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Abstract For environmental reasons, as well as the dwindling source of petroleum, a new class of

environmentally acceptable and renewable biolubricants based on plant oils is available. Even

though plant oils possess excellent lubricant-related properties, there are some concerns about using

it as biolubricant base oil. In this study we present a series of structures derived from oleic acid to be

used as synthetic biolubricant basestocks. Measuring of pour point (PP), flash point, viscosity index

(VI), oxidation onset temperature (OT) and signal maximum temperature (SMT) was carried out

for each compound. Furthermore, the friction and wear properties were measured using a high-fre-

quency reciprocating rig (HFRR). The resulting product structures were confirmed by NMR and

FTIR spectroscopic analysis. The results showed that ethylhexyl 9-(octanoyloxy)-10-(behen-

oxy)octadecanoate with behenyl mid-chain ester exhibited the most favorable low temperature per-

formance (PP �48 �C) and ethylhexyl 9-(octanoyloxy)-10-(octyloxy)octadecanoate octyl mid-chain

ester exhibited higher oxidation stability (OT 142 �C) than the other synthetic ester oils. On the

other hand, the highest ball wear scan diameter was obtained for ethylhexyl 9-(octanoyloxy)-10-

(behenoxy)octadecanoate while the lowest value was obtained for 9-hydroxy-10-octyloxyoctadeca-

noic acid. Overall, it was concluded that these synthetic ester oils have potential in formulation of

industrial fluids for different temperature applications.
ª 2010 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
21 5412; fax:+60 3 8921 5410.
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1. Introduction

Liquid lubricants being the predominant form of lubrication
for machinery generally consist of about 70–99% of a base

(base oil) and 1–30% additives. Over 95% of the lubricants
in use today are petroleum-based. Environmental pollution
associated with the production and application of this huge
quantity of lubricants worldwide are causing environmental

concern. Currently, around 50% of the lubricants sold world-
wide end up in the environment via total loss applications,
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volatility, spills or major accidents (Horner, 2002; Rudnick

and Erhan, 2006). In view of its high ecological toxicity and
low biodegradability it poses a considerable threat to the envi-
ronment. In the last decade a lot of interest was developed to
use ‘environment friendly readily biodegradable lubricant flu-

ids (Rudnick and Erhan, 2006). Depletion of world petroleum
reserves and uncertainty in petroleum supply also stimulated
the search for environmental friendly alternative to mineral

oils (Rhee, 1996; Rudnick, 2003; Adhvaryu and Erhan, 2002;
Erhan et al., 2006). In this scenario, plant oils have gained pop-
ularity as lubricants over the last couple of decades. Today,

around 2% of the base stocks are of plant oil origin (Erhan
and Adhvaryu, 2002).

The triacylglycerol structure of plant oil makes it an

excellent biolubricant (Zaher and Nomany, 1988; Willing,
2001; Adhvaryu et al., 2004). Plant oils offer a number of
advantages, including high biodegradability (>95%), reduced
environmental pollution (Salunkhe et al., 1992; Bockish, 1998;

Battersby, 2000; Havet et al., 2001; Walsh, 2002) compatibility
with additives, low production costs (Krzan and Vizintin,
2003), large possibilities of production, low toxicity, high flash

point, low volatility, high viscosity indices and, above all, bet-
ter tribological performance. It has displayed superior perfor-
mance than mineral oils in terms of antiwear and fatigue

resistance (Odi-Ovei, 1988; Asadauskas et al., 1997; Kozma,
1997). Also, plant oils are superior in dissolving contaminants
and additives than mineral oils (Erhan and Adhvaryu, 2002).
In contrast to mineral oil, plant oils are derived from a renew-

able source. However, it has some disadvantages: thermooxi-
dative and hydrolytic stabilities are limited and, in some
cases, there is serious limitation of low temperature fluidity

(Buzas et al., 1997; Papanikolaw, 1999; Dweck and Sampaio,
2004; Fox et al., 2004; Santos et al., 2004; Petlyuk and Adams,
2004). Therefore the use of pure (i.e. unmodified) plant oils are

found more in total loss applications such as chain-saw lubri-
cants, concrete-mould release oils and hydraulic fluids with
very low thermal stress (Petlyuk and Adams, 2004).

The most serious disadvantage of the usage of plant oils in
biolubricants is its poor thermooxidative stability (Erhan et al.,
2006). Plant oil oxidizes like hydrocarbon mineral oil following
the same free radical oxidation mechanism (Hamblin, 1999)

but at a faster rate. The faster oxidation of plant oils is due
to the presence of unsaturated fatty acids present in it. Bis-
allylic hydrogens in linoleic and linolenic fatty acids are sus-

ceptible to free radical attacks, peroxide formation and pro-
duction of polar oxidation products (Erhan et al., 2006).

Different modern technological approaches have been

adopted to solve the problems associated with application of
plant oils in lubricants, and some of them are genetic modifica-
tion, additive treatment and chemical modification (Erhan,

2005). However, low resistance to oxidative degradation still
remains the major drawback of plant oil application in the
lubricants (Erhan and Adhvaryu, 2002). There has been slow
percolation of the product technologies developed in the

European and American countries to the Asian countries
(Bhatia and Mahanti, 2002).

In this study, we present a novel synthetic approach for

chemical modification of oleic acid derivatives to improve their
oxidative stability, low temperature and other physicochemical
properties. The structural modification is carried out in four

stages, (i) oleic acid epoxidation, (ii) ring opening reaction,
(iii) esterification of the carboxylic acid hydroxyl group, (iv)
acetylation of the resulting hydroxyl group in the ring-opened

products.
2. Experimental

2.1. Materials

Formic acid (88%) was obtained from Fisher Scientific (Pitts-
burgh, PA) and oleic acid (99%) from Nu-Chek Prep, Inc.
(Elysian, MN). All other chemicals and reagents were obtained

from Aldrich Chemical (Milwaukee, WI). All materials were
used without further purification. All organic extracts were
dried using anhydrous magnesium sulfate (Aldrich Chemical).

2.2. Characterization

The percentage compositions of the elements (CHNS) for the
compounds were determined using an elemental analyzer
CHNS Model Fison EA 1108. 1H and 13C NMR spectra were
recorded using a JEOL JNM-ECP 400 spectrometer operating

at a frequency of 400.13 and 100.77 MHz, respectively, using a
5 mm broadband inverse Z-gradient probe in DMSO-d6 (Cam-
bridge Isotope Laboratories, Andover, MA) as solvent. Each

spectrum was Fourier-transformed, phase-corrected, and inte-
grated using MestRe-C 2.3a (Magnetic Resonance Compan-
ion, Santiago de Compostela, Spain) software. FTIR spectra

were recorded neatly on a Thermo Nicolet Nexus 470 FTIR
system (Madison, WI) with a Smart ARK accessory contain-
ing a 45 ZeSe trough in a scanning range of 650–4,000 cm–1

for 32 scans at a spectral resolution of 4 cm1.

2.3. Low temperature operability

The pour point is defined as the lowest temperature at which
the sample still pours from a tilted jar. This method is rou-
tinely used to determine the low temperature flow properties

of fluids. Pour point values were measured according to the
ASTM D5949 method using a phase Technology Analyzer,
Model PSA-70 S (Hammersmith Gate, Richmond, B.C., Can-

ada). Each sample was run in triplicate and average values
rounded to the nearest whole degree are reported. For a great-
er degree of accuracy, PP measurements were done with a res-
olution of 1 �C instead of the specified 3 �C increment.

Generally, materials with lower PP exhibit improved fluidity
at low temperatures than those with higher PP.

2.4. Flash point values

The flash point is defined as the minimum temperature at

which the liquid produces a sufficient concentration of vapor
above it that it forms an ignitable mixture with air. The lower
the flash point is, the greater the fire hazard is. Flash point

determination was run according to the American National
Standard Method using a Tag Closed Tester (ASTM D 56-
79). Each sample was run in triplicate and the average values
rounded to the nearest whole degree are reported.

2.5. Viscosity index measurements

Automated multi range viscometer tubes HV M472 obtained
from Walter Herzog (Germany) were used to measure viscos-
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ity. Measurements were run in a Temp-Trol (Precision Scien-

tific, Chicago, IL, USA) viscometer bath set at 40.0 and
100.0 �C. The viscosity and viscosity index were calculated
using ASTMmethods D 445-97 and ASTMD 2270-93, respec-
tively. Triplicate measurements were made and the average

values were reported.

2.6. Oxidation stability

Pressurized DSC (PDSC) experiments were accomplished
using a DSC 2910 thermal analyzer from TA Instruments
Figure 1 Triest
(Newcastle, DE). Typically, a 2-lL sample, resulting in a film

thickness of <1 mm, was placed in an aluminum pan hermet-
ically sealed with a pinhole lid and oxidized in the presence of
dry air (Gateway Airgas, St Louis, MO), which was pressur-
ized in the module at a constant pressure of 1,378.95 kPa

(200 psi). A 10 �C min–1 heating rate from 50 to 350 �C was
used during each experiment. The oxidation onset (OT, �C)
and signal maximum temperatures (SMT, �C) were calculated

from a plot of heat flow (W/g) versus temperature for each
experiment. Each sample was run in triplicate and average val-
ues rounded to the nearest whole degree are reported (Table 2).
er formation.
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2.7. Lubricity determination

Lubricity determinations were performed at 60 �C, according
to ASTMmethods D6079 using a high-frequency reciprocating

rig (HFRR) lubricity tester (PCS Instruments, London, UK)
via Laser Scientific (Granger, IN, USA). The average wear
scan (lm) diameter of each replicates was determined by calcu-

lating the average of the x- and y-axis wear scar length. Each
experiment was conducted in triplicate and the data are re-
ported as mean ± SD of triplicate determinations.

2.8. Synthesis

2.8.1. Epoxidized oleic acid (EOA, 1)
Hydrogen hydroxide solution (30% in H2O, 8.0 mL) was
added slowly into a stirred solution of oleic acid (OA) (90%,

15 g) in formic acid (88%, 14 mL) at 4 �C (ice bath). The reac-
tion proceeded at room temperature with vigorous stirring
(900 rpm) until the formation of a powdery solid was noticed

in the reaction vessel (2–5 h). The solid was collected via vac-
uum filtration, washed with H2O (chilled, 3 · 10 mL), and
placed for 12 h under high vacuum to provide epoxidized ricin-
oleic acid (EOA) as a colorless, powdery solid.

2.8.2. 9-Hydroxy-10-acyloxyoctadecanoic acid (HYAODA, 2–8)
To a mixture of EOA (31 g), 5 g of p-toluenesulfonic acid

(PTSA) and toluene, fatty acids (6 g) were added during
Table 1 Elemental analysis data of synthetic ester oils.

Samples Formula Elemental analy

%C

HYOODA C26H50O5 70.54 (70.55)

HYNODA C27H52O5 71.01 (71.02)

HYLODA C30H58O5 72.24 (72.25)

HYMODA C32H62O5 72.95 (72.96)

HYPODA C34H66O5 73.59 (73.60)

HYSODA C36H70O5 74.17 (74.18)

HYBODA C40H78O5 75.18 (75.19)

EHHYOOD C34H66O5 73.59 (73.60)

EHHYNOD C35H68O5 73.89 (73.90)

EHHYLOD C38H74O5 74.70 (74.71)

EHHYMOD C40H78O5 75.18 (75.19)

EHHYPOD C42H82O5 75.62 (75.63)

EHHYSOD C44H86O5 76.02 (76.03)

EHHYBOD C48H94O5 76.74 (76.73)

EHOOOD C42H80O6 74.07 (74.08)

EHONOD C43H82O6 74.30 (74.29)

EHOLOD C46H88O6 74.95 (74.94)

EHOMOD C48H92O6 75.34 (75.33)

EHOPOD C50H96O6 75.70 (75.69)

EHOSOD C52H100O6 76.04 (76.05)

EHOBOD C56H108O6 76.65 (76.64)

HYOODA: 9-hydroxy-10-octyloxyoctadecanoic acid, HYNODA: 9-hyd

oxyoctadecanoic acid, HYMODA: 9-hydroxy-10-myristoxyoctadecan

HYSODA: 9-hydroxy-10-stearoxyoctadecanoic acid, HYBODA: 9-

9-hydroxy-10-octyloctadecanoate, EHHYNOD: ethylhexyl 9-hydroxy-10

roxyoctadecanoate, EHHYMOD: ethylhexyl 9-hydroxy-10-myristoxyoct

canoate, EHHYSOD: ethylhexyl 9-hydroxy-10-stearoxyoctadecanoat

EHOOOD: ethylhexyl 9-(octanoyloxy)-10-(octyloxy)octadecanoate, EH

EHOLOD: ethylhexyl 9-(octanoyloxy)-10-(octanoyloxy)octadecanoate, E

EHOPOD: ethylhexyl 9-(octanoyloxy)-10-(palmitoxy)octadecanoate,

EHOBOD: ethylhexyl 9-(octanoyloxy)-10-(behenoxy)octadecanoate.
1.5 h in order to keep the reaction mixture temperature under

70–80 �C. The reaction mixture was subsequently heated to
90–100 �C and refluxed for 3 h. After reaction termination,
the heating was stopped and the mixture was left to stand over-
night at ambient room temperature. The mixture was washed

with the water next day. The organic layer was dried over
anhydrous magnesium sulfate and the solvent was removed
using the vacuum evaporator.

2.8.3. 2-Ethylhexyl 9-hydroxy-10-acyloxyoctadecanoate
(EHHYAOD, 9–15)
Sulfuric acid (conc. H2SO4, 10 mol-%) was added into a stirred
suspension of HYAODA (3.35 mmol) in the 2-ethylhexanol
(3.35 mL). The suspension was heated with stirring at 60 �C
for 10 h. Hexanes (5 mL) were then added, and the solution
was washed with NaHCO3 (sat. aq., 1 · 0.5 mL) and brine
(2 · 1 mL), dried (MgSO4), filtered, concentrated in vacuo

and placed for 6 h under vacuum to yield the title products.

2.8.4. 2-Ethylhexyl 9-(octanoyloxy)-10-
(acyloxy)octadecanoate (EHOAOD, 16–22)
The reaction scheme of triesters formation is shown in Fig. 1.
Appropriate amounts of EHHYAOD, pyridine and CCl4 were

weighed into the 500 mL three-neck flask equipped with a
cooler, dropping funnel and thermometer. The mixture was
heated to 50 �C, with suitable aliquots of octanoyl chloride
added during 1 h, and the reaction mixture was subsequently
sis calc. (found)

%H %N %S

11.38 (11.37) – –

11.48 (11.49) – –

11.72 (11.73) – –

11.86 (11.87) – –

11.99 (11.98) – –

12.10 (12.11) – –

12.30 (12.29) – –

11.99 (11.98) – –

12.05 (12.04) – –

12.21 (12.22) – –

12.30 (12.29) – –

12.39 (12.40) – –

12.47 (12.46) – –

12.61 (12.60) – –

11.84 (11.85) – –

11.89 (11.88) – –

12.03 (12.02) – –

12.12 (12.11) – –

12.20 (12.21) – –

12.27 (12.26) – –

12.41 (12.40) – –

roxy-10-nonanoxyoctadecanoic acid, HYLODA: 9-hydroxy-10-laur-

oic acid, HYPODA: 9-hydroxy-10-palmitoxyoctadecanoic acid,

hydroxy-10-behenoxyoctadecanoic acid, EHHYOOD: ethylhexyl

-nonanoxyoctadecanoate, EHHYLOD: ethylhexyl 9-hydroxy-10-lau-

adecanoate, EHHYPOD: ethylhexyl 9-hydroxy-10-palmitoxyoctade-

e, EHHYBOD: ethylhexyl 9-hydroxy-10-behenoxyoctadecanoate,

ONOD: ethylhexyl 9-(octanoyloxy)-10-(nonanoxy)octadecanoate,

HOMOD: ethylhexyl 9-(octanoyloxy)-10-(myristoxy)octadecanoate,

EHOSOD: ethylhexyl 9-(octanoyloxy)-10-(stearoxy)octadecanoate,
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refluxed for 4 h. On completion, the mixture stood overnight at

ambient temperature. After washing with water, the solvent ex-
tract was dried over anhydrous sodium sulfate, further filtered
and vacuum distilled to remove solvent.

3. Results and discussions

3.1. Epoxidation, esterification and acetylation

Preparation of octyl 9-(lauroyloxy)-10-(acyloxy)octadecanoate

16–22 from epoxidized oleic acid is 1 an effective way of intro-
ducing branching on the fatty acid chain of plant oils. This
reaction is carried out in four stages and the final products

have significantly improved oxidative stability and low temper-
ature property compared with the starting materials (Fig. 1).
The straightforward epoxidation of oleic acid was closely

monitored to avoid the synthesis of the undesired 9,10-
dihydroxyoctadecanoate, which will form if the reaction tem-
perature is elevated or the reaction is allowed to progress for
too long.

The removal of unsaturation in the oleic acid by converting
them into epoxy-groups 1 improves the oxidative stability. It
has already been established that the presence of multiple dou-

ble bonds in the plant oil FA chains accelerates oxidative deg-
radation. However, the low temperature fluidity of 1 is poor
and found to solidify at 0 �C (see Table 1). This would limit

the application of plant oil at low operating temperature espe-
cially as automotive and industrial fluids. A suitable approach
to improve the low temperature flow behavior of 1 is to attach

branching sites at the epoxy carbons. This was achieved by
careful ring opening to obtain the 9-hydroxy-10-acyloxyocta-
Table 2 Pour point, Flash point, Viscosity index, OT, SMT and P

Samples Pour pointa (�C) Flash pointa (�C) Vis

EOA 0 113 45

Monoesters 2–8

HYOODA �20 250 71

HYNODA �30 305 80

HYLODA �33 176 84

HYMODA �35 199 89

HYPODA �39 123 93

HYSODA �41 194 102

HYBODA �43 232 110

Diesters 9–15

EHHYOOD �22 156 80

EHHYNOD �31 178 86

EHHYLOD �34 209 91

EHHYMOD �37 190 102

EHHYPOD �40 213 111

EHHYSOD �43 146 120

EHHYBOD �45 132 128

Triesters 16–22

EHOOOD �23 145 91

EHONOD �33 139 105

EHOLOD �35 187 113

EHOMOD �38 174 122

EHOPOD �41 230 130

EHOSOD �44 212 139

EHOBOD �48 156 145

a Mean n = 3, SE ± 1 �C.
decanoic acid oils 2–8. Then, esterification of these products

was carried out using 2-ethylhexanol and sulfuric acid as cata-
lyst to yield 2-ethylhexyl 9-hydroxy-10-acyloxyoctadecanoate
9–15. The seven prepared octyl esters were used as precursors
for the synthesis of modified triester-derivatives by acetylation

with octanoyl chloride in an aprotic solvent.

3.2. Characterization

In the FTIR spectra of oils 2–22, the absorption due to the
epoxy group (820 and 843 cm�1) is not observed. This fact sug-

gests that 1 undergoes complete ring opening under the reac-
tion condition. Bands representing C‚O groups (724,
1740 cm�1), CH3 groups (1370–1463 cm�1), OH groups

(3473–3444 cm�1) and also C–O–C bands in esters (999–
1105 cm�1) are clearly visible in the spectra (Salimon and Sal-
ih, 2010).

All synthesized oils were verified by 1H and 13C NMR spec-

troscopy. Significant signals in the 1H spectrum of epoxidized
oleic acid 1 between 2.6 and 2.8 ppm correspond to quaternary
carbons of the oxiran ring and the doublet in the 13C spectrum

between 56.86 and 56.91 ppm correspond to carbons of the
oxirane ring. Furthermore, 1H spectrum of epoxidized oleic
acid showed singlet signal at 9.23 ppm due to OH group. A sig-

nal in the area around 9.17–9.30 ppm, representing an OH
group, and the bands at 2.05–3.68 ppm, corresponding to –
CH2� groups, are present in the 1H spectra of monoesters,
9-hydroxy-10-acyloxyoctadecanoic acid 2–8. The 1H spectra

of synthesized diesters, 2-ethylhexyl 9-hydroxy-10-acyloxyoc-
tadecanoate 9–15, and triesters, 2-ethylhexyl 9-(octanoyloxy)-
10-(acyloxy)octadecanoate 16–22, consist of signals of low
ercentage yield of synthetic ester oils.

cosity Indexa (�C) OTa (�C) SMTa (�C) % Yield

75 164 91

113 123 70

101 256 63

91 189 80

83 213 56

76 209 92

70 243 85

64 175 76

131 145 60

125 167 72

116 231 81

105 216 55

92 198 65

85 175 75

71 160 62

142 215 83

131 147 79

128 189 53

112 209 67

93 214 71

89 187 60

80 193 65
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intensity at about 9.22–9.40 ppm and 2.10–3.65 ppm. Broad

lines at 1.41–1.77 ppm represent the CH2 groups’ hydrogen
peaks. In the 13C NMR spectra significant bands at about
176 ppm are present, which exhibit the characteristic signals
attributed to ester groups (Sliverstien et al., 2005). Further-

more, elemental analysis was done and the obtained data are
in agreement with the proposed structures (Table 1).

3.3. Products parameters

The ability of a substance to remain liquid at low temperatures

is an important attribute for a number of industrial materials,
such as biolubricants, surfactants and fuels. The cold flow
property of plant oils is extremely poor and this limits their

use at low operating temperature especially as automotive
and industrial fluids. Plant oils have a tendency to form mac-
rocrystalline structures at low temperature through uniform
stacking of the ‘bend’ triglyceride backbone (Kleinová et al.,

2008). Such macrocrystals restrict the easy flow of the system
due to loss of kinetic energy of individual molecules during
self-stacking. Cold flow properties of these samples were deter-

mined using their pour points. In practice, the usable liquid
range is limited by the pour point (PP) at low temperatures
and the flash point at high temperatures. The PP should be

low to ensure that the lubricant is pump-able when the equip-
ment is started from extremely low temperatures. The flash
point should be high to allow the safe operation and minimum
volatilization at the maximum operating temperature. For the

most demanding applications, such as aviation jet engine lubri-
cants, an effective liquid range over 300 �C may be required
(Salimon et al., 2010). The epoxidized oleic acid, synthetic

mono-, di- and triesters described above were screened for
Table 3 HFRR lubricity data of synthetic ester oils.

Samples Ball wear scar

diameter (lm)

Disc wear scar width

on x-axis (lm)

Monoesters 2–8

HYOODA 103 ± 2 122 ± 2

HYNODA 114 ± 3 129 ± 3

HYLODA 120 ± 2 135 ± 2

HYMODA 127 ± 3 146 ± 2

HYPODA 138 ± 3 153 ± 2

HYSODA 149 ± 2 166 ± 3

HYBODA 155 ± 2 172 ± 3

Diesters 9–15

EHHYOOD 130 ± 3 147 ± 2

EHHYNOD 139 ± 3 154 ± 2

EHHYLOD 144 ± 3 165 ± 2

EHHYMOD 150 ± 2 170 ± 3

EHHYPOD 158 ± 3 176 ± 3

EHHYSOD 160 ± 2 188 ± 2

EHHYBOD 168 ± 2 192 ± 2

Triesters 16–22

EHOOOD 149 ± 2 196 ± 3

EHONOD 157 ± 2 202 ± 3

EHOLOD 168 ± 2 215 ± 2

EHOMOD 178 ± 3 222 ± 2

EHOPOD 188 ± 3 230 ± 3

EHOSOD 196 ± 3 239 ± 3

EHOBOD 205 ± 2 243 ± 3

Values are mean ± SD of triplicate determinations.
low temperature behavior through determination of their pour

point (PP).
An improvement in the cold flow behavior of diesters, 2-

ethylhexyl 9-hydroxy-10-acyloxyoctadecanoate, and triesters,
2-ethylhexyl 9-hydroxy-10-acyloxyoctadecanoate, was ob-

tained over that of their monoester precursor’s 9-hydroxy-10-
acyloxyoctadecanoic acid. Actually there are two reasons for
this behavior. The first reason is that the presence of a side

chain attached to the FA backbone does not allow individual
molecules to come close for easy stacking due to steric interac-
tions. This results in the formation of microcrystalline struc-

tures rather than macro structures. At lower temperatures,
such microcrystalline structures can easily tumble and glide
over one another resulting in better fluidity of the total matrix.

Secondly, the lack of one hydroxyl group in diesters and then
absence of it in triester structures mean the number of hydro-
gen bonds decrease, which could cause the molecules to stack
together.

The efficiency of the biolubricant in reducing friction and
wear is greatly influenced by its viscosity. Generally, viscos-
ity-temperature charts are available, making a good choice

of a biolubricant operation temperature. The viscosity of a
biolubricant is its tendency to resist flow. A biolubricant oil
of high viscosity flows very slowly. The viscosity must always

be high enough to keep good oil film between the moving
parts. Otherwise, friction will increase, resulting in power loss
and rapid wear on the parts. The viscosity index, commonly
designated VI, is an arbitrary numbering scale that indicates

the changes in oil viscosity with changes in temperature. A
low index means a steep slope of the curve, or a great variation
of viscosity with a change in temperature; high index means a

flatter slope, or lesser variation of viscosity with the same
Disc wear length

on x-axis (lm)

Film (%) CoF

1084 ± 40 97 0.075

1091 ± 36 95 0.093

1101 ± 42 96 0.064

1111 ± 49 94 0.094

1119 ± 41 93 0.092

1124 ± 45 95 0.088

1130 ± 50 96 0.095

1119 ± 55 96 0.081

1127 ± 53 96 0.096

1133 ± 48 94 0.069

1142 ± 51 97 0.082

1151 ± 57 93 0.093

1160 ± 50 96 0.086

1166 ± 52 95 0.092

94 0.089

1154 ± 44 95 0.083

1166 ± 48 93 0.092

1173 ± 43 94 0.084

1185 ± 52 96 0.077

1192 ± 57 97 0.076

1205 ± 41 94 0.097
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changes in temperature. Increased viscosity index (VI) of tries-

ters is the result of their higher molar weight, and especially the
altered structure of their molecules. The VI values are high,
characteristic for oils of ester type (Table 2).

The ability of a substance to resist oxidative degradation

is another important property of biolubricants. Therefore,
epoxidized oleic acid, 9-hydroxy-10-acyloxyoctadecanoic
acid, 2-ethylhexyl 9-hydroxy-10-acyloxyoctadecanoate and 2-

ethylhexyl 9-(octanoyloxy)-10-(acyloxy)octadecanoate were
screened for oxidation stability using PDSC through determi-
nation of OT and SMT. PDSC is an effective method for mea-

suring oxidation stability of oleochemicals in an accelerated
mode (Du et al., 2002). The OT is the temperature at which
a rapid increase in the rate of oxidation is observed at a con-

stant, high pressure (200 psi). A high OT would suggest high
oxidation stability of the material. The SMT is the temperature
at which maximum heat output is noted from the sample dur-
ing oxidative degradation. A higher SMT does not necessarily

correlate with improved oxidation stability. Both OT and
SMT were calculated from a plot of heat flow (W/g) versus
temperature that was generated by the sample upon degrada-

tion and, by definition, SMT> OT.
In the present study, as the chain length of the mid-chain

ester is decreased, a corresponding improvement in oxidation

stability was observed, which is because longer chains are
more susceptible to oxidative cleavage than shorter chains.
These results are in agreement with other studies on synthetic
esters (Randals, 1999). For example, when comparing

9-hydroxy-10-acyloxyoctadecanoic acid, 2-ethylhexyl 9-hydro-
xy-10-acyloxyoctadecanoate and 2-ethylhexyl 9-(octanoyloxy)-
10-(acyloxy)octadecanoate, an improvement in OT was noticed

as the mid-chain ester length (R) was decreased (Table 2).
An important property of lubricants is their ability to main-

tain a stable lubricating film at the metal contact zone. Triacyl-

glycerols of plant oils are known to provide excellent lubricity
due to their ester functionality. This is because, the polar head
of the triacylglycerol molecule, i.e. glycerol end attaches to me-

tal surfaces and allows a monolayer film formation with the
non-polar end of fatty acid chains sticking away from the me-
tal surface. This prevents the metal-to-metal direct contact by
providing a sliding surface. Without a good sliding surface, the

two metals at the contact zones of moving parts come in direct
contact with each other and results in increase in temperature
causing adhesion, scuffing or even welding. The ester struc-

tures in triacylglycerols offer active oxygen sites that trigger
binding on the metal surface forming a protective film. This
protective film builds further with time to reduce friction.

In this work, the antiwear and friction reducing properties
of synthetic ester oil basestocks were evaluated using high-fre-
quency reciprocating rig (HFRR) lubricity tester. The HFRR

method determines the lubricity or ability of a fluid to affect
friction and wear between the surfaces in relative motion under
load. The average ball scar diameter, width of wear track on
disk at x-axis, film percentage, and coefficient of friction

(CoF) for synthetic ester oils are shown in Table 3.
The high ball wear scan diameter for EHOBOD oil may be

due to low amount of free fatty acids (FFA) present in it. The

HYOODA oil provided the lowest ball wear scar diameter,
which may be due to presence of higher amount of FFA pres-
ent in it. The disk x-scar results were also similar, with biggest

scar width for EHOBOD oil. The average CoF is higher
(0.097) for EHOBOD, followed by EHHYNOD (0.096) and
least for HYBODA (0.095). The lower CoF in EHOSOD,

EHHYLOD and HYLODA may be due to their higher viscos-
ity compared to other oils. These results showed that lubricity
properties of synthetic ester oils are on par with other plant
oils (Salimon et al., 2010).
4. Conclusion

In this study we have evaluated the potential of synthetic ester
oils as basestocks for biolubricant applications. The process
consists a systematic approach to modify chemically oleic acid

oil to yield a basestock capable of operating at low tempera-
ture. Preparation was based on epoxidation of acyl double
bond, opening of the formed oxirane ring in an appropriate

medium and acetylation of free hydroxyl group. Based on
the results obtained, increasing the chain length of the mid-
chain ester had a positive influence on the low temperature

properties of diesters because they create a steric barrier
around the individual molecules and inhibits crystallization,
resulting in lower pour point. But the trends for PP run coun-
ter to that of OT, i.e., increasing chain length is a benefit to PP,

but a detriment to OT. Also it is evident that hydrogen bond-
ing is a critical parameter influencing the low temperature
properties and oxidation stability of synthetic esters. Increas-

ing the hydrogen bond amount will lead to increase pour point
(PP) and decrease the oxidation stability of these compounds.
Removal of the unstable double bonds from fatty acid acyls,

increased molar weight and change in the molecular structure
result in increased the viscosity index of prepared triesters. The
lubricity of synthetic ester oils is similar to other plant oils.
Thus, these synthetic ester oils have good potential for use as

biolubricant basestocks oil.
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