These changes can impact their effectiveness in
stabilizing nanofluids potentially leading to reduced stability
(Anggraini et al. 2020).
3. Thermophysical properties of nanofluids

To predict the HT behaviour of NFs, knowledge of their thermo-
physical properties is crucial. There is no contention that the addi-
tion of NPs, which have distinct thermophysical properties, alters
the thermophysical properties of typical working fluids. There are
some thermophysical properties of nanofluids like thermal con-
nd Nanoparticles (Sajid & Ali, 2019).



Fig. 3. Different methods of synthesizing nanoparticles (Bakthavatchalam et al. 2020).

Fig. 4. One-Step Method (Bakthavatchalam et al. 2020).
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ductivity, viscosity, specific heat capacity and density. By including
nanoparticles into the BF, its thermal conductivity, viscosity, den-
sity, and specific heat can be considerably improved, all of which
have an impact on the convective HT. The size, shape, concentra-
tion, and type of NPs as well as the qualities of the Bf all have an
impact on the thermophysical parameters of NFs. This section
gives a comprehensive and up-to-date review of the thermophys-
ical characteristics and influencing factors of various BFs and
nanoparticles (Said et al. 2021).
4

3.1. Thermal conductivity

The variation in nanofluids’ thermal conductivity has been the
subject of extensive theoretical and experimental study. As can
be shown in Fig. 7, the thermal conductivity of NFs is affected by
a wide range of parameters, including particle (size, shape, and
material) and Bf, additives, and temperature. The thermal conduc-
tivity of NFs appears to be the most researched attribute in the
existing literature. NFs are distinct from regular BFs because of



Fig. 5. Double-Step Method (Bakthavatchalam et al. 2020).

Table 1
Advantages and disadvantages of one-step and double-step methods.

One-Step Method Double-Step Method

Advantages Disadvantages Advantages Disadvantages

No StorageNo Drying High deposit of residual reactants Most simple and economical Need surfactant or functionalisation
No oxidationNo transportation Suitable for low-pressure base liquids Ideal for large scale Increase of self-weight
No Re-dispersionrequirement Not scaled up for large-scale production Suitable for oxide nanoparticles Rapid sedimentation, Quick agglomeration
Less agglomerationHigh Stability The synthesis method is expensive Cost-effective production High surface energy
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their improved thermal conductivity and other novel thermophys-
ical features (Okonkwo et al. 2021). For the thermal conductivity of
nanofluid, extensive experimental research was carried out utiliz-
ing various methodologies, which are discussed below.
3.2. Previous studies on thermal conductivity of nanofluids

Besides the numerical studies, there are so many experimental
studies which different researchers have taken out to investigate
the thermal conductivity of NFs using different types of BFs. How
dispersant concentration and other parameters such as mass frac-
tion, temperature, and standing time influenced CNT-nanofluid
thermal conductivity. They discussed and observed the 20–60 �C
range for temperature and u is 0–7%, respectively. At increasing
temperature and u, the NF thermal conductivity increased Zhang
et al. (2021) and Shahsavar et al. (2022).

Other various researchers have shown numerous theoretical
studies to study the changes in the thermal conductivity of NFs
(Yu and Choi (2003); Khdher et al. (2016); Yang et al. (2017);
Pare & Ghosh (2021)). Maxwell (1873) presented the first correla-
tion to compute suspension thermal conductivity of constituent
phases and solid phase volume fraction. However, the correlation
was only applicable to spherical particles. Hamiliton and Crosser
(1962) suggested a modified Maxwell model with an empirical
shape factor to extend the correlation to non-spherical particles.
Xue (2005) calculated effective thermal conductivity using the very
large axial ratio and spatial distribution of CNTs. Alawi et al. (2018)
investigated the thermal conductivity of metallic oxide NFs for var-
ious NPs shapes and concentrations to enhance thermal system
performance. Different researchers have created different theoret-
ical and experimental models for determining the thermal conduc-
5

tivity of NFs, and a summary of these approaches is provided in
Table 2.

3.3. Viscosity

The viscosity (l) of nanofluids has been studied a great deal in
recent decades because it could be useful in many industrial and
medical fields. The accumulation of nanoparticles to the BF can
increase its viscosity due to high surface area and interparticle
solid forces (Girard et al. 2021). The viscosity of NFs is affected
by several factors such as type, concentration, size, and surface
characteristics of NPs, as well as the type of BFs. Moreover, the
temperature also affects the viscosity of NFs, with increasing tem-
perature resulting in decreasing viscosity (Suresh et al. 2011). Sev-
eral experimental studies have been shown on the viscosity of NFs,
which are further discussed in the following section.

3.4. Previous studies on viscosity of nanofluids

There are numerous experimental studies in addition to the
numerical ones that different researchers have carried out to inves-
tigate the lnf discussed. Saeedinia & Razi (2012) investigated CuO-
oil based NF and tested (0.2–2%) particle weight concentrations at
temperature 293–343 K and l increases with nanoparticle concen-
tration, particularly at lower nanofluid temperature. Esfe et al.
(2014) studied the turbulent flow of COOH-functionalised
MWCNT/Water in double-tube heat exchanger at temperature
and volume concentration (0.05%-1%). The result revealed that
the HTC and thermal performance factor increased at the concen-
tration (0.05%-1%). Sundar et al. (2014) showed that 60:40% EG/
W-based NFs had a higher viscosity than 40:60% and 20:80% at



Fig. 6. Important aspects for the stability of NFs (Bakthavatchalam et al. 2020).
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the measured particle loadings and temperatures. Li & Zou (2016)
deliberate a combination of 60% water and 40% EG to determine
the energy system’s performance benefits from usings two conven-
tional HT fluids. The lnf decreases with temperature and behaves
like Newtonian fluid. Liu et al. (2022) discovered the NPs are highly
disaggregated, the viscosity of the modified Fe3O4 nanofluid agrees
with the Einstein equation. Along with experimental studies, dif-
ferent researchers have done theoretical work to study how the
lnf changes. There are some equations for estimating the lnf

shown in Table 3. Einstein (1905) Einstein’s equation was the first
to describe the rheology of NF with volume percentage (0–2%). The
NF’s viscosity may be affected by particle interaction at greater vol-
ume fractions. Brinkman (1952) extended the Einstein relation.
This formula works only for particle volume fractions (0–4%).
Krieger & Dougherty (2014) developed a semi-empirical viscosity
relation for all particle volume fractions. Klazly & Bogn (2022) sim-
plified the 1981 Frankel-Acrivos formula. Wang & Xu (1999) pre-
dicted nanofluid l with correlation. In 2008, Brinkman and
Batchelor’s formulas grossly underestimated the viscosity of NF,
particularly for very small particles u < 1% (Nguyen et al. 2008).
Ibrahim et al. (2019) utilized HNFs which are made by suspending
various nanoparticles in mixed form. The hybrid nanofluid trades
off the benefits and drawbacks of each suspension to improve heat
6

transmission and pressure drop. Klazly & Bogn, (2022) proposed a
correlation standardized to the BFs dynamic viscosity.

3.5. Specific heat capacity (Cp)

To a large extent, the NFs heat transfer rate is determined by its
specific heat capacity (Cp). That fluid are suspensions containing
NPs dispersed into BF. Several factors influence the Cp of NPs,
including their type and concentration of NPs, their size and shape,
and the properties of BFs. One notable effect of incorporating NPs
into BF is increased thermal conductivity of NFs, which can lead
to higher Cp values compared to BFs alone.

3.5.1. Previous studies on the specific heat of nanofluids
There have been a lot of earlier investigations on the specific

heat capacity of nanofluids Xi & Pan (2017). Table 4 presents the-
oretical equations for nanofluid-specific heat capacity that have
been studied both experimentally and theoretically. Benigno
Barbe et al. (2012) derived equation from the data of Cp measure-
ments of Al2O3 NFs and dispersed in water and ethylene glycol.
Sekhar & Sharma (2015) conducted equation from water-based
nanofluid data (Al2O3, CuO, Si O2 and Ti O2). Due to thermal diffu-
sivity, nanofluid Cp decreased with particle concentration.



Fig. 7. Factors affecting the thermal conductivity of NFs (Gupta et al. 2017).
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Cabaleiro et al. (2015) provided a new fitting equation to associate
nanofluid specific heat with BF and concentration. Alklaibi et al.
(2021) investigated the nanodiamond NFs in flat plate solar collec-
tor improves thermal efficiency (1.0 vol%) and reduces entropy
generation compared to using pure water as the working fluid.

3.6. Density

Density is a thermophysical properties that affects nanofluid
heat transfer performance. It impacts Re, friction factor, pressure
loss, and Nu. Researchers have previously focused only knf and
lnf and most of the studies are also available.

3.6.1. Previous studies on density of Nanofluids
Density affects flow parameter and friction factor, hence it must

be evaluated and used in HT. The increase in density of NFs is pri-
Table 2
Previously developed models for thermal conductivity of NFs.

Researchers Model

(Maxwell, 1873) Knf ¼ ð2KbfþKpÞ�2uðKp�Kbf Þ
ð2KbfþKpÞþuðKP�Kbf Þ Kbf

(Hamiliton and Crosser,
1962)

Knf ¼ ðKp Þþðn�1Þ�Kbf�ðn�1Þ/ðKbf�KpÞ
ðKpÞþðn�1Þ�Kbfþ/ðKbf�KPÞ Kbf

(Xue, 2005) Knf
Kbf

¼ 1�/þ2/
Kp

KP�Kbf
IN

KpþKbf
2Kbf

1�/þ2/
Kbf

Kp�Kbf
IN

KpþKbf
2Kbf

(Yu and Choi, 2003) Keff
Kf

¼ Kpeþ2Kf�2/ðKpe�Kf Þð1þbÞ3
Kpeþ2Kf�/ðKpe�Kf Þð1þbÞ3

(Khdher et al. 2016) Knf
Kbf

¼ 1:268� T
80

� ��0:0074 � u
100

� �0:036
(Yang et al. 2017) keff ¼ H�2Tð Þkeff xþ rþtð Þkeff z

HþRþ3t

(Yang & Xu, 2017) knf
kbf

¼ kpe
�

þkbf n�1ð Þþ n�1ð Þ kpe
�

� kbf
� �

ue

kpe
�

þkbf n�1ð Þ� kpe
�

� kbf
� �

ue

(Alawi et al. 2018) knf
kbf

¼ kpþ2kbf�2u kbf�kpð Þ
ksþ2kbf�u kbf�ksð Þ

� �
þ 5� 104b;qf Cp

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT
dpqp

f T; ;ð Þ
q

(Pare & Ghosh, 2021) knf
kbf

¼ aþ bT þ cuþ dT2 þ eu2 þ fTu
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marily due to the additional mass of the nanoparticles. NPs have a
much higher density than most BFs, and their addition can signif-
icantly increase the overall density of the nanofluid (Said et al.
2021). As may be seen, earlier equations on the density of NFs
are displayed in Table 5.

4. Applications of nanofluids

Nanofluids, which are liquids containing nanoparticles of met-
als, oxides, or other materials, have established much interest in
recent years because of their potential to improve HT capabilities.
Here are some of the applications of nanofluids.

4.1. Application in different heat exchangers

Transferring thermal energy from one fluid to another is the pri-
mary function of heat exchangers. HT devices, such as heat
exchangers, typically use NFs as working fluids. Classifying HEs
according to the HT method used is seen in Fig. 8. When it comes
to heat exchangers, there are two main types: direct contact and
indirect contact. Nonetheless, the HT technique can be utilised to
further categorise these tools. Vallejo et al. (2022) performed inde-
pendently on mono or HNF for single and two-phase convective HT
applications. The usage of NFs in various types of HE has been
researched and described further below.

4.1.1. In Double–Tube heat exchanger (DTHE)
The DTHE is a popular choice for many commercial and indus-

trial processes, such as those involved in the manufacture of chem-
icals and beverages. A greater overall heat transfer coefficient
(HTC) and more efficient HE can be achieved by incorporating
NPs into the BFs in order to improve their thermal conductivity
(J. Zhao et al. 2022). In addition, the use of NFs can reduce the size
and weight of the HE, which can be particularly beneficial in appli-
cations where space is limited. The thermal performance of
TiO2-H2O nanofluids in DTHE were examined. The results show
that NFs can improve HT rates by (10.8–14.8%), and pressure drop
increased 51.9% (Qi et al. 2019) where, Moradi et al. (2019)
explored MWCNT aqueous nanofluid HT in porous medium coun-
ter current double-pipe heat exchanger. MWCNT-water nanofluids
increased HTC by 35%. Ozdemir & Ergun, (2019), Zheng et al. (2020)
examined HT performance in counterflow DTHE using Al2O3/water
NF with mean diameter 50 nm. The Nu increases with NP volume
Remarks

The effective thermal conductivity of NFs is a function of the particle size
distribution, BF content, and volume concentration.
The proposed combined liquid–solid mixture of various non-spherical
particles has a thermal conductivity rate of the particles and BFs greater than
100.
They discussed for the important properties of carbon-nano tube (CNT)

The influence of ordered nanolayers on NFs is accounted for in the revised
important nanofluid Maxwell equation for effective thermal conductivity.
The thermal conductivity of BFs was shown to be a linear function of
concentration, temperature, and the newly developed correlation.
New thermal conductivity model for nanorod-based NFs.

Modified Hamilton–Crosser model predicts effective thermal conductivity of
CNT-based NFs.

Metallic oxide nanofluid thermal conductivity ratio increases with
temperature and NPs volume%, but intensity increases as NPs size reduces.
They discussed and implemented artificial neural network model to predict
thermal conductivity of NFs were measured between 20 �C and 90 �C



Table 3
Previously developed models for the viscosity of NFs:

Researchers Model Remarks

(Einstein, 1906) lnf

lbf
¼ 1þ 2:5u This expression was assumed to be a spherical particle of very low

volume fraction u < 2%.
(Brinkman, 1952) lnf

lbf
¼ 1

1�uð Þ2:5
This formula is only applicable for low particle concentration (u = 0–4%).

(Krieger & Dougherty, 2014) lnf

lbf
¼ 1� u

um

� �� �� l½ �um Semi-empirical viscosity relation for particle u up to maximum fraction
(um = 0.495. . .0.54) and l is 2.5.

(Wang & Xu, 1999) lnf

lbf
¼ 1þ 7:3uþ 123u2 Predict the viscosity of NFs.

(Nguyen et al. 2008) lnf

lbf
¼ 1þ 0:025uþ 0:015u2 Together the Brinkman and Batchelor formulas strictly underestimate

the NFs viscosity unless the particle u < 1%.
(Avsec & Oblak, 2007) lnf

lbf
¼ 1þ 2:5ue þ 2:5u 2

e þ 2:5u 3
e þ 2:5u4

e
Using the exponential formula to calculate the viscosity of NFs.

(Masoumi et al. 2009) lnf

lbf
¼ 1þ qpVBd

2
p

72dC
Predicting the viscosity of NFs.

(Klazly & Bogn, 2022)
lnf
lbf

¼ 1þ 9:4974le þ 77:811u 2
e þ 0:9514u 3

e þ
ffiffiffiffiffiffiffiffiffiffiffi
18KbTqp
pqpdp

q
39:6231

ffiffip
u

p
C

ffiffiffiffi
dp

p
New correlation standardized to BF dynamic viscosity.

Table 4
Previously developed models for specific heat capacity of NFs.

Researchers Model Remarks

(Barbe et al. 2012) Cp;nf ¼ 1�;ð Þ�qbf �Cp;bfþ;�qp �Cp;p

;�qpþ 1�;ð Þ�qbf

The first law of thermodynamics accurately justifies nanofluid Cp.

(Sekhar & Sharma, 2015)
Cp;nf ¼ 0:8429 1þ Tnf

50

� ��0:3037
1þ rp

50

� �0:4167
1þ ;p

100

� �2:272 The Cp of the nanofluid reduced as particle concentration
increased due to an increase in thermal diffusivity.

(Cabaleiro et al. 2015) Cp;bf Tð Þ�Cp;nf Tð Þ
Cp;bf Tð Þ ¼

;pþA
Cp;p Tð Þ
Cp;bf Tð Þ

Bþ;P
New correlation was found of specific heat capacity

(Alklaibi et al. 2021) Cp;nf ¼ Cp;bf 1þ ;ð Þ�0:0143 T
60

� �0:14�10�4 Specific heat correlation for nanodiamond/water NFs.

(Sundar et al. 2021)
Cp;nf ¼ Cp;bf 1þ ;ð Þ�0:148�10�1 Tmin

Tmax

� ��0:537�10�4 Specific heat connection for nanodiamond +Fe3O4/60:40%
EG/W mixture based HNF.

Table 5
Previously developed models for the density of NFs.

Researchers Model Remarks

(Vsajjha et al. 2009) qnf ¼ ;qnp þ 1� ;ð Þqbf Determined the value of q (Density) of various nanofluids
(Alklaibi et al. 2021) qnf ¼ qbf 1þ ;ð Þ0:03279 T

60

	 
0:0003355 A density correlation for water nanofluids was developed.

(Sundar et al. 2021)
qnf ¼ qbf 1þ ;ð Þ0:427�10�1 Tmin

Tmax

� �0:95�10�4� � Density relation for nanodiamond + Fe3O4/60:40% water
and EG mixture created on the HNF.

(Saleh & Sundar, 2021a)
qnf ¼ qbf 1þ ;ð Þ0:414�10�1 Tmin

Tmax

� �0:1106�10�3� � Density relation for nanodiamond + Fe3O4/water HNF.
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concentration and Re, but decreases with cold side double-pipe HE
with temperature inlet. Mansoury et al. (2019) examined, the
DTHE has the highest HTC enhancement of 26%, while the PHE
had only 7%. Jalili et al. (2022) studied turbulent flow convection
HT in DTHE with different fins. The study showed that water/Al2O3

nanofluid have better convection HTC than water/TiO2 and pure
water. Karimi et al. (2019) simulating NF flow in twisted tape
DTHE. The result showed that Nu increased by 22%, and alumina
particles in water enhanced HT by 30% and pressure decrease by
40%.
4.1.2. In plate heat exchanger (PHE)
PHE are widely used in various industries for heat transmission

applications, and the use of nanofluids in these HE can enhance
their performance. Many research have been conducted to study
the use of NFs in PHE and the outcomes revealed significant
increases in HT rates. Alklaibi et al. (2022) investigated
MWCNT-Fe2O4/water nanofluids as PHE coolants for innumerable
particle volume concentrations and coolant flow rates. The results
showed that the HNF is more efficient than de-ionized (DI) water
8

at 10.5% and 0.3%vol. particle concentration. Saleh & Sundar
(2021a, 2021b) synthesised Ni/water NFs flow in PHE and prepared
water-based nickel nanofluids at (0.1%-0.6%) particle volume con-
centrations and Re varies from (300–1000). The consequence
demonstrations that the thermal conductivity and q improve-
ments are 33.92% and 67.45% at 60 �C respectively. Kumar et al.
(2022a) and Bahiraei & Monavari (2020) examined PHE perfor-
mance utilising Al2O3-nanofluid and five particle morphologies at
90 �C inlet temperature and NP concentration 1%. Platelet-shaped
NF has highest HTC. Few studies of single-phase convective HT in
PHE have studied HNFs but just one of the mono NF. Shirzad
et al. (2019), Bhattad et al. (2020a, 2020b) investigated the combi-
nation study for Al2O3–SiC, AlN, MgO, CuO, and MWCNT in 4:1 NP
volume ratio and 100% Al2O3 with 0.1 vol% concentration in DI
water and temperatures from (10–25 �C). They observed that
Al2O3: MWCNT/water HNF had the highest enhancement 31.2%.
Khanlari et al. (2019) analysed the HT characteristics in the PHE
and TiO2/water NF improved the overall HTC by average of 6%, with
maximum improvement of 10%.



Fig. 8. (a) Types of heat exchanger and (b) classification of heat exchanger according to heat transfer mechanism (Vallejo et al. 2022).
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4.1.3. In shell and tube heat exchanger
Heat exchangers (HEs) of the shell and tube variety feature a

cylinder with a number of tubes inside it. Inside the shell, the tubes
(often metal) are organised in a specific pattern. Barzegarian et al.
(2017) deliberate the HT performance under laminar regime in
horizontal shell-and-tube HE is with water-based Al2O3-gamma
nanofluid. The results indicated that the Re raises then Nu and
HTC of heat exchanger increase with NP volume concentration.
Cruz et al. (2022) studied CuO-water based nanofluid flow beha-
viour in shell-and-tube HE beneath turbulent regions. Particle
loading (0.1–1%vol), and Re increased HT and pressure drop. They
observed maximum HT enhancement was 48%. Martínez et al.
9

(2019) investigated the hydraulic and thermal effectiveness of heat
sinks having microchannels using TiO2= water-based nanofluids.
Compared to pure bf, the convective HTC increases by 19.66%
and friction coefficient increases by 137.68% in the 1 wt% nano-
fluid. Priyanka et al. (2023) and Kumar & Sarkar (2020a, 2020b)
examined Al2O3–MWCNT/water hybrid nanofluid with various
NP mixture ratios. Re and temperature are observed using 0.01%
volume concentration. MWCNT (5:0) hybrid nanofluid had
44.02% higher convective HT than water and pressure drop at
20 �C is 51.2% higher than bf’s and increases HT. Table 6 shows var-
ious experimental studies of single-phase and double-phase con-
vective HT using HNFs and corresponding mono-nanofluids.



Table 6
Overview of experimental studies of single-phase and double-phase convective heat transfer using hybrid and mono NFs.

Reference NFs Test section Flow regime Nano additives
concentration

Remarks

(Naddaf et al.
2019)

OA-MWCNT/diesel
oil

Tube Laminar 0.05–0.5 wt% 0.5 wt% OA-MWCNT/diesel oil mono nanofluid increases DP by
9.9%.

(Hashemzadeh &
Hormozi, 2020)

c� Al2O3: SiO2/
H2O
c� Al2O3/H2O
SiO2/H2O

Minichannel
heat sink

Laminar 0.05–0.2 vol% c� Al2O3 : SiO2/H2O, HNF (75:25 ratio) and
c� Al2O3 : SiO2/H2O HNF (75:25 ratio) enhances Nu 46% and
65.2% respectively at 0.5 wt% concentration.

(V. Kumar & Sarkar,
2020a)

Al2O3/H2O
MWCNT/H2O

Minichannel
heat sink

Laminar 0.01 vol% MWCNT/H2O mono NF gets the best improvement of 44.0% for h
and 41.0% for Nu.

(Bhattad et al.
2019)

Al2O3: MWCNT /
H2O
Al2O3/H2O
MWCNT/H2O

Plate heat
exchanger

Laminar 0.01 vol% MWCNT/H2O mono NF has the highest h increment 15.2%.With
the nano additive, there is small increase in DP.

(Bhattad et al.
2020)

Al2O3: graphene/
H2O Al2O3/H2O

Plate heat
exchanger

Laminar 0.01 vol% Al2O3: graphene/water hybrid NF obtains the highest h
enhancement 25.4%, with the lowest DP increase, 0.35%.

(Klazly et al. 2022) Al2O3/H2O – Laminar 1 vol% Al2O3-water NF thermal performance at different Re using single
and two-phase approaches.

(Esfe et al. 2022) Al2O3=H2O Tube Laminar – HT rate and average Nu were improved by increasing Al2O3

nanoparticle volume fraction.
(Omri et al. 2022) CNT-H2O Microchannel

heat exchanger
Laminar 0-5 vol% CNT nanofluid and triangular fins significantly improve HE.

(Zhong et al. 2020) DW/TiO2 Multiport mini
channel

Laminar and
turbulent

0.5 – 1 vol% HT performance is improved for Re 1500–2200.
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4.2. Desalination application

Nanofluids offers a promising solution for improving HT rates in
desalination expedient and freshwater manufacture rates. This
process is critical to providing the proper freshwater quantities
for humanity (Lee et al., 2011; Patel & Modi, 2020). Various
researchers have proposed different techniques to enhance fresh-
water manufacture, but these often come with increased energy
consumption. In contrast, researchers like (Masoud et al. 2020;
Sha et al. 2020; Iqbal et al. 2021; He et al. 2022) have explored
the use of solar energy-driven desalination system to produce
Fig. 9. Schematic illustration of the solar d
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clean water. Solar-powered desalination systems demonstrated
significant improvement by employing NFs to enhance system per-
formance. The design of the desalination system is displayed in
Fig. 9.

4.3. Bio-medical application

The biomedical industry relies heavily on nanoparticles and
nanofluids for a variety of important applications. The importance
of NP suspension fluids in various medical industry areas like drug-
delivery, disease diagnosis, antibacterial cases, bio-medical compo-
esalination system (Iqbal et al. 2021).
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nent cooling, cryopreservation, sterilisation processes, and micro-
pumping systems for drug and hormones has been reported in
studies. However, NFs must be used securely by carefully examin-
ing parameters, including features, uniform suspension, shape,
size, biocompatibility, and crystallinity (Mojgan Sheikhpour et al.
2020).

4.3.1. Drug delivery
In recent decades, drug delivery-based nanofluids have been

studied to enhance effectiveness and specificity. Surface modifica-
tion of MNP can improve its biological significance by improving
cellular recognition, biocompatibility, and drug release of numer-
ous treatments (Lucena et al. 2016). Jampilek and Kralova (2021)
suggested using graphene-based nanofluids in anticancer medica-
tion delivery devices. Pin et al. (2020) examined the biological
applications of Fe3O4 NPs for cancer treatment. After blood injec-
tion, an external magnetic field can guide these particles shown
in Fig. 10. (Rashidy et al. 2023; Das et al. 2019) studied
magnetic-fluid hyperthermia employing biocompatible magnetic
NPs as heat mediators for cancer treatment because its efficiency
and few adverse effects. They developed magnetic nanoparticle-
based hyperthermia therapy and heat-mediated delivery of drugs
for cancer treatment. (Prashant et al. 2022) looked at Magnetic
nanoparticle-based biological platforms. Surface qualities make
zinc oxide, CNTs, and magnetic NPs better for medicine delivery
and cancer treatments. (TiO2Þ, ZnO, and silica were better antibac-
terial NPs. More research should be required to create new NPs and
investigate their uses in the medical field.

4.3.2. Diagnosis
In recent decades, nanofluids have been investigated for

diagnosis-based applications in the field of biomedical and molec-
ular biology research. The diagnosis and treatment of COVID-19
caused by the SARS-CoV-2 virus have also been studied, with sev-
eral novel management strategies being developed. Traditional
nucleic acid extraction for COVID-19 diagnosis can be time-
consuming, and several studies have explored the use of nanotech-
nology to make the process more efficient. Weiss et al. (2020),
Torres et al. (2020) developed a method that uses magnetic
nanoparticles to extract viral RNA, which can be used for diagnosis
and treatment. For instance, Z. Zhao (2020) investigated the use of
Fig. 10. Schematic depiction of the mechanism for de
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poly amino easter-coted Fe2O3 nanoparticles could extract nucleic
acids from saliva swabs and offer results in just 20 min. Addition-
ally, Prashant et al. (2022) used magnetic iron oxide nanoparticles
for viral RNA extraction, highlighting their widespread investiga-
tion for quick extraction shown in Fig. 11. However, low extraction
purity can lead to false negative in RT-PCR amplification, making it
crucial to address this issue. Overall, these studies suggest that
nanotechnology could offer promising solutions for diagnosing
and treating COVID-19.
4.3.3. In solar collectors
To increase the collector’s efficiency, nanofluids can be utilised

to increase the HT rate from the heated plate to the working fluid.
Several studies have focused on improving parabolic trough collec-
tor performance (PTC). PTC are installed more than other concen-
trated solar power technologies worldwide. The latest HT fluids
utilised in PTC and nano-enhanced HT fluids with better character-
istics are compared (Krishna et al. 2020) where Mashhadian et al.
(2021) inspected the environmental performance of a direct
absorption PTC using a water-dispersed mixture of Al2O3 and
MWCNTs. The results show that HNFs reduce CO2 emissions and
water usage by 450.33 kg and 16.6 m3 per collector. Priyanka
et al. (2022), Priyanka et al. (2022) optimised different parameters
of the receiver tube of a solar collector using the PSI method.
Martínez-Merino et al. (2022) Concentrated solar power replaces
polluting energy sources. Spherical MoS2 nanoparticles increased
specific isobaric heat by 13% and TC by 6% over thermal oil. Para-
bolic trough solar collectors were expected to gain 5% efficiency.
5. Comparative study

This section displays the comparison of previous published
studies on Nanofluid and different types of HE. Fig. 12 (a) and (b)
represents the comparison of Nu and Re from 1000 to 40,000 for
different heat exchanger (Double-tube HE, Plate HE, Shell and Tube
HE and these nanofluids are used in the heat exchangers TiO2-H2O
nanofluids, ND-Fe3O4 Hybrid nanofluid, MWCNT/Water nanofluids,
Al2O3/Water Nanofluid) and for various NFs (BF-Water/EG,
ND-Fe3O4 HNF, MWCNT-Water Nanofluid, MgO-Water Nanofluid,
MWCNT-Fe3O4 HNF) with Re ranging from 2000 to 10000. It is
livering drugs to specific organs (Pin et al. 2020).



Fig. 12. Comparison of Nu and Re for (a) Different Heat Exchangers, (b) Different NFs.

Fig. 11. Illustration of the Magnetic Nanoparticle-Based Approach for SARS-CoV-2 RNA Detection and Diagnosis of COVID-19 (Prashant et al. 2022).
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clear from the Fig. 12 (a) and (b) that the value of Nu increases with
increasing Re for every HEs and NFs.

Fig. 13(a) and (b) describe the comparison of Thermal conduc-
tivity with Temperature for different heat exchangers (corrugated
plate heat exchanger, plate heat exchanger) and various NFs
(ND-Fe3O4 Hybrid Nanofluid, CNT-Nanofluid, GO-Si Hybrid Nano-
fluid, PEG-Carbon dot Nanofluid, EG-based ZnO-Nanofluid, EG/W-
Nanofluid, CuO-Nanofluid, EG-Silica Nanofluid), respectively. From
the Fig. 13(a) and (b) the thermal conductivity and the tempera-
12
ture increasing with the rise in temperature. The corrugated PHE
has attained the maximum thermal conductivity while in NFs the
CNT nanofluids has attained maximum thermal conductivity.

Fig. 14(a) and (b) characterised the comparison of viscosity with
Temperature range (10 �C–70 �C) for different hybrid nanofluids
(MWCNT-(TiO2Þ /SAE50 hybrid nanofluid, SiO2-graphite hybrid
nanofluid, Al2O3-ZnO nanofluid, MWCNT-Fe3O4 hybrid nanofluid)
and from (10 �C–80 �C) several NFs (Ni/Water Nanofluid, (TiO2Þ
Nanofluid, Al2O3 Nanofluid, Water-Based Al2O3 Nanofluid, (TiO2Þ/



Fig. 14. Comparison of Viscosity and temperature for (a) Different Hybrid Nanofluids, (b) Different NFs.

Fig. 13. Comparison of Thermal Conductivity and Temperature for (a) Different Heat Exchangers, (b) Different NFs.
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Water Nanofluid) respectively. Fig. 14 (a) and (b) clear that the vis-
cosity reductions as the temperature upsurges. Fig. 14 (b) indicates
that (TiO2Þ/Water Nanofluid produces the highest viscosity of 1.2
at 10 �C of temperature among nanofluids and from Fig. 15 (a)
SiO2-graphite hybrid nanofluid have highest viscosity of 0.30 at
10 �C of temperature among hybrid nanofluids. From the compar-
ison of both Fig. 14 (a) and (b) we recognise the Nanofluids have
highest viscosity as comparison to the hybrid nanofluids.

Fig. 15(a) and (b) represent the ratio of HTC to Re for various
types of HE (and various NFs (ND-Fe3O4 hybrid nanofluid, MWCNT
with combined water nanofluid, MWCNT-Fe3O4 Hybrid Nanofluid),
respectively. It is clear from the Fig. 15 (a) and (b) that the value of
HTC increases with increasing Re for every HE and NFs. However,
13
the HE reached a higher value (9000) than that of NF’s (7000) indi-
cating that the heat exchanger is more effective.
6. Challenges in nanofluid applications

The goal of this review is to examine many challenges in nano-
fluid applications. The research on NFs has exposed that the imple-
mentation of nanofluids HT faces many difficulties. NFs technology
has significant opportunities for developing further highly efficient
and cost-effective cooling technology, particularly in the fields of
defence, transportation, electronics, and manufacturing. The most
significant issue for traditional nanofluid conduction, convection,



Fig. 15. Comparison of Heat Transfer Coefficient and Reynolds Number for (a) Different Heat Exchanger, (b) Different NFs.
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and boiling models is that recorded experimental values always
exceed the stated microscopic theories. The common difficulties
in using NFs in real-world applications are covered in the following
section. Challenges in NFs applications are shown in Fig. 16.
Fig. 16. Challenges in NFs Appl
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6.1. Stability factor of NFs

The ability of nanoparticles to agglomerate in a critical problem
faced in the practical application of nanofluids. The Agglomeration
ications (Said et al. 2021).
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affects nanofluid characteristics and heat transmission. Several fac-
tors, including time, can affect the size and shape of agglomerates.
The factors that affect the stability of a NFs dispersion must be
researched and analysed. Laboratory-scale research has difficulty
producing stable nanofluids made up of monosized nanoparticles
(Said et al. 2021). The exact merit of NFs has not been decided
using various mechanical approaches and chemical stabilisers.
More challenges associated with using nanofluids include corro-
sion, clogging, fouling, and compatibility.

6.2. High cost of NFs

The production of nanofluids in huge quantities at an affordable
price will be the most challenging goal of any future direction. The
cost of NFs is high due to the high cost of NPs. The cost of NPs is
driven by the cost of rawmaterials used to make them, such as rare
earth metals and other rare elements (Esfe et al. 2014). The cost of
production is also high due to the specialized equipment and pro-
cesses needed to create NFs. Additionally, NFs are relatively new
technology, and the cost of research and development is still high,
contributing to the entire cost. Because of their immense price,
many consumers do not prefer NFs. Although if manufacturing
processes allow for expanded production of NPs and ionic liquids,
the cost will stay high.

6.3. Formation of foam

Foam formation in nanofluids is highly challenging because the
presence of nanoparticles causes the surface tension of the fluid to
increase to an extreme amount. The presence of NPs decreases
foam formation because they raise the surface tension of the NF
(Bakthavatchalam et al. 2020). The foam formation can be reduced
by adding surfactants to the NF, which help to reduce the surface
tension. The choice of BF and NPs type can also affect the foam
formation.

6.4. Environmental concerns and safety

If nanoparticles are not handled properly, they can be toxic to
the environment and have long-term effects if not disposed of
properly. NPs can get into the lungs and, the skin, which can cause
breathing problems, inflammation, and diseases that can lead to
cancer. So, the right rules or parameters must be set up to make
and work with NFs (Bakthavatchalam et al. 2020). In the future,
nanofluid engineers will have to think about and create NFs by
choosing nanoparticles that are not harmful to the environment,
human health, or safety. This will allow NFs to be made in large
quantities and used in many industries.

7. Conclusions

This article includes a review on the use of NFs for thermophys-
ical properties and applications of NFs in various fields. The pur-
pose is to gain an understanding of the thermophysical features
that NFs possess, particularly the thermal conductivity, viscosity,
and specific heat capacity of nanofluids. In addition, the paper’s
conclusion supplies point-by-point observations, which include
the whole of the following content:

� The use of nanofluids in MRI (Magnetic Resonance Imaging), the
most exciting imaging and diagnosis technique, has expanded
in recent years. In the MRI, the role of the contrast agent is cru-
cial, where some NFs such as Fe2O4-based fluids have been
taken into consideration. To achieve the optimal contrasting
behaviour of various agents in various diagnosis circumstances,
it may be helpful to experiment with other NFs.
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� The addition of NFs to the desalination system can raise the
amount of freshwater produced by between 30 and 40%. The
Al2O3 nanoparticle is the one that better represents the param-
eters of this investigation.

� Nanofluids comprising small number of nanoparticles have sig-
nificantly higher thermal conductivity than those of BFs. The
thermal conductivity enhancement of NFs depends on the par-
ticle volume fraction, size, type of base fluids and NPs, pH value
of nanofluids.

� Nanofluids can improve heat transmission in base fluids. The
concentration of nanoparticles impacts HT because of their
higher heat capability from the hot fluid source and the
increased enhancement when utilising a high concentration.

� The hydrothermal performance of HNFs is better than other flu-
ids. It was found that hybrid nanofluids are good alternatives in
plate heat exchangers as compared to simple fluids because of
their better thermal performance.

� The stability of NFs continues to be the primary challenge that
prevents the application of these fluids in a variety of different
industries. The stability of the thermal system not only influ-
ences the system’s thermophysical parameters but also influ-
ences the system’s performance. As a result of their
instability, NFs gradually lose their functional capabilities over
time.

8. Future recommendation

These are some of the reasonable possibilities that investigators
can work on nanofluids in the future to propagate their usage in a
variety of applications, and these are some of the directions that
are being discussed here.

� There have only been a few of research done on the thermal
conductivity of nanofluids at high temperatures. Thus, addi-
tional research is required to characterise the thermal conduc-
tivity of nanofluids at high temperatures.

� To better anticipate thermal conductivity and the effect of other
characteristics, further research is needed to develop new mod-
els and correlations. There is a need for further generalized cor-
relations to be created in respect to the increase of heat
transmission by NFs for practical applications.

� Several studies have used ionic liquid hybrid nanofluids, which
could be explored further.

� Using nanofluids as solar collectors is becoming an increasingly
attractive field of study. Several parabolic trough collectors
(PTC) research with nanofluids have been published. However,
they primarily consider nanofluids with a water and tempera-
tures below 100 �C.
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