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In this study, using both 2D-QSPR and 3D-QSPR approaches, to understand the structure-odor relation-
ship of 78 1–4-pyrazine odorant molecules and to use this knowledge for the design of new food and fla-
vor products. According to our results, the developed models have good predictability such as the HQSPR/
BC model with Q2

LOO ¼ 0:832, R2 = 0.916, CoMSIA/SEH model with Q2 = 0.624, R2
cv = 0.590, R2

ncv = 0.932,
R2
bs = 0.963, and Topomer CoMFA model withR2

training = 0.899, R2
test = 0.916. The Monte Carlo method was

used in the creation of a Quantitative Structure-Property Relationship (QSPR) model. The molecular struc-
ture is represented using optimized Simplified Molecular Input Line Entry System (SMILES) and molecu-
lar descriptors. The performance of the model is evaluated using the Correlation Ideality Index (IIC) and
the Correlation Contradiction Index (CCI). The best model, designated as TF2, boasts excellent statistical
properties with a training R-squared value of 0.957 and a test R-squared value of 0.834. The model was
then used to determine promoter activity levels, which formed the basis for the design of 36 new odorant
molecules. Molecular docking and pharmacokinetic properties were used to explain the mode of binding
between the proposed compounds and the active site of the Porcine Odorant Binding Protein complexed
with pyrazine (2-isobutyl-3-methoxypyrazine). Molecular dynamic simulation was used to assess and
justify the stability of the ligand in the active site of the receptor. The results of this study provide a basis
for the discovery of new compounds with lower olfactory thresholds and diverse pharmacological
properties.
� 2023 Published by Elsevier B.V. on behalf of King Saud University. This is anopen access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The presence of volatile substances in perfumes, medicines and
food chemistry is of particular importance for future industrial
manufacturing. Volatile substances can accumulate either in the
product itself or in the materials, producing undesirable odors that
reduce the quality of the product. This is of great importance when
the released volatiles have a strong odor, such as pyrazine deriva-
tives, which are of great interest due to their high odor and flavor
characteristics (Valdés García et al., 2021).

Pyrazine derivatives are heterocyclic nitrogen-containing com-
pounds, which can be formed chemically by the condensation of
two a-aminocarbonyl molecules such as amino acids or amino
sugars. The two aminocarbonyl compounds first react to form a
1,4-dihydropyrazine and then undergo aromatization by oxidation
in air or removal of a hydroxyl group to form the side chain, and
can be extracted and distilled in small amounts directly from nat-
ural sources such as vegetables, coffee and cocoa or metabolically
by various reaction processes (Mortzfeld et al., 2020) and (Ong
et al., 2017).

Mechanism 1:

http://crossmark.crossref.org/dialog/?doi=10.1016/j.arabjc.2023.105207&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.arabjc.2023.105207
http://creativecommons.org/licenses/by-nc-nd/4.0/
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From alpha nitroso / nitro / azide Ketones by chemo-selective
reduction (Zn/CH3CO2H) followed by spontaneous dimerization
and subsequent oxidation leads to formation of pyrazine deriva-
tives.
Mechanism 2:
From condensation reaction of alpha diketone whit 1,2-

diaminoalkanes followed by oxidation in presence of CuCrO4 at
300 ⁰C leads to formation of pyrazine derivatives.
2

Mechanism 3:
Intermolecular diamino cyclization of ethylenediamine fol-

lowed by dehydrogenation over copper chromite catalyst gives
pyrazine.
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Mechanism 4:
From epoxide ring opening reaction with ethylenediamine fol-

lowed by oxidation leads to formation of pyrazine derivatives.

Mechanism 5:
Pyrazine is a six membered heterocyclic compound of the Diazi-

nes type derived from benzene by replacement of two –CH group
by two nitrogen atoms at 1st and 4th position.

The experiment is a direct way of obtaining data on the activity
and properties of molecules, but it has many disadvantages, such
as the need for a myriad of test organisms, high cost, long time
lag, the difference between values measured by different research-
ers, etc.

Therefore, it would be impossible to know the chemical and
biological properties of all organic compounds by experiment.
But with the rapid development of the theoretical study of compu-
tational chemistry and computer methods, it is possible to obtain
the chemical properties of molecules quickly and accurately by
molecular modeling. The quantitative structure–property relation-
ship QSPR allows the interpretation and prediction of the property
of new molecules (Ma, 2022).

3D-QSPR is one of the most widely used computational meth-
ods to predict molecular properties. This method has achieved
remarkable success through constant progress in various fields
such as medical, medicine, the pharmaceutical industry, and life
sciences such as medicinal chemistry, materials science, and
toxicology.

Numerous studies on the structure–property-activity relation-
ship of pyrazine derivatives suggest that variations in odor activi-
ties depend on the type of substituent groups and the location of
the attached substituents in the pyrazine ring, these studies also
showed that there is a good relationship between the odor thresh-
olds of di-substituted pyrazines that have hazelnut or brown notes,
and proposed parameters elucidated from the retention indices for
the respective substituent group (Belhassan et al., 2019).

Olfactory threshold studies of many alkylated pyrazine deriva-
tives show that substituents located at the 2, 3, and 5 positions
of the pyrazine ring should play an important role in odorant activ-
3

ity. Thus, flavor quality classification can be achieved with QSAR/
QSPR studies through good predictive accuracy, integrated descrip-
tor selection, and a method of evaluating the importance of each
descriptor in the model (Chtita et al., 2018).

The QSPR approach encompasses many methods that correlate
the property of molecules with physicochemical and/or structural
properties. In this work, we developed two-dimensional models
such as Hologram QSPR and Monte Carlo, and three-dimensional
models such as Topomer CoMFA and CoMSIA for a series of 78
odorant molecules, we combined these four methods to generate
the best models that collect and interpret complex data from a
range of bioactive molecules to build computational models that
correlate chemical properties and/or biological activity.

Through these approaches, the molecular features responsible
for the odor threshold property of the studied compounds were
identified using the best Topomer CoMFA and CoMSIA models.
The Topomer CoMFA and CoMSIA models generate different con-
tour maps which were then used to identify favored and unfavored
regions in order to identify sites for enhancing the odorant prop-
erty of the studied molecules. The HQSAR analysis suggested frag-
ments with positive and negative contributions, which allowed the
identification of fragments that gave insight into the main frag-
ments responsible for increasing or decreasing the olfactory
threshold, subsequently we are in the process of explaining the
reliable predictive relationship of pyrazine odorant molecules
using the CORAL software based on the Monte Carlo algorithm that
has been widely used for QSPR model design. which applies the
SMILES code to the molecules to calculate the correlation weight
descriptor (CWD). This process is applied by different research
groups for a large number of different medicinal, biochemical
and physicochemical parameters. Predictability is the most impor-
tant criterion for the QSPR model development process. To deter-
mine this criterion, many statistical methods have been reported
in the literature. However, none of them is able to estimate the
predictability of the QSPR model individually and all of them are
related to each other. A new predictability parameter, the correla-
tion ideality index (CII), has recently been suggested, which is
based on the correlation coefficient and the mean absolute error.
In 2019, the same authors introduced a new prediction parameter,
namely the correlation contradiction index (CCI). It has been
shown that there is a good correlation between the validation cor-
relation coefficient and the CCI. In this work, the comparison of CCI
and CCI was performed to select the best model, and thus to study
the additional effect of CCI on CCI (Tabti et al., 2022b).

In addition, the statistical consistency of these developed mod-
els was assessed based on their correlation ability for the training
set, as well as their predictive power for an external test set. We,
therefore, propose quantitative models and attempt to interpret
the properties of the compounds based on 2D-QSPR and 3D-QSPR
analyses.
2. Materials and methods

2.1. Selection of the data set

In this new study, a series of 78 selected pyrazine derivatives
with odor threshold (t) values were extracted from reference, these
molecules were studied to build the CoMSIA, HQSPR, Topomer
CoMFA, and monte Carlo models, 59 molecules were selected to
propose the quantitative model (training set), and 19 molecules
were used to test the performance and quality of the proposed
model (test set). Table 1 shows the chemical structures of the stud-
ied molecules, and the property values of the experimental odor
thresholds in log(1/t) (Belhassan et al., 2019).



Table 1
Chemical structures of pyrazine compounds and their experimental odor threshold properties.

N� R1 R2 R3 R4 Log(1/t) N� R1 R2 R3 R4 Log(1/t)

M1 H H H H 3.523 M40 C5H11 SC2H5 H H 9.000
M2 CH3 H H H 4.523 M41 C8H17 SC2H5 H H 8.699
M3 C2H5 H H H 5.398 M42 C10H21 SC2H5 H H 6.921
M4 C3H7 H H H 6.523 M43 H SC6H5 H H 6.398
M5 C4H9 H H H 6.398 M44 CH3 SC6H5 H H 6.523
M6 C5H11 H H H 8.301 M45 C3H7 SC6H5 H H 7.046
M7* C6H13 H H H 6.699 M46 C5H11 SC6H5 H H 8.000
M8 C7H15 H H H 7.000 M47 C8H17 SC6H5 H H 7.097
M9* C8H17 H H H 6.398 M48* C10H21 SC6H5 H H 6.523
M10* C10H21 H H H 5.955 M49 H OCH3 H H 6.398
M11 CH3 H H CH3 6.398 M50* CH3 OCH3 H H 8.155
M12* CH3 H H OCH3 7.770 M51 C2H5 OCH3 H H 8.000
M13* CH3 H H OC2H5 8.301 M52* C3H7 OCH3 H H 9.921
M14 CH3 H H SCH3 7.699 M53 C4H9 OCH3 H H 10.301
M15 CH3 H H COCH3 6.523 M54* C5H11 OCH3 H H 10.699
M16 C2H5 H H CH3 7.398 M55* C6H13 OCH3 H H 10.155
M17 CH3 H CH3 H 7.097 M56* C7H15 OCH3 H H 10.585
M18 CH3 H OCH3 H 7.699 M57 C8H17 OCH3 H H 10.222
M19* CH3 H OC2H5 H 7.921 M58 C10H21 OCH3 H H 7.398
M20 CH3 H SCH3 H 7.222 M59 (CH2)2CH(CH3)2 OCH3 H H 11.201
M21* CH3 H COCH3 H 6.398 M60 (CH2)3CH = CH2 OCH3 H H 10.523
M22 C2H5 H CH3 H 7.796 M61 CH(CH3)C2H5 OCH3 H H 10.398
M23* CH3 CH3 H H 6.097 M62 CH2CH(CH3)C3H7 OCH3 H H 11.097
M24 C2H5 CH3 H H 6.301 M63 CH2CH(CH3)2 OCH3 H H 10.347
M25 C3H7 CH3 H H 7.222 M64 CH2CH(CH3)C2H5 OCH3 H H 10.921
M26* CH(CH3)2 CH3 H H 7.796 M65 (CH2)3CH(CH3)2 OCH3 H H 11.222
M27 CH3 COCH3 H H 7.699 M66 CH(CH3)2 OCH3 H H 10.620
M28 H SCH3 H H 6.699 M67 (CH2)3CH = CHCH3 (E) OCH3 H H 9.886
M29* CH3 SCH3 H H 8.398 M68 (CH2)3CH = CHCH3 (Z) OCH3 H H 9.301
M30* C2H5 SCH3 H H 7.398 M69 H OC2H5 H H 7.097
M31 C3H7 SCH3 H H 9.000 M70* CH3 OC2H5 H H 9.097
M32 C5H11 SCH3 H H 9.921 M71 C2H5 OC2H5 H H 7.699
M33 C8H17 SCH3 H H 9.155 M72 C5H11 OC2H5 H H 10.097
M34 C10H21 SCH3 H H 7.699 M73 C8H17 OC2H5 H H 8.699
M35 CH(CH3)2 SCH3 H H 10.328 M74* C10H21 OC2H5 H H 7.222
M36 H SC2H5 H H 6.046 M75 H OC6H5 H H 7.523
M37 CH3 SC2H5 H H 7.155 M76 CH3 OC6H5 H H 6.699
M38 C2H5 SC2H5 H H 7.222 M77 C5H11 OC6H5 H H 7.301
M39 C4H9 SC2H5 H H 8.398 M78 C10H21 OC6H5 H H 7.155

Odor threshold (t); Test set (*).

Fig. 1. Database alignment.
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2.2. Modelling and molecular alignment

We used the Sybyl software to draw molecules from the data-
base, and these registered molecules were reduced using molecu-
lar mechanics. We picked the Alignment database technique,
4

which has a force field parameter (Tripos), an energy gradient con-
vergence threshold of 0.01KCal/mol, and a charge type of
Gasteiger-Hückel with a maximum of 1000 iterations. The struc-
tural alignment phase is included in the 3D-QSPR study because
alignment is a necessary first step in statistical analyses of flexible
structures in 3D-QSPR models (Vyas et al., 2017).

The alignment databases were chosen for their ability to pro-
duce satisfactory results, and the M65 compound was chosen as
the model molecule against which the other compounds were
matched (Fig. 1).

2.3. Monte Carlo regression

The method for optimal hybrid descriptors is based on SMILES
structures and molecular graphical representations, both of which
are based on correlation weight optimization. The Monte Carlo
regression model was created using the CORAL application
(https://www.insilico.eu/Coral). CORAL works out as follows:

The molecular structure can be represented using SMILES and/
or a molecular graph. The two molecular structure representations
stated above have an effect on optimal hybrid descriptors. Maxi-

https://www.insilico.eu/Coral
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mizing the correlation weight of the SMILES attributes with the
correlation weight of the chart invariants yields optimal hybrid
descriptors. A parameter prediction model is fitted with the best
DCW hybrid descriptor (T, N):

PropertyBiological ¼ C0þ C1� DCWðT;NÞ
The optimum descriptor of the molecular feature function taken

from SMILES is DCW (T, N). T and N are the best threshold and
number of epochs determined during construction, respectively
(Liman et al., 2022).

T is the threshold for classifying molecular qualities (structural
features) into two groups: rare and frequent. If a structural feature
is widespread in energizing substances, it can be linked to prop-
erty; nevertheless, unusual features have less value and are viewed
as noise. The weights of correlation (CW) of active structural attri-
butes (ASs) are used to construct the ideal descriptor: for rare attri-
butes, the CW is set to zero, signaling that they are not included in
the model.

The N represents the number of times a DCW of a molecular
characteristic is changed. The DCW values are obtained during con-
struction using Monte Carlo optimization. The goal of the Monte
Carlo approach is to maximize the correlation coefficient between
the ideal descriptor and the parameter. Optimization is done with
the formation and invisible formation ensembles to avoid over-
formation (Toropov et al., 2020).

In this work, optimization was performed by balancing the cor-
relations of the TF1 and TF2 target functions in the CORAL 2017
software to build the QSPR models, which are used to obtain the
best results. In order to avoid over-training, the correlation balance
method, which requires a high correlation between training and
validation packages, was proposed.

2.4. Hologram-QSPR (HQSPR)

The Tripos HQSPR method is a computational approach for pre-
dicting molecular properties based on 2Dmolecular fragments. The
method takes advantage of the fact that molecular properties can
be correlated with the molecular structure, and that the molecular
structure can be represented as a series of 2D molecular fragments.

In the first step of the HQSPR method, 2D molecular structures
are divided into all possible linear and branched fragments, and
each unique fragment is assigned a specific integer using a cyclic
redundancy check (CRC) algorithm. These integers are then used
to create a molecular hologram that serves as a structural descrip-
tor, containing topological and compositional information about
the molecular structure (Vyas et al., 2017).

In the second step, the molecular holograms are correlated with
the corresponding biological properties using partial least squares
(PLS) analysis. A drop-out cross-validation (LOOCV) is performed to
identify the optimal number of explanatory variables or compo-
nents that result in an optimal model. The final step involves deriv-
ing a mathematical regression equation that links the values or
components of the molecular holograms with the corresponding
biological properties.

The Tripos HQSPR method is a powerful tool for predicting
molecular properties and has potential applications in fields such
as drug discovery, materials science, and chemical engineering.
By allowing for the automated analysis of large datasets, the Tripos
HQSPR method can help speed up the process of discovering new
drugs and materials, as well as improving our understanding of
molecular structure–property relationships (Tabti et al., 2022c).

BPi ¼ Cst þ
XL

J¼1

XijCj
5

where BPi is the biological property of the ith compound, xij is the
occupancy value of the molecular hologram of the ith compound
at position or bin j, Cj is the coefficient for bin j derived from the
PLS analysis, and L is the hologram length. One of the drawbacks
of HQSPR is the fragment collision problem, which occurs during
the fragment hashing process (Fig. 2).

Although hashing reduces the length of the hologram, it results
in different fragments in the same bin. The hologram length, a
user-definable parameter, controls the number of bins in the holo-
gram, and changing the hologram length can result in a change in
the bin occupancy pattern. The program provides 12 default
lengths but after several trials, we chose the first four which
proved to give good predictive models on different data sets.

2.5. CoMFA and CoMSIA analysis

CoMSIA was created to address some of the shortcomings of
CoMFA. In CoMSIA, molecular similarity indices derived from the
modified SEAL similarity criteria are used as descriptors to account
for steric, electrostatic, hydrophobic, and hydrogen bonding prop-
erties all at the same time. Individual indices are calculated by
comparing the similarity of each molecule in the dataset to a com-
mon probe atom (with radius 1A, character + 1, and hydrophobic-
ity + 1) located at the intersections of a surrounding grid/network.
The mutual distance between the probe atom and the atoms in the
aligned data set molecules is also considered when calculating
similarity at all grid points (Wang et al., 2021).

Gaussian-like functions are used to characterize the distance
dependence and calculate the molecular properties. Because the
underlying Gaussian-like functional forms are ‘‘smooth” and free
of singularities, their slopes are not as steep as those of the Cou-
lomb and Lennard-Jones functions in CoMFA, thus eliminating
the need for arbitrary cutoff limits. CoMSIA and CoMFA are
included in the Sybyl software from Tripos Inc.

2.6. Topomer CoMFA

The CoMFA topomer method was developed to overcome the
alignment issue in CoMFA; this technique takes into account not
only the steric and electrostatic descriptors, but also the molecular
topomer descriptors (Tabti et al., 2022a). A topomer is a molecular
fragment with a single internal geometry or ‘‘Pose.” To produce
better models, the two main fragmentation strategies (R1, R2, R3
and R4 – Common Core) were used (Fig 3). The calculation of steric
and electrostatic fields is similar to the CoMFA approach.

2.7. External validation plus

Validation is the most important stage in constructing quantita-
tive structure–activity relationship (QSPR) models. It ensures the
dependability of the final QSPR model as well as the acceptance
of each phase in the model generation process. External validation
(using an independent test set) is commonly employed to assess
the predictive accuracy of a QSPR model (Ouabane et al., 2022).

The external predictivity of QSAR models is represented by
computing and analyzing various validation metrics, which can
be broadly classified into two classes or categories, namely, R2-
based metrics such as R2

test , Q
2
ext(F1), Q

2
ext(F2), average R2

m, D R2
m,

and purely error-based metrics such as root mean square error
(RMSE), mean absolute error (MAE), and so on.

Furthermore, before doing external validation on a model, it is
necessary to check for the presence of a systematic mistake that
violates the basic assumptions of the least square’s regression
model. If the model contains significant systematic error (bias), it



Fig. 2. Development of the predictive equation obtained by partial least squares analysis of the HQSPR model.

Fig. 3. Cutting mode in Topomer CoMFA.

Fig. 4. Representation of the crystalline structure 1DZK.pdb, chain A in green (ligand:
methoxy-3-(2-methylpropyl) pyrazine).
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should be ignored, and any external validation test performed on
such a biased model is worthless.

External Validation Plus is a tool that checks for systematic
errors in the model (only if the user chooses; optional) and then
computes all of the required external validation parameters while
evaluating the performance of a QSAR model’s actual prediction
quality using our recently proposed MAE-based criteria (Yu et al.,
2023).

Systematic error is present when any one or more of the follow-
ing conditions is true:

i. NPE=NNE > 5 or NNE=NPE > 5

NPE: Number of positive errors, and NNE: Number of negative
errors

ii. ABSðMPE=MNEÞ > 2orABSðMNE=MPEÞ > 2

MPE: Mean of positive error, MNE: Mean of negative errors, and
ABS: Absolute value

iii. AAE� ABSðAEÞ < 0:5� AAE
2-methoxy-3-(2-methylprop-2-en-1-yl) pyrazine) and chain B in blue (ligand: 2-



Fig. 5. Models TF1 and TF2 were used to calculate the olfactory correlation thresholds of experimental odorous compounds.

Fig. 6. The influence of the minimum and maximum number of atoms has an impact on the model performance (B/C).

Fig. 7. Residual graphs between experimental and predicted for HQSPR models.
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AAE: Average of absolute prediction errors, and AE: Average of
predictions errors

iv. R2 greater than 0.5 for residuals sorted on experimental
response values

In the external Validation tool, the above threshold values are
set as default and user can change the threshold values as required.

If any of the conditions listed above are met, the program will
alert you to the presence of systematic error in the output file
and recommend that you discard the model (only if the user
7

chooses to check for systematic error). Furthermore, examining
the external validity parameter is pointless if a systematic inaccu-
racy exists.
2.8. In silico pharmacokinetic ADME-Tox study

The ADME/Tox examination is a crucial step in the drug discov-
ery process as it determines the pharmacokinetic properties of a
drug candidate, including its absorption, distribution, metabolism,
excretion, and toxicity. However, this process can be lengthy and
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costly, and not all drug candidates meet the required criteria
(Ugale et al., 2017).

To overcome these limitations, there are now various online
and offline tools available that can help predict ADME/Tox proper-
ties in silico. The online pkCSM tool and the SwissADMET online
server are two examples of these tools. These tools use computer
models and algorithms to estimate the pharmacokinetic properties
of new compounds without the need for extensive experimental
testing (Hajji et al., 2021a).

By using these online tools, researchers can quickly and cost-
effectively predict the ADME/Tox properties of drug candidates,
allowing them to make informed decisions about which candidates
to pursue in the drug discovery process. This can contribute to
speeding up the drug discovery process and increasing the success
rate of developing new drugs.

2.9. Molecular docking study

The mechanism of action between olfactory receptors and odor-
ant molecules is a crucial step in the development of new odorant
molecules for use in various pharmaceutical, cosmetic and agro-
food fields. In this study, molecular docking simulation is a useful
tool to determine this binding between pyrazine derivatives and
the active site of the protein responsible for the transmission of
the odorant molecules and we have chosen a receptor (PDB ID:
1DZK) to make comparisons with the reference ligand 2-isobutyl-
3-metoxypyrazine, this odorant molecule noted M63 in the data
base (Fig. 4).

In this study, we selected the most and least active compounds,
which the reference ligand methoxypyrazine in the database on
the one hand, and on the other hand the new compounds proposed
from the molecule M65 with the highest odor threshold. All steps
were performed by various available software such as CB-Dock
(Ahfid et al., 2023), AM-Dock, Autodock-Vina (Mahfuz et al.,
2022), Pyrex (En-nahli et al., 2022) and Sybyl. The molecular dock-
ing results were visualized by Discovery Studio (Hajji et al., 2021b).

The 3D structure of the receptor was chosen from the crystal
structure (PDB ID: 1DZK) with a resolution of 1.48 Å, obtained from
the RCSB protein database (https://www.rcsb.org). The structure of
porcine odorant binding protein (pOBP) is a monomer of 157
amino acid residues, purified in abundance from porcine nasal
mucosa. These residues were minimized by Sybyl software, then
we added non-polar hydrogen atoms to the protein chain,
Gasteiger-Huckel type charges were chosen, the convergence
energy gradient was set to 0.01 kcal/mol maintaining 1000 times
of optimization as the maximum limit cycle number.

The grid parameters are: positions P1: (x = 12.03, y = 4.71,
z = 24.10), P2: (x = 14.65, y = 4.28, z = 25.12), dimensions
(x = 30, y = 30, z = 30), energy range of order 10 and completeness
equal to 8. We also used the re-Docking method to validate the
Docking procedure, this technique based on the superposition of
the M63 molecule after and the reference ligand were extracted
before the molecular Docking, the RSMD value was displayed by
the Discovery studio visualization software. Docking is reliable if
the root means square deviation (RMSD) value is low (typically
(1.5–2) Å depending on ligand size) (Shi et al., 2022).

2.10. Molecular dynamics simulations

To study the stability of complex (ligand–protein) interactions,
molecular dynamic simulation (MD) calculations were performed
on the best molecular docking poses. Using the CHARMM force
field parameters, generate protein input files using the c solution
generator and ligand topology using the CHARMM general force
field Param-Chem server. The building blocks of the CHARMM-
GUI solution consist of five steps. In the first step, the coordinates
8

of the protein–ligand complex are read by the tool. The second step
is to solve the protein–ligand complex and determine the shape
and size of the system. Naþ and Cl� ions are added at this stage
to neutralize the system. Periodic boundary conditions (PBC) are
defined in the third step, which allows a large system to be approx-
imated using a single cell which is then replicated in all directions.
The simulation is only for atoms inside the PBC box. Bad contacts
are removed at this stage by performing a short minimization.
The fourth and fifth steps are to balance the system and produc-
tion. Balancing is carried out in two steps: NVT and NPT, ensuring
the system reaches the desired temperature and pressure (Koubi
et al., 2023).

The input files for balancing and production are then down-
loaded and the desired changes are made, including the number
of steps in the MD simulation, the frequency of trajectory recording
and energy calculation, etc. GROMACS 2020.2 was used for both
equilibration and production of all MD simulations. All complexes
were first solvated in a cubic box of TIP3P water, then Naþ and Cl�

ions were added to neutralize the net atomic charge of the whole
system by randomly replacing the water molecules. Periodic
boundary conditions (PBC) were imposed taking into account the
shape and size of the system. The unrelated interactions were trea-
ted with a cut-off distance of 12 Å and the neighbors search list
was buffered with the Verlet cut-off scheme, and the long-range
electrostatic interactions were treated with the Ewald particle
mesh method (SME) (Khaldan et al., 2022).

The CHARMM36 force field was applied to the protein–ligand
complex. Prior to the production simulation, system energy mini-
mization was performed using the gradient descent algorithm
(5000 steps) (Balupuri et al., 2020). The complex was then bal-
anced to stabilize its temperature and pressure by subjecting it
to an NVT and NPT assembly and simulating it for 125 ps at a tem-

perature of 300,15 K using 400 Kj.mol�1.nm�2 and 40 Kj.mol�1.nm�2

on the main axis and side chains respectively. Finally, the complex
is subjected to a production simulation of 100 ns in NPT assembly
at 300.15 K and 1 bar. To maintain the temperature, a Nose-Hoover
thermostat was used and to maintain the pressure, a Parrinello-
Rahman barostat was used. The LINCS algorithm was used to con-
strain hydrogen bonds using inputs provided by CHARMM-GUI.
The 300 K V-rescale thermostat with a 1 ps coupling constant
was used. The trajectories were recorded every 2 ps. Simulations
of 100 ns in NPT assembly were performed for the production stage
(Mahfuz et al., 2022).
2.10.1. Trajectory analysis
The GROMACS utilities have played a crucial role in the analysis

of molecular dynamics (MD) simulations. Several specific tools
have been used to study different aspects of protein–ligand
complexes.

Firstly, the root mean square deviation (RMSD) was calculated
to assess the stability of the complexes. This involved aligning
the atoms of the main axis of the protein using the gmx_rms sub-
routine, which measures the similarity of atomic positions
between the ligand and protein relative to a reference structure.
Similarly, the root mean square fluctuations (RMSF) were calcu-
lated, focusing on the C-alpha atoms of the protein using
gmx_rmsf. This analysis helped to identify regions of the protein
with significant fluctuations (Mahmud et al., 2021).

The gyration radius of the protein atoms was also evaluated to
assess the compactness and overall stability of the complex. This
was done using the gmx_gyrate tool, which measures the spatial
dispersion of protein atoms and provides an estimate of the gyra-
tion radius. In addition, hydrogen bond analysis was performed to
evaluate specific interactions between the ligand and the protein.
The gmx_hbond tool was used to calculate the number of hydrogen

https://www.rcsb.org


Table 2
The performance statistical parameters obtained from TF1 and TF2 models.

Model data set n R2 CCC IIC Q2 s MAE F

TF1 Training set 20 0.7840 0.8789 0.5903 0.7435 0.868 0.719 65
Invisible training 20 0.7616 0.8442 0.5901 0.7067 0.897 0.632 57
Calibration 19 0.8173 0.8995 0.9003 0.7687 0.812 0.601 76

TF2 Training set 20 0.9569 0.9780 0.8004 0.9498 0.388 0.227 400
Invisible training 20 0.9721 0.9236 0.2833 0.9670 0.568 0.441 627
Calibration 19 0.9085 0.9422 0.7694 0.8830 0.577 0.441 169

Table 3
Molecular weight as well as experimental and calculated values for each TF1 and TF2 model.

ID DCW pt Predpt ID DCW pt Predpt

TF1 TF2 TF1 TF2 TF1 TF2 TF1 TF2

1 + 55.770 67.320 3.523 4.160 3.536 36 – 72.748 86.036 6.046 5.436 6.125
3 + 74.751 79.918 5.398 5.587 5.279 37 – 98.735 91.093 7.155 7.390 6.824
4 + 74.000 89.805 6.523 5.530 6.646 42 – 107.482 91.797 6.921 8.048 6.922
11 + 81.913 89.392 6.398 6.125 6.589 49 – 89.558 87.033 6.398 6.700 6.263
24 + 100.243 87.544 6.301 7.503 6.333 57 – 118.463 107.293 10.222 8.873 9.065
32 + 109.747 112.572 9.921 8.218 9.795 60 – 128.819 112.482 10.523 9.652 9.782
35 + 123.836 114.872 10.328 9.277 10.113 64 – 139.419 114.324 10.921 10.449 10.037
38 + 110.494 93.982 7.222 8.274 7.224 66 – 138.902 112.926 10.620 10.410 9.844
40 + 111.505 105.874 9.000 8.350 8.869 67 – 126.771 107.886 9.886 9.498 9.147
43 + 86.209 88.167 6.398 6.448 6.419 73 – 120.220 101.236 8.699 9.005 8.227
45 + 96.890 91.885 7.046 7.251 6.934 2 # 66.562 83.485 4.523 4.971 5.772
46 + 96.344 99.818 8.000 7.210 8.031 8 # 74.150 88.928 7.000 5.542 6.525
51 + 117.679 100.234 8.000 8.814 8.088 14 # 82.222 95.491 7.699 6.149 7.432
53 + 121.497 112.478 10.301 9.101 9.782 17 # 94.710 87.950 7.097 7.087 6.389
58 + 116.854 101.662 7.398 8.752 8.286 20 # 87.157 98.742 7.222 6.520 7.882
59 + 151.407 122.185 11.201 11.350 11.124 31 # 110.293 104.639 9.000 8.259 8.698
68 + 126.771 109.021 9.301 9.498 9.304 34 # 105.725 98.495 7.699 7.916 7.848
69 + 87.815 92.783 7.097 6.569 7.058 39 # 112.126 102.613 8.398 8.397 8.417
77 + 107.473 100.862 7.301 8.047 8.175 41 # 109.091 97.428 8.699 8.169 7.700
78 + 103.450 86.785 7.155 7.745 6.228 44 # 89.263 89.049 6.523 6.678 6.542
5 – 76.379 91.297 6.398 5.709 6.852 47 # 93.931 91.372 7.097 7.029 6.863
6 – 75.759 94.559 8.301 5.663 7.304 61 # 138.725 118.240 10.398 10.397 10.579
15 – 82.153 88.669 6.523 6.143 6.489 62 # 138.484 119.332 11.097 10.379 10.730
16 – 93.540 92.755 7.398 7.000 7.054 63 # 147.345 112.683 10.347 11.045 9.810
18 – 102.224 95.174 7.699 7.652 7.389 65 # 151.783 121.308 11.222 11.379 11.003
22 – 104.032 95.690 7.796 7.788 7.460 71 # 125.561 95.111 7.699 9.407 7.380
25 – 101.231 93.559 7.222 7.578 7.165 72 # 122.634 109.683 10.097 9.187 9.395
27 – 102.717 94.668 7.699 7.690 7.319 75 # 93.399 89.146 7.523 6.989 6.555
28 – 74.491 90.601 6.699 5.567 6.756 76 # 100.391 90.093 6.699 7.515 6.686
33 – 107.334 104.126 9.155 8.037 8.627

Table 4
Molecular weight, experimental and calculated values for each model TF1 and TF2 as well as the domain of applicability.

Test set ID DCW Exp TF1 TF2 Applicability

TF1 TF2 TF1 TF2

* 7 74.954 91.744 6.699 5.602 6.914 YES YES
* 9 73.345 86.113 6.398 5.481 6.135 YES YES
* 10 71.736 80.482 5.955 5.360 5.357 YES YES
* 12 97.288 91.923 7.770 7.281 6.939 YES YES
* 13 96.291 97.745 8.301 7.206 7.744 YES YES
* 19 100.481 100.924 7.921 7.521 8.184 YES YES
* 21 87.467 86.730 6.398 6.543 6.221 YES YES
* 23 92.859 87.990 6.097 6.948 6.395 YES YES
* 26 111.706 101.137 7.796 8.365 8.213 YES YES
* 29 99.733 97.349 8.398 7.465 7.689 YES YES
* 30 106.550 97.067 7.398 7.978 7.650 YES YES
* 48 92.322 85.741 6.523 6.908 6.084 No YES
* 50 114.799 95.403 8.155 8.598 7.420 YES YES
* 52 121.422 107.806 9.921 9.096 9.136 YES YES
* 54 120.876 115.740 10.699 9.055 10.233 YES YES
* 55 120.072 112.924 10.155 8.994 9.844 YES YES
* 56 119.267 110.109 10.585 8.934 9.454 YES YES
* 70 113.802 92.222 9.097 8.523 8.980 YES YES
* 74 118.611 95.606 7.222 8.884 7.448 YES YES
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Table 5
Y-randomization test results for both TF1 and TF2 models.

Training Invisible training Calibration

TF2 TF1 TF2 TF1 TF2 TF1

N 20 20 20 20 19 19
Origin 0.9569 0.7840 0.9721 0.7616 0.9085 0.8173
1 0.0086 0.0357 0.0016 0.3507 0.0681 0.0001
2 0.1002 0.0310 0.0070 0.0022 0.1032 0.1039
3 0.0279 0.0165 0.1187 0.0321 0.1032 0.1378
4 0.1570 0.1145 0.0128 0.0912 0.0022 0.0268
5 0.0805 0.0456 0.2302 0.0036 0.0528 0.0088
6 0.0184 0.0282 0.0022 0.0003 0.0356 0.1381
7 0.0035 0.0035 0.0766 0.1430 0.0147 0.0125
8 0.0180 0.0293 0.0000 0.0006 0.0926 0.0005
9 0.0355 0.0222 0.0203 0.0011 0.3408 0.0622
10 0.1139 0.0027 0.0024 0.1460 0.0251 0.0145

R2
Average

0.0563 0.0329 0.0472 0.0771 0.0940 0.0505

CRp2 0.9283 0.7674 0.9482 0.7220 0.8602 0.7916

Table 6
Golbraikh and Tropsha’s criteria are used to assess TF1 and TF2 models obtained using the Monte Carlo method.

criteria expression Test set (TF2) Test set (TF1) interval

R2
R2 ¼ 1�

P
Yobs�Ycalð Þ2P
ðYobs�YcalÞ

� 2(1)
0.8336 0.6456 should be larger 0.5

R2
0 R2

0 ¼ 1�
P

Yobs�K:Ycalð Þ2P
Yobs�Ycalð Þ2 (2) 0.8333 0.6425 should be larger 0.5

R02
0 R02

0 ¼ 1�
P

Yobs�K0:Ycalð Þ2P
Yobs�Ycalð Þ2 (3) 0.8088 0.5205 should be larger 0.5

R2�R2
0

R2

1ð Þ�ð2Þ
ð1Þ 0.0004 0.0048 should be lower 0.1

R2�R02
0

R2

1ð Þ�ð3Þ
ð1Þ 0.0298 0.1938 should be lower 0.1

K K =
P

YobsYcalP
Y2
cal

1.0511 1.0449 0.85 < k < 1.15

K’ K’ =
P

YobsYcalP
Y2
obs

0.9461 0.9456 0.85 < k’ < 1.15

R2
m R2

m ¼ R2ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � R2

0

��� ���
r

0.7023 0.4172 should be larger 0.5

R02
m R02

m ¼ R02ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R02 � R020
��� ���

r
0.8183 0.6098 should be larger 0.5

Average R2
m Average R2

m=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � cR2

P
R

��� ���
r

0.7603 0.5135 should be larger 0.5

D R2
m D R2

m ¼ R2
mþR02

m
2

0.1160 0.1925 should be lower 0.2

IIC IIC=Rset � minð�MAESet ;þMAESetÞ
maxð�MAESet ;þMAESetÞ

0.3626 0.561 Low value

RMSE
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðYExp�YCalÞ2

n

r
0.7408 0.9766 Low value

MAE MAE=1n
P

YExp � YCal

�� �� 0.5680 0.8429 Low value

Q2
Q2 ¼ 1�

P
Yobs�Ycalð Þ2P
ðYobs�YcalÞ

� 2
0.8052 0.5577 should be larger 0.5
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bonds formed within the protein–ligand interface. This provides
information on the stability and nature of the interactions between
the ligand and the protein. The distance between the center of
mass of the protein and the ligand was measured during the sim-
ulation using the gmx_distance tool. This allows changes in the dis-
tance between the ligand and the protein to be tracked over time,
providing insight into the dynamics of the binding (Alamri et al.,
2020).

Finally, the molecular visualization program VMD was used to
visualize the trajectories and analyze the frequency of protein–li-
gand contacts. VMD allows the visual observation of atomic move-
ments during simulation, facilitating an intuitive understanding of
molecular dynamics. Using VMD it is possible to analyze specific
interactions between the protein and the ligand, examine atomic
contacts and identify key residues involved in binding. The GRO-
MACS utilities, such as gmx_rms, gmx_rmsf, gmx_gyrate,
10
gmx_hbond and gmx_distance, complemented the analysis by pro-
viding quantitative measurements of the stability and structural
properties of the protein–ligand complexes. This combination of
tools allowed a comprehensive view of the molecular dynamics
and associated interactions, providing an in-depth understanding
of the stability of the studied complexes (El Bahi et al., 2023).

2.10.2. Binding free energy (MM/PBSA calculations)
For systems selected for further analysis, MM/PBSA (Molecular

Mechanics/Surface Poisson-Boltzmann) calculations were per-
formed using g_mmpbsa, a GROMACS tool used to calculate an
estimated binding affinity. In general terms, the free energy of
binding of the protein with the ligand solution can be expressed
as follows:

DGbinding ¼ DGcomplex � ðDGprotein þ DGligandÞ



Table 7
The major statistical markers operational fragment size HQSPR results of various fragment distinctions.

Model Fragment distinction Component Q2
LOO

SEE R2 SEE Best Length

1 A 5 0.759 0.887 0.870 0.651 71
2 B 5 0.779 0.849 0.863 0.670 61
3 C 6 0.823 0.768 0.905 0.562 61
4 H 5 0.511 1.265 0.568 1.057 53
5 Ch 5 0.512 1.266 0.569 1.058 54
6 DA 5 0.720 0.957 0.856 0.686 71
7 A/B 5 0.702 0.987 0.816 0.776 71
8 A/C 5 0.724 0.950 0.861 0.674 61
9 A/H 6 0.734 0.941 0.870 0.659 71
10 A/Ch 5 0.746 0.912 0.857 0.685 71
11 A/DA 6 0.709 0.985 0.867 0.667 61
12 B/C 6 0.832 0.748 0.916 0.528 59
13 B/H 5 0.779 0.849 0.863 0.670 61
14 B/Ch 5 0.779 0.849 0.863 0.670 61
15 B/DA 6 0.673 1.044 0.868 0.663 71
16 C/H 6 0.823 0.768 0.905 0.562 61
17 C/Ch 6 0.823 0.768 0.905 0.562 61
18 C/DA 5 0.723 0.951 0.849 0.703 53
19 H/Ch 5 0.511 1.265 0.658 1.057 53
20 H/DA 5 0.720 0.957 0.856 0.686 71
21 Ch/DA 6 0.710 0.983 0.858 0.687 71
22 A/B/C 6 0.740 0.930 0.892 0.600 61
23 A/B/H 6 0.713 0.977 0.862 0.677 61
24 A/B/Ch 5 0.716 0.964 0.834 0.736 71
25 A/B/DA 6 0.712 0.98 0.864 0.674 71
26 A/C/H 6 0.766 0.883 0.886 0.616 71
27 A/C/Ch 5 0.724 0.951 0.861 0.673 61
28 A/C/DA 6 0.726 0.956 0.882 0.628 53
29 A/H/Ch 4 0.710 0.965 0.823 0.754 53
29 B/Ch/DA 6 0.676 1.039 0.864 0.673 71
30 A/H/DA 6 0.721 0.964 0.870 0.659 59
31 A/Ch/DA 4 0.703 0.977 0.811 0.780 59
32 B/C/H 6 0.832 0.748 0.916 0.528 59
33 B/C/Ch 6 0.832 0.748 0.916 0.528 59
34 B/C/DA 6 0.746 0.920 0.88 0.633 53
35 B/H/Ch 5 0.779 0.849 0.863 0.670 61
36 B/H/DA 6 0.673 1.044 0.868 0.633 71
37 C/H/Ch 6 0.823 0.768 0.905 0.562 61
38 C/H/DA 5 0.723 0.951 0.849 0.703 53
40 C/Ch/DA 6 0.710 0.983 0.858 0.687 71
41 H/Ch/DA 6 0.817 0.781 0.903 0.568 59
42 A/B/C/H 6 0.739 0.933 0.891 0.603 61
43 A/B/C/Ch 6 0.732 0.945 0.886 0.617 53
44 A/B/C/DA 6 0.736 0.937 0.866 0.667 61
45 A/B/H/Ch 5 0.748 0.907 0.873 0.645 61
46 A/B/H/DA 5 0.757 0.892 0.870 0.653 71
47 A/C/H/Ch 5 0.753 0.898 0.874 0.642 71
48 A/C/H/DA 6 0.832 0.748 0.916 0.528 59
49 B/C/H/Ch 6 0.746 0.920 0.880 0.633 53
50 B/C/H/DA 6 0.719 0.968 0.858 0.688 53
51 C/H/Ch/DA 6 0.676 1.039 0.864 0.673 71
52 B/H/Ch/DA 6 0.676 0.955 0.882 0.627 53
53 B/C/Ch/DA 5 0.725 0.948 0.851 0.699 59
54 A/H/Ch/DA 6 0.747 0.919 0.887 0.615 53
55 A/C/Ch/DA 5 0.720 0.956 0.847 0.706 59
56 A/B/Ch/DA 6 0.726 0.955 0.882 0.627 53
57 A/B/C/H/Ch 6 0.794 0.829 0.897 0.586 59
58 A/B/C/H/DA 6 0.777 0.863 0.90 0.577 59
59 A/B/C/Ch/DA 5 0.704 0.984 0.857 0.685 53
60 A/B/H/Ch/DA 5 0.756 0.894 0.873 0.643 61
61 A/C/H/Ch/DA 6 0.758 0.899 0.893 0.596 59
62 B/C/H/Ch/DA 6 0.726 0.955 0.882 0.627 53
63 A/B/C/H/CH/DA 6 0.744 0.924 0.890 0.604 59
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Where DGcomplex is the total free energy of the protein–ligand
complex, DGprotein and DGligand are the total free energies of the iso-
lated protein and the ligand in solution, respectively. g_mmpbsa
can also be used to estimate the energy contribution per residue
to the binding energy. To decompose the binding energy DEMM ,
DGpolair and DGnon�polar were first calculated separately for each resi-
due and then summed to obtain the contribution of each residue to
11
the binding energy. As g_mmpbsa only reads files from certain ver-
sions of GROMACS, the binary input file (.tpr) required for the MM-
PBSA calculation with g_mmpbsa has been regenerated by GRO-
MACS 5.1.4. The molecular structure file (.gro), the topology file
(.top) and the MD parameter file (.mdp) were required to generate
the binary input calculation file, and all came from the MD process
(Wang et al., 2021).



Table 8
Statistical results of model’s B/C, B/C/H and B/C/H/Ch with different fragment sizes.

Model Fragment distinction Component Q2
LOO

SEE R2 SEE Best Length

1–4 B/C 6 0.746 0.92 0.828 0.758 71
B/C/H 6 0.746 0.92 0.828 0.758 71
B/C/H/Ch 6 0.746 0.92 0.828 0.758 71

2–5 B/C 6 0.792 0.832 0.867 0.667 53
B/C/H 6 0.792 0.832 0.867 0.667 53
B/C/H/Ch 6 0.792 0.832 0.867 0.667 53

3–6 B/C 6 0.812 0.791 0.895 0.590 61
B/C/H 6 0.812 0.791 0.895 0.590 61
B/C/H/Ch 6 0.812 0.791 0.895 0.590 61

4–7 B/C 6 0.832 0.748 0.916 0.528 59
B/C/H 6 0.832 0.748 0.916 0.528 59
B/C/H/Ch 6 0.832 0.748 0.916 0.528 59

5–8 B/C 6 0.826 0.762 0.906 0.560 53
B/C/H 6 0.826 0.762 0.906 0.560 53
B/C/H/Ch 6 0.826 0.762 0.906 0.560 53

6–9 B/C 6 0.798 0.820 0.913 0.539 61
B/C/H 6 0.798 0.820 0.913 0.539 61
B/C/H/Ch 6 0.798 0.820 0.913 0.539 61

7–10 B/C 5 0.735 0.932 0.856 0.685 53
B/C/H 5 0.735 0.932 0.856 0.685 53
B/C/H/Ch 5 0.735 0.932 0.856 0.685 53

8–11 B/C 5 0.738 0.925 0.831 0.744 59
B/C/H 5 0.738 0.925 0.831 0.744 59
B/C/H/Ch 5 0.738 0.925 0.831 0.744 59

9–12 B/C 6 0.708 0.987 0.827 0.760 71
B/C/H 6 0.708 0.987 0.827 0.760 71
B/C/H/Ch 6 0.708 0.987 0.827 0.760 71

10–13 B/C 5 0.710 0.974 0.802 0.805 71
B/C/H 5 0.710 0.974 0.802 0.805 71
B/C/H/Ch 5 0.710 0.974 0.802 0.805 71

11–14 B/C 6 0.604 1.149 0.723 0.962 61
B/C/H 6 0.604 1.149 0.723 0.962 61
B/C/H/Ch 6 0.604 1.149 0.723 0.962 61
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3. Results and discussion

3.1. Results obtained by Monte-Carlo approach

QSPR model based on SMILES is a type of quantitative struc-
ture–property relationship model that uses Simplified Molecular
Input Line Entry System (SMILES) notation to represent molecular
structures. SMILES strings are used as input features to predict var-
ious physical and chemical properties of the molecules. The aim of
such models is to establish a correlation between molecular struc-
ture and property, allowing for the prediction of properties for new
molecules based on their SMILES representation. A total of 78
molecules were developed from two target function types, TF1
(without IIC) and TF2 (with IIC), using equations (TF1) and (TF2)
respectively, to select consistent statistical performance.

Predpt ¼ �5:7746958ð�0:1095872Þ þ 0:1383070ð�0:0011208Þ
� DCWð1;10ÞðTF1Þ
Predpt ¼ �0:0333622ð�0:1840351Þ þ 0:0751853ð�0:0018147Þ
� DCWð8;10ÞðTF2Þ

The results of the statistical parameters obtained for the QSPR
models generated from the odor threshold of odorant molecules
based on SMILES descriptors for four sets randomly (+): Training
set, (-): Invisible training, (#): Calibration and (*): test set are
recorded in Table 2 and 3.

The results indicate that the (TF2) model gives better results
than the (TF1) model, which means that the addition of IIC (TF2)
to the model weight improves its prediction. The comparison of
experimental log(1/t) values to the calculated values for both mod-
12
els, presented in Table 4, clearly shows the statistical reliability of
the TF2 models and that they meet the criteria established by
external validation.
3.1.1. Y-randomization test
Y-randomization is a tool used in the validation of QSPR/QSAR

models that compares the performance of the original model in
the data description (R2) to models produced for permuted (ran-
domly mixed) response, depending on the original model’s
descriptor directory and creation procedure. The validation meth-
od’s results are presented in Table 5.

The T threshold and N epochs were selected to produce the best
statistical indicators for the calibration set. TF1 eliminates the
effect of CII on the log (1/t) odor threshold and its predicted values
differ from the experimental values, whereas in the case of TF2,
which takes into account the influence of IIC on the odor threshold,
the experimental odor threshold values are closer to the calculated
values (Fig. 5). The (T, Nepoch) values for both TF1 and TF2 models
demonstrate that the threshold and number of epochs are not
identical.
3.1.2. Golbraikh and Tropsha’s criteria
The Golbraikh and Tropsha criteria are statistical parameters

represented in the Table 6 below for evaluating the effectiveness
of QSPR or QSAR models in computational chemistry. The criteria
consist of two acceptance measures: R2 greater than 0.6 and Q2

greater than 0.5(Elbouhi et al., 2022). These measures are com-
monly used to evaluate the accuracy of a predictive model in
reproducing experimental data.



Table 9
Experimental and calculated values by different Hologram models.

N pt 59 71 61 53 AVG N pt 59 71 61 53 AVG

Training set M1 3.52 3.76 4.81 4.60 4.39 4.39 M57 10.22 9.06 9.14 9.12 9.14 9.11
M2 4.52 5.17 5.39 5.12 5.49 5.29 M58 7.40 8.22 8.24 8.36 8.43 8.31
M3 5.40 5.59 5.84 5.83 5.57 5.71 M59 11.20 11.20 10.90 10.94 10.89 10.98
M4 6.52 6.06 6.26 6.49 6.08 6.22 M60 10.52 9.69 9.65 9.97 9.66 9.74
M5 6.40 7.16 7.05 6.99 6.59 6.95 M61 10.40 10.70 11.48 10.89 10.98 11.01
M6 8.30 7.46 7.39 7.31 7.00 7.29 M62 11.10 11.43 11.24 11.57 11.52 11.44
M8 7.00 6.77 6.68 6.73 6.22 6.60 M63 10.35 10.27 10.07 10.02 10.24 10.15
M11 6.40 7.00 5.68 6.03 6.19 6.23 M64 10.92 11.46 11.11 11.10 10.80 11.12
M14 7.70 8.24 7.54 8.14 7.87 7.95 M65 11.22 10.28 10.55 10.81 11.16 10.70
M15 6.52 6.41 7.44 7.18 6.98 7.00 M66 10.62 10.09 10.30 10.00 10.13 10.13
M16 7.40 6.62 7.04 7.15 7.51 7.08 M67 9.89 9.67 9.53 10.17 9.29 9.66
M17 7.10 7.28 6.67 6.31 6.85 6.78 M68 9.30 9.67 9.53 10.17 9.29 9.66
M18 7.70 7.55 7.60 7.59 7.67 7.60 M69 7.10 6.11 6.08 5.88 5.83 5.98
M20 7.22 7.55 7.60 7.59 7.67 7.60 M71 7.70 7.67 7.57 7.71 7.76 7.68
M22 7.80 7.66 7.85 7.57 7.90 7.74 M72 10.10 9.51 9.36 9.22 9.44 9.38
M24 6.30 6.45 6.40 6.22 6.99 6.51 M73 8.70 8.41 8.20 8.26 8.31 8.30
M25 7.22 6.79 6.79 6.84 7.26 6.92 M75 7.52 6.91 6.46 6.55 6.85 6.69
M27 7.70 8.01 7.86 7.97 7.50 7.83 M76 6.70 6.67 6.31 6.75 6.46 6.55
M28 6.70 6.54 6.76 6.76 6.57 6.66 M77 7.30 8.19 8.47 8.13 8.16 8.24
M31 9.00 8.93 9.19 9.09 9.42 9.16 M78 7.16 6.23 6.42 6.41 6.33 6.35
M32 9.92 10.17 10.30 10.07 10.26 10.20 Test set M7 6.70 7.19 7.12 7.11 6.58 7.00
M33 9.16 9.06 9.14 9.12 9.14 9.11 M9 6.40 6.35 6.23 6.35 5.87 6.20
M34 7.70 8.22 8.24 8.36 8.43 8.31 M10 5.96 5.50 5.34 5.59 5.17 5.40
M35 10.33 10.09 10.30 10.00 10.13 10.13 M12 7.77 8.24 7.54 8.14 7.87 7.95
M36 6.05 6.11 6.08 5.88 5.83 5.98 M13 8.30 7.80 6.96 7.35 7.13 7.31
M37 7.16 7.15 7.04 6.78 6.98 6.99 M19 7.92 7.12 6.92 6.71 6.94 6.92
M38 7.22 7.67 7.57 7.71 7.76 7.68 M21 6.40 7.03 6.76 7.20 7.23 7.06
M39 8.40 9.22 9.02 8.90 9.04 9.04 M23 6.10 6.50 5.89 5.30 6.65 6.08
M40 9.00 9.51 9.36 9.22 9.44 9.38 M26 7.80 7.19 7.57 7.80 8.20 7.69
M41 8.70 8.41 8.20 8.26 8.31 8.30 M29 8.40 7.88 7.85 7.83 7.70 7.81
M42 6.92 7.56 7.31 7.50 7.61 7.49 M30 7.40 8.33 8.51 8.57 8.58 8.50
M43 6.40 6.91 6.46 6.55 6.85 6.69 M48 6.52 6.23 6.42 6.41 6.33 6.35
M44 6.52 6.67 6.31 6.75 6.46 6.55 M50 8.16 7.88 7.85 7.83 7.70 7.81
M45 7.05 6.94 7.36 7.15 7.31 7.19 M52 9.92 8.93 9.19 9.09 9.42 9.16
M46 8.00 8.19 8.47 8.13 8.16 8.24 M54 10.70 10.17 10.30 10.07 10.26 10.20
M47 7.09 7.08 7.31 7.17 7.03 7.15 M55 10.16 9.91 10.03 9.88 9.84 9.91
M49 6.40 6.54 6.76 6.76 6.57 6.66 M56 10.59 9.49 9.58 9.50 9.49 9.51
M51 8.00 8.33 8.51 8.57 8.58 8.50 M70 9.10 7.15 7.04 6.78 6.98 6.99
M53 10.30 9.88 9.95 9.75 9.86 9.86 M74 7.22 7.56 7.31 7.50 7.61 7.49

Fig. 8. The HQSPR model contribution map on the M65 compound, and the coefficient of influence of each contribution.
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3.2. Hologram-QSPR (HQSPR)

HQSPR is a new QSPR technique that avoids many problems
associated with conventional 3D-QSPR approaches. Only structures
and properties are required as input, no complex process of
descriptor selection or 3D molecular alignment is required. HQSPR
converts molecules in a data set into numbers of their constituent
fragments. The fragment counting patterns from the molecules in
the dataset is then linked to the targeted biological activity data
using the PLS partial least squares analysis. Both steps, fragment
counting, and PLS analysis are very fast. Nevertheless, the method
13
is robust and highly predictive for many data sets. holograms 53,
59, 61, and 71 were chosen with a fragment number varying
between 4 and 7 to construct all possible combinations of the
Atoms, Bonds, Connections, Hydrogen Atoms, Chirality, and num-
ber of donor/acceptor hydrogens that are represented in Table 7.

A total of 63 models obtained using HQSPR shows that the
Bonds and Connection fragments are explanatory fragments (com-
parison between the following models: 12, 32, 33 and 63) which
generated the olfactory threshold prediction on the other hand
we find that no effect of Hydrogen fragments Atoms and Chirality
as a result of many of the donor and acceptor hydrogens having a



Table 10
Combination of different CoMSIA fields and their results.

CoMSIA Fields Q2 R2
cv R2

ncv R2
bs

N SEE F S E H A D

S 0.582 0.581 0.880 0.917 6 0.632 63.517 1 – – – –
E 0.551 0.551 0.698 0.769 7 1.013 16.858 – 1 – – –
H 0.539 0.527 0.965 0.980 9 0.354 148.025 – – 1 – –
D – – – – – – – – – – – –
A 0.061 0.064 0.023 0.038 1 1.724 1.330 – – – – 1
S + E 0.619 0.655 0.900 0.971 6 0.557 78.023 0.661 0.339 – – –
S + H 0.543 0.560 0.958 0.971 8 0.381 142.757 0.379 – 0.621 – –
S + A 0.642 0.662 0.903 0.924 6 0.569 80.566 0.917 – – 0.083 –
E + H 0.598 0.579 0.917 0.957 6 0.527 95.392 – 0.294 0.706 – –
E + A 0.465 0.525 0.792 0.848 6 0.833 32.931 – 0.938 – 0.062 –
H + A 0.485 0.482 0.937 0.960 7 0.440 120.331 – – 0.958 0.042 –
S + E + H 0.289 0.318 0.532 0.545 1 1.193 64.765 0.282 0.268 0.450 – –

0.473 0.525 0.683 0.741 2 0.990 60.830 0.287 0.277 0.436 – –
0.573 0.573 0.800 0.854 3 0.795 73.153 0.294 0.272 0.434 – –
0.596 0.613 0.860 0.900 4 0.671 82.827 0.299 0.256 0.445 – –
0.609 0.617 0.909 0.944 5 0.546 105.636 0.303 0.236 0.461 – –
0.624 0.590 0.932 0.963 6 0.476 118.784 0.305 0.228 0.467 – –
0.624 0.594 0.946 0.968 7 0.427 128.379 0.305 0.219 0.475 – –
0.624 0.655 0.962 0.978 8 0.361 160.209 0.305 0.206 0.489 – –
0.624 0.636 0.972 0.984 9 0.312 191.975 0.303 0.196 0.502 – –
0.624 0.603 0.979 0.990 10 0.275 224.979 0.303 0.190 0.507 – –
0.624 0.559 0.984 0.991 11 0.243 261.715 0.301 0.185 0.515 – –
0.624 0.539 0.986 0.992 12 0.228 274.464 0.302 0.181 0.518 – –
0.624 0.633 0.989 0.996 13 0.214 287.891 0.303 0.179 0.518 – –
0.624 0.627 0.990 0.994 14 0.199 310.288 0.304 0.175 0.520 – –
0.624 0.602 0.990 0.995 15 0.196 298.812 0.305 0.176 0.519 – –
0.624 0.571 0.991 0.997 16 0.189 301.692 0.304 0.175 0.521 – –

S + E + A 0.636 0.608 0.888 0.927 5 0.605 84.129 0.578 0.335 – 0.087 –
S + H + A 0.573 0.570 0.957 0.976 8 0.387 138.348 0.380 – 0.571 0.048 –
E + H + A 0.613 0.604 0.899 0.927 5 0.576 93.9170 – 0.315 0.635 0.051 –
S + E + H + A 0.639 0.606 0.931 0.955 6 0.481 116.349 0.296 0.227 0.434 0.043 –

Table 11
The mathematical relationships between the internal vali-
dation statistical parameters and the optimal number of
components.

Equation Correlation

R2
bs = 0.144*ln(N) + 0.650 R2 = 0.858

R2
ncv = 0.159*ln(N) + 0.600 R2 = 0.919

Q2 = 0.095*ln(N) + 0.405 R2 = 0.718

SEE = -0.390*ln(N) + 1.200 R2 = 0.988
F = 19.588*N + 17.653 R2 = 0.961

Fig. 9. Graphical representation of each parameter studied

M. OUABANE, K. TABTI, H. HAJJI et al. Arabian Journal of Chemistry 16 (2023) 105207

14
negative effect on the statistical values of the prediction of the tar-
geted biological property at cause of absence of donor groups,
asymmetric carbons, enantiomers, and diastereomers except that
two conformations E (M67) and Z M(68) among the 78 odorant
molecules. Model 12 (Bonds/Connections) was chosen to develop
the number of atoms connecting for each fragment, the set of
results obtained present in Table 8.

The change in the number of fragment connections demon-
strates what we previously stated; on the other hand, our choice
of starting point, minimum and maximum number of atoms in a
fragment yields good results, as shown in the picture below
(Fig. 6).
as a function of the number of optimal components.



Fig. 10. Graph of observed and calculated properties for training set and test set process based on the CoMSIA model.

Table 12
The experimental and calculated best-chosen model values of pyrazine derivatives.

N pt S E H Predpt Residu N pt S E H Predpt Residu

Training set M1 3.52 2.28 0.44 0.81 3.89 �0.37 M57 10.22 4.90 0.46 3.52 9.20 1.02
M2 4.52 2.66 0.48 1.41 4.63 �0.11 M58 7.40 5.30 0.47 3.91 7.96 �0.56
M3 5.40 3.02 0.47 1.75 5.59 �0.19 M59 11.20 4.27 0.45 2.83 10.80 0.40
M4 6.52 3.34 0.47 2.08 6.34 0.18 M60 10.52 4.04 0.49 2.75 10.33 0.19
M5 6.40 3.66 0.47 2.42 6.91 �0.51 M61 10.40 4.06 0.44 2.46 10.49 �0.09
M6 8.30 3.96 0.47 2.75 7.37 0.93 M62 11.10 4.56 0.45 3.05 11.35 �0.26
M8 7.00 4.47 0.48 3.22 6.96 0.04 M63 10.35 4.05 0.44 2.54 10.78 �0.43
M11 6.40 2.99 0.52 1.86 6.29 0.11 M64 10.92 4.31 0.45 2.83 11.20 �0.28
M14 7.70 3.05 0.47 2.05 7.47 0.23 M65 11.22 4.57 0.43 3.10 10.97 0.25
M15 6.52 3.22 0.67 1.76 6.70 �0.18 M66 10.62 3.75 0.42 2.21 10.39 0.23
M16 7.40 2.87 1.55 2.36 7.35 0.05 M67 9.89 4.25 0.47 2.94 10.44 �0.56
M17 7.10 2.99 0.51 1.83 6.81 0.29 M68 9.30 4.27 0.49 2.88 9.79 �0.49
M18 7.70 3.06 0.47 1.42 7.52 0.18 M69 7.10 3.11 0.43 0.99 6.95 0.15
M20 7.22 3.06 0.44 2.01 7.94 �0.72 M71 7.70 3.73 0.50 2.13 7.86 �0.16
M22 7.80 3.20 1.55 2.58 7.81 �0.02 M72 10.10 4.56 0.48 2.97 9.37 0.73
M24 6.30 3.36 0.51 2.48 6.70 �0.40 M73 8.70 5.24 0.49 3.70 8.70 0.00
M25 7.22 3.66 0.51 2.74 7.43 �0.21 M75 7.52 3.57 0.41 2.65 7.30 0.23
M27 7.70 3.23 0.49 1.58 7.78 �0.08 M76 6.70 3.92 0.44 3.23 6.02 0.68
M28 6.70 2.74 0.43 1.59 6.71 �0.01 M77 7.30 4.93 0.43 4.13 7.75 �0.44
M31 9.00 3.69 0.44 2.89 8.51 0.49 M78 7.16 5.91 0.45 4.99 6.87 0.29
M32 9.92 4.28 0.45 3.50 9.54 0.38 Test set M7 6.70 4.23 0.48 2.98 7.09 �0.40
M33 9.16 4.99 0.46 4.15 9.73 �0.57 M9 6.40 4.69 0.49 3.46 6.87 �0.47
M34 7.70 5.40 0.47 4.47 7.62 0.08 M10 5.96 5.11 0.49 3.84 6.82 �0.86
M35 10.33 3.74 0.45 2.80 9.29 1.04 M12 7.77 3.07 0.49 1.44 7.63 0.14
M36 6.05 3.05 0.41 1.76 6.92 �0.88 M13 8.30 3.41 0.47 1.61 8.63 �0.33
M37 7.16 3.37 0.45 2.52 6.80 0.36 M19 7.92 3.36 0.47 1.65 8.25 �0.33
M38 7.22 3.67 0.44 2.77 7.73 �0.51 M21 6.40 3.19 0.55 1.85 7.69 �1.29
M39 8.40 4.23 0.44 3.24 8.47 �0.07 M23 6.10 3.02 0.52 2.19 5.87 0.23
M40 9.00 4.49 0.44 3.48 8.80 0.20 M26 7.80 3.69 0.51 2.60 7.43 0.36
M41 8.70 5.13 0.45 4.06 8.12 0.58 M29 8.40 3.08 0.45 2.35 7.22 1.18
M42 6.92 5.52 0.46 4.40 7.26 �0.34 M30 7.40 3.41 0.45 2.64 7.76 �0.36
M43 6.40 3.56 0.42 3.07 5.75 0.65 M48 6.52 5.88 0.47 5.24 8.16 �1.64
M44 6.52 3.88 0.46 3.63 6.59 �0.07 M50 8.16 3.08 0.46 1.66 7.74 0.42
M45 7.05 4.37 0.44 4.03 7.78 �0.73 M52 9.92 3.70 0.45 2.28 9.73 0.19
M46 8.00 4.86 0.46 4.42 7.95 0.05 M54 10.70 4.22 0.45 2.82 10.30 0.40
M47 7.09 5.47 0.46 4.96 6.77 0.31 M55 10.16 4.46 0.45 3.07 10.05 0.10
M49 6.40 2.75 0.43 0.70 6.54 �0.14 M56 10.59 4.69 0.46 3.30 9.69 0.89
M51 8.00 3.41 0.45 1.98 9.02 �1.02 M70 9.10 3.43 0.48 1.83 7.98 1.12
M53 10.30 3.97 0.45 2.56 10.23 0.07 M74 7.22 5.65 0.49 4.10 8.66 �1.43
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3.2.1. PLS HQSPR-Hologram
In this work, a PLS technique was used to compare the predic-

tion values of each Hologram (53, 59, 61, 71, and AVG) and to
establish the best fragment of the HQSPR predictive models repre-
sented in Table 9.
15
Following comparing the predicted values of each Hologram,
we can see that Hologram 59 produces excellent results; we will
apply this model to continue research investigation, and we will
show the correlation between experimental and calculated values
in the image below (Fig. 7).



Table 13
experimental data, olfactory threshold estimates, and coefficients for each grid point in the steric and electrostatic fields of each pyrazine derivative molecule.

pt Predpt R1 R2 R3 R4 Name pt Predpt R1 R2 R3 R4 Name

7.80 7.74 1.29 0.09 2.74 0.41 M22 8.30 7.17 3.01 0.09 0.44 0.41 M6
6.30 5.79 1.29 0.44 0.44 0.41 M24 10.52 10.12 2.86 3.19 0.44 0.41 M60

11.20 10.31 3.05 3.19 0.44 0.41 M59 10.40 10.16 2.90 3.19 0.44 0.41 M61
6.40 7.07 0.77 0.09 0.44 2.55 M11 11.10 10.86 3.61 3.19 0.44 0.41 M62
7.70 7.73 0.77 0.09 0.44 3.21 M14 10.35 9.99 2.74 3.19 0.44 0.41 M63
6.52 6.50 0.77 0.09 0.44 1.98 M15 10.92 10.15 2.89 3.19 0.44 0.41 M64
7.4 7.07 0.77 0.09 0.44 2.55 M16 11.22 10.58 3.33 3.19 0.44 0.41 M65
7.10 7.23 0.77 0.09 2.74 0.41 M17 10.62 9.69 2.43 3.19 0.44 0.41 M66
7.70 7.84 0.77 0.09 3.34 0.41 M18 9.89 9.39 2.14 3.19 0.44 0.41 M67
4.52 4.93 0.77 0.09 0.44 0.41 M2 9.30 9.39 2.14 3.19 0.44 0.41 M68
7.22 7.06 0.77 0.09 2.56 0.41 M20 7.10 6.49 0.13 2.30 0.44 0.41 M69
7.22 6.54 2.04 0.44 0.44 0.41 M25 7.70 7.65 1.29 2.30 0.44 0.41 M71
7.70 6.95 0.77 2.11 0.44 0.41 M27 10.10 9.38 3.01 2.30 0.44 0.41 M72
6.70 7.11 0.13 2.91 0.44 0.41 M28 8.70 8.39 2.03 2.30 0.44 0.41 M73
5.40 5.44 1.29 0.09 0.44 0.41 M3 7.52 5.49 0.13 1.30 0.44 0.41 M75
9.00 9.02 2.04 2.91 0.44 0.41 M31 6.70 6.14 0.77 1.30 0.44 0.41 M76
9.92 9.99 3.01 2.91 0.44 0.41 M32 7.30 8.38 3.01 1.30 0.44 0.41 M77
9.15 9.01 0.74 2.91 0.44 0.41 M33 7.16 6.01 0.74 1.30 0.44 0.41 M78
7.70 7.72 0.74 2.91 0.44 0.41 M34 7.00 6.60 2.44 0.09 0.44 0.41 M8

10.33 9.41 2.43 2.91 0.44 0.41 M35 5.955 4.89 0.74 0.09 0.44 0.41 M10*
6.05 6.34 0.13 2.15 0.44 0.41 M36 7.770 8.03 0.77 3.19 0.44 0.41 M12*
7.16 6.99 0.77 2.15 0.44 0.41 M37 8.301 7.14 0.77 2.30 0.44 0.41 M13*
7.22 7.50 1.29 2.15 0.44 0.41 M38 7.921 7.80 0.77 0.09 3.31 0.41 M19*
8.40 8.81 2.59 2.15 0.44 0.41 M39 6.398 7.54 0.77 0.09 3.05 0.41 M21*
6.52 6.19 2.04 0.09 0.44 0.41 M4 6.097 5.28 0.77 0.44 0.44 0.41 M23*
9.00 9.23 3.01 2.15 0.44 0.41 M40 7.796 6.93 2.43 0.44 0.44 0.41 M26*
8.70 8.24 2.03 2.15 0.44 0.41 M41 8.398 7.75 0.77 2.91 0.44 0.41 M29*
6.92 6.95 0.74 2.15 0.44 0.41 M42 7.398 8.27 1.29 2.91 0.44 0.41 M30*
6.40 5.33 0.13 1.14 0.44 0.41 M43 6.523 5.94 0.74 1.14 0.44 0.41 M48*
6.52 5.98 0.77 1.14 0.44 0.41 M44 8.155 8.03 0.77 3.19 0.44 0.41 M50*
7.05 7.24 2.04 1.14 0.44 0.41 M45 9.921 9.30 2.04 3.19 0.44 0.41 M52*
8.00 8.22 3.01 1.14 0.44 0.41 M46 10.699 10.27 3.01 3.19 0.44 0.41 M54*
7.09 7.23 2.03 1.14 0.44 0.41 M47 10.155 10.05 2.79 3.19 0.44 0.41 M55*
6.40 7.39 0.13 3.19 0.44 0.41 M49 10.585 9.70 2.44 3.19 0.44 0.41 M56*
6.40 6.75 2.59 0.09 0.44 0.41 M5 6.699 6.94 2.79 0.09 0.44 0.41 M7*
8.00 8.55 1.29 3.19 0.44 0.41 M51 9.097 7.14 0.77 2.30 0.44 0.41 M70*

10.30 9.85 2.59 3.19 0.44 0.41 M53 7.222 7.10 0.74 2.30 0.44 0.41 M74*
10.22 9.28 2.03 3.19 0.44 0.41 M57 6.398 6.18 2.03 0.09 0.44 0.41 M9*
7.40 8.00 0.74 3.19 0.44 0.41 M58
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3.2.2. HQSPR contribution map
The QSPR analysis focused on the contributions of biologically

owned fragments of odorous molecules for each individual com-
pound. The graphical results of the atomic contribution maps of
the M65 compounds with the highest olfactory threshold value
are represented in the color-coded structure diagram in Fig. 8.

The color of each atom implies its contribution to the olfactory
threshold of the compound. The green color (green–blue, and yel-
low) represents a positive effect while the red color (red, red–or-
ange, and orange) reflects the negative contribution to the
olfactory threshold, and the intermediate contributions are white.

3.3. CoMSIA statistical results

Indicates Comparative Molecular Similarity Indices Analysis
(CoMSIA), a statistical method used in molecular biology and com-
putational chemistry to study the relationship between chemical
structures and biological activity. The results summarized in
Table 10 possibly reflect the results of different combinations of
molecular descriptors used as inputs to the CoMSIA model, and
their impact on the accuracy and robustness of the model. The goal
of these tests is probably to determine the optimal combination of
descriptors that provide the best prediction of biological activity
for a given set of molecules.

The combination of different 3D-CoMSIA fields with their
results is a technique used to improve the performance and relia-
bility of QSPR/QSAR models. This approach combines multiple
16
molecular descriptors and multiple modeling algorithms to pro-
duce a more accurate and robust model. The search for this combi-
nation depends on the optimal number of components (N) choice,
most of the later works use the standard Sybyl software parame-
ters, but in our work, we studied the optimal number of compo-
nent variation with respect to other statistical parameters to
determine the relationship between them. The results obtained
are represented in the Table 11.

In this part, we determine the optimal number of components N
of the 3D-QSPR model using the Comparative molecular similarity
indices analysis (CoMSIA/SEH) method studied, we choose the
parameters Q2, R2

cv , R
2
ncv , R

2
bs, SEE and F to find the optimal number

of components, It can be seen that the f-test value is proportional
to the number of optimal components in a linear way, but the
other parameters Q2, R2

cv , R
2
bs and SEE are proportional to the num-

ber of optimal components in a logarithmic way, N = 6 maximum
threshold of Q2, N = 10 maximum threshold of (R2

ncv , and R2
bs) and

N = 13 maximum threshold of SEE, according to the maximum
value of Q2, we choose the optimal number of components N = 6
(Fig. 9).

Upon determining the best number of components to be N = 6,
it was found that the CoMSIA/SEH model can be trusted to give an
explanation and prediction of the olfactory threshold of pyrazine
derivative odor molecules. The results of the prediction and the
comparison between the calculated and observed olfactory thresh-
old are presented in Table 12 and Fig 10.



Table 14
Statistical parameters of external validation plus and the predictive quality of all models.

User Input File Info File Name CoMSIA HQSPR Tomer
CoMFA

TF1 TF2

Model test Systematic Error Result Absent Absent Absent Absent Absent
nPE / nNE 1.429 2.167 1.714 1.714 2.167
nNE / nPE 0.700 0.462 0.583 0.583 0.462
|MPE / MNE| 0.567 1.179 1.090 1.432 2.519
|MNE / MPE| 1.765 0.848 0.917 0.698 0.397
AAE - |AE| 0.595 0.343 0.354 0.488 0.176

R2(Residuals serial
correlation)

0.267 0.212 0.131 0.017 0.058

R2(Residuals and YExp values) 0.392 0.333 0.220 0.326 0.219

Classical Metrics (For 100% data) R2
Test

0.693 0.791 0.840 0.646 0.834

R2
0Test

0.690 0.789 0.839 0.643 0.833

R02
Test

0.491 0.714 0.804 0.521 0.809

Q2
F1

0.693 0.754 0.829 0.588 0.763

Q2
F2

0.688 0.754 0.828 0.588 0.763

R2
m

0.531 0.719 0.782 0.543 0.772

DR2
m

0.233 0.063 0.056 0.003 0.119

CCC 0.807 0.856 0.904 0.762 0.872
Classical Metric (after removing 5% data with high residuals) R2

Test
0.744 0.863 0.871 0.749 0.909

R2
0Test

0.742 0.857 0.871 0.749 0.908

R02
Test

0.479 0.656 0.730 0.522 0.800

Q2
F1

0.751 0.841 0.868 0.649 0.867

Q2
F2

0.741 0.840 0.867 0.649 0.866

R2
m

0.621 0.802 0.824 0.668 0.871

DR2
m

0.195 0.103 0.082 0.043 0.068

CCC 0.844 0.907 0.927 0.798 0.927
Error-based metrics (for 100% data) RMSEP 0.825 0.734 0.614 0.951 0.721

SD 0.503 0.420 0.356 0.451 0.456
SE 0.122 0.096 0.082 0.104 0.105
MAE 0.665 0.610 0.507 0.843 0.568

Error-based metric (after removing 5% data with high residuals) RMSEP 0.745 0.598 0.546 0.895 0.548
SD 0.450 0.274 0.302 0.417 0.268
SE 0.112 0.065 0.071 0.098 0.063
MAE 0.604 0.536 0.461 0.797 0.482
MAEþ 3 � SD 1.953 1.358 1.367 2.049 1.285

BASIC DATA STRUCTURE INFORMATION
Number of test set compounds, Range and Mean (train and test) NCompTest 17.000 19.000 19.000 19.000 19.000

Train range 7.702 7.700 6.700 7.700 7.700
TrainYMean 7.955 8.000 8.080 8.025 8.025
Test range 4.740 4.740 4.740 4.744 4.744
TestYMean 8.142 7.975 7.975 7.973 7.973

Distribution of observed response values of Test set around Test mean (in %) %Yðþ=� 0:5Þ 35.294 31.579 31.579 31.579 31.579
%Yðþ=� 1:0Þ 52.941 42.105 42.105 42.105 42.105
%Yðþ=� 1:5Þ 52.941 57.895 57.895 57.895 57.895
%Yðþ=� 2:0Þ 70.588 78.947 78.947 78.947 78.947

Distribution of observed response values of Test set around Train mean (in %) %Yðþ=� 0:5Þ 35.294 31.579 31.579 31.579 31.579
%Yðþ=� 1:0Þ 47.059 42.105 42.105 42.105 42.105
%Yðþ=� 1:5Þ 58.824 57.895 52.632 52.632 52.632
%Yðþ=� 2:0Þ 82.353 78.947 78.947 78.947 78.947

Distribution of prediction errors (in %) %NComp>(0.1*TR) 41.176 26.316 26.316 52.632 21.053
%NComp>(0.15*TR) 23.529 5.263 5.263 21.053 5.263
%NComp>(0.2*TR) 5.882 5.263 0.000 15.789 5.263
%NComp>(0.25*TR) 0.000 5.263 0.000 0.000 5.263

Threshold values utilized to judge the model predictions (0.1*TrainingSetRange) 0.770 0.770 0.670 0.770 0.770
(0.15*TrainingSetRange) 1.155 1.155 1.005 1.155 1.155
(0.2*TrainingSetRange) 1.540 1.540 1.340 1.540 1.540
(0.25*TrainingSetRange) 1.926 1.925 1.675 1.925 1.925

RESULT (MAE-based criteria applied on 95% data) Prediction Quality BAD GOOD MODERATE BAD GOOD
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3.3.1. CoMSIA contour map analysis
The molecule M65 was chosen to display the contribution of

steric, electrostatic and hydrophobic fields represented in Fig 11:

- Steric: the steric congestion between the R1 ((CH2)3CH (CH3)2)
and R2 (OCH3) substitutions of the M65 molecule promotes a steric
field of 80% in green and 20% unfavorable in yellow shown in
17
Fig. 11. The volume occupied by the methoxy group in space pro-
duces steric genes with branched substitutions more than linear
substitutions, this explains that the olfactory threshold of com-
pound M65 (log (1/t) = 11.222) smaller than M58 (log (1/
t) = 7.398, R1 (C10H21), R2 (OCH3)), M54 (log (1/t) = 10.699, R1
(C5H11) and R2 (OCH3)). On the other hand, the favorable steric



Fig. 11. Contribution map of CoMSIA/SEH model on the compound M65.

Table 15
Promoters of the best developed QSPR model produced utilizing the target function determined by Equation (TF2).

SAks CWSAk ID NSs NSc NSv Defect [SAk] Comments

S. . .C. . .C. . . �2.12 149 2 3 2 0.0013 presence of sulfur and alkyl chain
=. . .C. . .1. . . �1.75 24 1 2 3 0.0270 Combination of double bond with carbon and carbon ring structure
++++S—B2== �1.50 10 7 5 8 0.0047 Presence of sulfur with double bond
C. . .S. . .(. . . 2.00 55 4 2 6 0.0116 Combination of sp3 carbon, sp3 sulfur with branching
C. . .O. . .(. . . 2.00 53 5 3 4 0.0044 Combination of sp3 carbon, sp3 oxygen and with branching
N. . .(. . ... . .... 2.06 116 14 12 14 0.0013 Combination of sp3 nitrogen with branching
O. . .C. . .1. . . 2.12 136 3 5 3 0.0013 Combination of sp3 oxygen, sp3 carbon and carbon ring structure
S. . .(. . ... . .... 2.13 142 5 2 6 0.0060 Combination of sp3 sulfur with branching
=. . .N. . .1. . . 2.25 27 20 18 17 0.0028 Combination of double-bonded nitrogen and with carbon ring structure
N. . .1. . ... . .... 2.25 121 20 18 17 0.0028 Combination of sp3 nitrogen connected to carbon ring structure
HALO00000000 2.44 115 20 20 19 0.0000 Absence of fluorine, Chlorine, and Bromine atom
N. . .(. . .C. . . 2.50 118 10 12 11 0.0038 Combination of sp3 nitrogen, branching with to sp3 carbon
C. . .N. . . = . . . 2.56 52 6 9 6 0.0013 Combination of sp3 nitrogen, carbon ring structure with sp3 carbon
C. . . = . . .1. . . 2.56 44 20 18 17 0.0028 Presence of double-bonded carbon with carbon ring structure
N. . .=. . .(. . . 2.63 122 1 1 0 1.0000 Combination of nitrogen with double bond and branching
++++N—B2== 2.75 6 20 20 19 0.0000 Presence of nitrogen with double bond
C. . .S. . .C. . . 2.75 56 2 3 2 0.0013 presence of sp3 carbon connected to sulfur and carbon chain sp3
N. . . = . . .C. . . 2.87 125 20 20 19 0.0000 Presence of double-bonded nitrogen with carbon
S. . .C. . .1. . . 3.06 147 2 3 2 0.0013 Combination of sp3 sulfur, sp3 carbon and carbon ring structure
NOSP10000000 3.19 139 5 5 3 0.0115 presence of heteroatoms
S. . .C. . .(. . . 3.57 145 1 1 2 0.0184 Combination of sp3 sulfur, sp3 carbon and branching
N. . .C. . ... . .... 3.75 127 6 9 6 0.0013 Combination of sp3 nitrogen and sp3 carbon
N. . .C. . . = . . . 3.99 128 6 9 6 0.0013 Combination of nitrogen sp3 and carbon with double bond
N. . . = . . ... . .... 4.37 123 20 20 19 0.0000 Presence of nitrogen with double bond
N. . ... . ........ 4.68 119 20 20 19 0.0000 Presence of nitrogen atom
O. . .C. . .(. . . 5.99 134 3 2 2 0.0089 Combination of sp3 oxygen, sp3 carbon and branching
BOND10000000 6.00 58 20 20 19 0.0000 Presence of double bonds and absence of triple and stereochemical bonds
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field clutter of hydrogen atoms in positions R3 and R4 is too small.
This steric resistance is often used to propose new odor molecules.

- Electrostatic: a favorable electropositive field in blue color
around the atoms of nitrogen of the common structure of pyrazi-
nes, the non-binding doublet of nitrogen acts as a nucleophile that
will be attacked by an electrophilic group, for example reduction of
pyrazine. however, we worked on pyrazine derivatives, so propos-
ing new molecules cannot be based on this field. As well as the
electron field near the oxygen atom of the methoxy group in posi-
tion R2, the presence of electron substitution reduces the olfactory
threshold of odor molecules. In general, the results demonstrated
that the olfactory threshold of molecules containing the oxygen
atom in position R2 is lower than the olfactory threshold of mole-
cules containing the sulfur atom because of electronegativity (elec-
tron field), as the electronegative field and electronegativity are
inversely proportional.

- Hydrophobic: 80% favorable, in yellow, corresponding to a
hydrophobic grouping around positions R2 and R4. The + M meso-
meric effect of methoxy substitution in R2 makes it possible to
delocalize the electrons in the conjugate system P-r-p, it directs
the position para (R4). Which means that the addition of a
18
hydrophobic group in this position lowers the olfactory threshold.
On the other hand, 20% unfavorable, in white color, corresponds to
a hydrophilic grouping around R1 and R3. Usually, alkyls are + I
donor groups, they also orient the para (R3) position. So, the addi-
tion of a hydrophilic group in position R3 will increase the olfac-
tory threshold.

3.4. Topomer CoMFA results

The chosen way of cutting the fragments has a considerable
influence on the model’s quality. In this work, we selected frag-
ments R1, R2, R3, and R4 to investigate the effect of each substitu-
tion on the common structure of pyrazine, and we used the
compound M65 as a template to display fragment positions. After
severing the fragments, we discovered that molecule M1 was
removed due to the lack of at least one heteroatom attached to
the common pyrazine structure; thus, the spreadsheet must also
include the relevant input structures and activity data. Further-
more, the computation of activity prediction on these molecules
utilizing the current Topomer CoMFA model. The only format
available for saving Topomer CoMFA templates and results is an
SYBYL (.tbl) table file, as shown in Table 13.



Fig. 12. correlation of experimental and predicted values of the Topomer ComFA model and their residues.

Fig. 13. Contour Map Analysis of the Topomer CoMFA Model (A, B, C, and D correspond to the electrostatic fields R1, R2, R3, and R4, respectively) and (E, F, G, and H
correspond to the Electrostatic field R1, R2, R3, and R4 respectively).

Fig. 14. Ramachandran plot, Screenshot of ProSA-web used to confirm protein structure and active sites of protein 1DZK chains: B.
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Table 16
Chemical structures of pyrazine compounds and their experimental odor threshold properties.

N0 R1 R2 R3 R4 TF1 Model TF2 Model HQSAR_59 CoMSIA HES CoMFA Topomer

P1 (CH2)3CH(CH3)2 OCH3 SC2H5 H 11,2827 13,7811 13.033 9.766 12.730
P2 (CH2)3CH(CH3)2 OCH3 H SC2H5 10,7003 12,9523 12.755 13.939 12.730
P3 (CH2)3CH(CH3)2 OCH3 SO2H H 11,3531 11,7579 12.863 11.771 12.870
P4 (CH2)3CH(CH3)2 OCH3 H SO2H 11,5089 11,0074 12.850 11.373 12.870
P5 (CH2)3CH(CH3)2 OCH3 SO3H H 11,7104 13,7584 11.248 12.313 13.650
P6 (CH2)3CH(CH3)2 OCH3 H SO3H 11,8661 13,0079 11.506 10.984 13.650
P7 (CH2)3CH(CH3)2 OCH3 Cl H 11,1647 11,1793 10.836 13.257 12.320
P8 (CH2)3CH(CH3)2 OCH3 H Cl 11,3204 10,5141 10.894 11.870 12.320
P9 (CH2)3CH(CH3)2 OCH3 Br H 11,1647 11,1793 10.894 13.725 12.550
P10 (CH2)3CH(CH3)2 OCH3 H Br 11,3204 10,5141 10.836 11.862 12.550
P11 (CH2)3CH(CH3)2 OCH3 F H 11,1647 11,1793 10.836 13.180 11.620
P12 (CH2)3CH(CH3)2 OCH3 H F 11,3204 10,5141 10.894 10.818 11.720
P13 (CH2)3CH(CH3)2 OCH3 CH2NCH2 H 13,9573 16,4071 11.990 11.865 13.01
P14 (CH2)3CH(CH3)2 OCH3 H CH2NCH2 14,1131 15,6566 11.915 11.844 13.01
P15 (CH2)3CH(CH3)2 OCH3 NH2 H 11,9319 13,2617 12.871 11.579 12.58
P16 (CH2)3CH(CH3)2 OCH3 H NH2 12,2101 12,9421 12.110 10.303 12.58
P17 (CH2)3CH(CH3)2 OCH3 CH2SCH3 H 12,5228 15,2256 13.548 9.087 13.14
P18 (CH2)3CH(CH3)2 OCH3 H CH2SCH3 12,6785 14,4751 12.577 11.062 13.14
P19 (CH2)3CH(CH3)2 OCH3 NCH2 H 14,1224 16,7947 11.255 12.263 13.18
P20 (CH2)3CH(CH3)2 OCH3 H NCH2 13,7986 15,6984 11.043 11.780 13.18
P21 (CH2)3CH(CH3)2 OCH3 N2H H 13,2396 16,8977 10.718 13.998 12.59
P22 (CH2)3CH(CH3)2 OCH3 H N2H 13,1926 15,7491 10.875 11.446 12.59
P23 (CH2)3CH(CH3)2 OCH3 OH H 11,4706 12,0438 12.038 12.508 12.59
24 (CH2)3CH(CH3)2 OCH3 H OH 11,6264 11,6115 12.578 12.736 12.28
P25 (CH2)3CH(CH3)2 OCH3 SH H 11,2870 11,9595 12.038 12.863 13.52
P26 (CH2)3CH(CH3)2 OCH3 H SH 11,4427 11,3121 12.578 10.757 13.52
P27 (CH2)3CH(CH3)2 OCH3 NHCH3 H 12,1006 15,6449 13.425 12.355 13.04
P28 (CH2)3CH(CH3)2 OCH3 H NHCH3 11,5183 14,8161 12.578 11.464 13.04
P29 (CH2)3CH(CH3)2 OCH3 NHCHCH2 H 13,4120 16,6750 14.048 11.938 13.10
P30 (CH2)3CH(CH3)2 OCH3 H NHCHCH2 13,5678 15,9245 13.124 12.105 13.10
P31 (CH2)3CH(CH3)2 OCH3 NHC2H5 H 12,0440 15,4821 13.981 12.463 13.08
P32 (CH2)3CH(CH3)2 OCH3 H NHC2H5 11,4617 14,6533 13.330 12.233 13.08
P33 (CH2)3CH(CH3)2 OCH3 CHCHCH3 H 12,5707 13,8828 12.298 11.973 12.52
P34 (CH2)3CH(CH3)2 OCH3 H CHCHCH3 12,7265 13,1323 12.019 11.913 12.52
P35 (CH2)3CH(CH3)2 OCH3 SCH3 H 12,4852 14,7945 13.487 12.107 12.71
P36 (CH2)3CH(CH3)2 OCH3 H SCH3 12,6409 14,0440 13.284 12.827 12.71

Table 17
The affinity (Kcal/mol) and score of the database’s methoxypyrazine complexes.

Ligands AM-Dock Autodock-Vina Pyrex Sybyl Ligands AM-Dock Autodock-Vina Pyrex Sybyl

M12 �4.9 �4.9 �5.0 2.762 M58 �6.83 �7.8 �7.8 5.196
M18 �3.78 �4.8 �5.0 2.671 M59 �5.47 �6.7 �6.7 4.495
M49 �3.45 �4.3 �4.2 3.295 M60 �5,24 �6.4 �6.4 4.653
M50 �3.90 �5.0 �5.1 3.549 M61 �5.08 �6.1 �6.1 4.287
M51 �4.28 �5.3 �5.4 3.791 M62 �5.73 �7.0 �6.9 4.871
M52 �4.55 �5.7 �5.8 3.618 M63* �5.04 �6.2 �6.2 3.585
M53 �4.93 �6.0 �6.0 3.896 M64 �5.42 �6.6 �6.6 3.798
M54 �5.34 �6.4 �6.4 5.548 M65 �5.83 �6.9 �7.1 5.096
M55 �5.66 �6.7 �6.7 5.185 M66 �4.77 �5.8 �5.9 3.472
M56 �5.91 �7.0 �6.9 5.538 M67 �5.51 �6.8 �6.8 5.156
M57 �6.31 �7.4 �7.4 5.721 M68 �5.7 �6.8 �6.8 5.088

*Reference Ligand for Proteine 1DZK.
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Analysis of the results obtained by the Topmer CoMFA model
shows that the mean coefficient of the steric and electrostatic
fields of the hydrogen atom depends on fragments such as the
mean coefficients of orders of 0.13, 0.09, 0.44 and 0.41 respectively
corresponding to the fragments follow R1, R2, R3, and R4. In this
20
case, the steric clutter between the two adjacent fragments R3
and R4. This also causes to restrict the torsion of the common pyr-
azine structure. In addition, the comparison of the different sub-
stituents in the same fragment R2 revealed that the olfactory
threshold of molecules that contains the oxygen atom is smaller



Table 18
Affinity of the molecules proposed in Kcal/mol obtained by Autodock-vina.

Ligands Affinity
Kcal/mol

Ligands Affinity
Kcal/mol

Ligands Affinity
Kcal/mol

Ligands Affinity
Kcal/mol

Ligands Affinity
Kcal/mol

Ligands Affinity
Kcal/mol

P1 �7.5 P7 �7.5 P13 �7.4 P19 �7.4 P25 �7.2 P31 �7.2
P2 �6.9 P8 �7.3 P14 �7.3 P20 �7.4 P26 �6.9 P32 �7.2
P3 �7.7 P9 �7.6 P15 �7.2 P21 �7.7 P26 �7.2 P33 �7.0
P4 �7.7 P10 �7.4 P16 �7.5 P22 �7.8 P28 �7.4 P34 �7.0
P5 �7.7 P11 �7.5 P17 �7.4 P23 �7.3 P27 �7.4 P35 �7.4
P6 �7.5 P12 �7.7 P18 �6.7 P24 �7.4 P30 �6.8 P36 �7.3

Table 19
Pharmacokinetic Properties of predicted and some example compounds.

Property M65 M63 M58 M57 P21 P22 P3 P4 P5

Absorption (%) 95.95 97.05 94.75 95.44 90.64 90.45 92.84 92.86 91.07
logBB 0.05 �0.11 0.22 0.30 �0.40 �0.36 �0.62 �0.60 �0.82
CYP2D6 No No No No No No No No No
CYP 3A1 No No Yes No No No No No No
CYP1A2 Yes Yes Yes Yes Yes Yes No No No
CYP2C19 No No Yes No No No No No No
CYP2C9 No No No No No No No No No
CYP2D6 No No No No No No No No No
CYP3A4 No No No No No No No No No
Total clearance (log ml/min/kg) 0.76 0.74 1.69 1.63 0.45 0.65 0.68 0.16 1.10
AMES toxicity No No No No No No No No No
Synthetic acceessibility 2.81 2.57 3.24 3.03 3.20 3.20 3.48 3.60 3.36
LogP 3.68 2.62 5.99 4.93 3.64 3.35 2.17 2.37 3.19
NRB 5 3 10 8 6 6 6 6 6
NHA 3 3 3 3 5 5 5 5 6
NHD 0 0 0 0 1 1 1 1 1
MW (Dalton) 194.3 166.2 250.4 222.3 222.3 222.3 258.3 258.3 290.4
TPSA (Å2) 35.01 35.01 35.01 35.01 71.22 71.22 91.52 91.52 97.96
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than those that contain the sulfur. Their mean steric and electro-
static coefficients were in the order of 2.91, 2.15, 1.14 for sub-
stituents -SCH3, -SC2H5, and -SC6H5 and 3.19, 2.30, 1.30 for
substitutions –OCH3, -OC2H5, -OC6H5 respectively. These results
are in agreement with those obtained by the CoMSIA/SEH model
whereas the oxygen atom more electronegative than sulfur.
Although, the mean coefficients of the oxygen atom larger than
the sulfur atom, for this the olfactory threshold of molecules that
contains the oxygen atom smaller than the substitution that con-
tains the sulfur atom.

By comparing the predicted values and the experimental, we
can see that this model produces excellent results; we will apply
this model to further research, and we will show the correlation
between the experimental and calculated values in the Fig 12.

3.4.1. Topomer CoMFA contour map analysis
The molecule M65 was chosen to display the contribution of the

steric and electrostatic fields represented in Fig. 13.
The generation of contour maps obtained by the Topomer

CoMFA model is based on the R1, R2, R3, and R4 fragments, the
Topomer CoMFA model shows that it is a significant detection
model, Fig 13 represents the contour maps generated around each
fragment.

- Electrostatic field: the contribution of the electrostatic field of
80% favorable in blue color around fragment R4, Fig. 13 (D) and 20%
unfavorable in red color around fragments R2 and R3, Fig. 13 (B
and C) indicate that the addition of an electropositive group in
fragment R4 and of an electropositive group in fragments R2 and
R3 can be decreases the olfactory threshold of the odorous
molecules.
21
- Steric field: The 80% favorable green steric contribution
around the R1, R2, R3, and R4 fragments, represented in Fig. 13
(E, F, G, and H), indicates that adding a bulky group to these frag-
ments can reduce the odor threshold of odorant molecules.

3.5. Validation of prediction models

External Validation Plus 1.2 is a tool that computes all of the
essential external validation parameters https://teqip.jdvu.ac.in/
QSAR_Tools/, as well as judging the performance of prediction
quality of a QSPR model using MAE-based criteria. It can also check
for the presence of systematic mistakes in the model.

All calculated external validation parameters (shown in
Table 14), along with some basic information about the data struc-
ture, are necessary for assessing the quality of QSAR model predic-
tions. We have selected an option regarding the output file will
also indicate whether systematic error is present or not, designated
as ‘‘present” or ‘‘absent” based on the 5 conditions mentioned
before. It summarizes the information again, all validation param-
eters are necessary to evaluate the performance of the quality pre-
dictive of each QSPR model. Based on these results, it can be
observed that the HQSPR and Monte-Carlo (TF2) models are good
predictive models.

3.6. Design new compounds

According to the OECD principles, the established QSAR
model must be mechanically interpretable, meaning that molec-
ular structural information can be extracted from it. This princi-
ple is upheld by the Monte Carlo method, which has revealed

https://teqip.jdvu.ac.in/QSAR_Tools/
https://teqip.jdvu.ac.in/QSAR_Tools/


Fig. 15. The correlation between the number of fragment carbon R2 and complex affinity.

Fig. 16. Redocking of the active site positions (P1) and (P2) with the RMSD values.
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optimal molecular descriptors linked directly by molecular
fragments.

After recording the numerical data collected during the
Monte Carlo optimization cycles, it can be noted that character-
istics extracted from SMILES with positive correlation weights in
all cycles favor an increase in the final score, while those with
negative correlation weights favor a decrease in the parameter
in all analyses. The table below lists all the SAk values, as well
as the correlation weight values for three Monte Carlo optimiza-
tion cycles of the QSPR model built. SAk values with a positive
value can therefore be classified as promoters of the increase in
the log (1/t) value.
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On the other hand, SAk with negative values can therefore be
classified as a promoter of the decrease in the log (1/t) value. The
SAk analysis presented in the Table 15 can be used to guide us in
proposing new odorous molecules with a low or high olfactory
threshold depending on the chosen promoters.

One of the advantages of Monte Carlo simulation is that it pro-
vides a much broader view of what might happen. It shows not
only what might happen, but to what extent.

This is why we have chosen this method and applied the con-
cepts of Odor Threshold Increase and Odor Threshold Decrease
promoters in the TF2 module to propose new odorant molecules,
shown in Table 16.

All proposals from Monte-Carlo TF2 model promoters have
decreased the olfactory threshold except for the presence of halo-
gens which will increase the olfactory threshold value. According
to the prediction values, we verified these proposals using the
HQSPR method and found that the two models are closer at the
prediction levels.
3.7. Molecular docking results

The porcine odorant-binding protein (pOBP) has been chosen as
a simple model for Molecular Docking of odorant molecules, the
choice of the 1DZK.pdb protein is based on the reference ligand
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(2-methoxy-3-(2-methylpropyl) pyrazine noted M63) which has
already been mentioned previously of this protein. Specifically,
we used chain B at two attack positions P1 and P2. The analysis
of this crystalline structure at a resolution of less than 2 Å and a
R factor not exceeding 20%, a good quality model should have more
than 90% in the most favored regions [A, B, L]. The lengths and /
and w bond angles of the main chain are compared to the ideal val-
ues of derived from small molecule data(Ravikumar et al., 2019).
Therefore, structures refined using different constraints may show
apparently large deviations from normality, which are shown in
the following Fig 14.

The absence of outliers during the analysis of phi (u) and psi (w)
torsion nails of the residues (amino acids) of this crystal structure
shows that this combination of angles is possible and a negative Z-
score indicates the overall quality of the model. After the confirma-
tion of the crystal structure, we displayed that the active residues
Fig. 17. The interactions of newly designed co
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of the B-chain such as ASN:102, MTE:114, GLY:116, MET:39,
VAL:80 and ILE:100 are odor transporter keywords.

We used several available Molecular Docking software to
choose the program that gives reliable results and to give a clear
overview of the affinity of the studied complexes. We started with
methoxypyrazine-based ligands from the database, which are rep-
resented in the following Table 17.

The results of the Molecular Docking process are influenced by
the algorithms used in each program and the method of execution
(such as automatic with AM-Dock, position P1 and dimensions (30)
with Autodock-vina, position P1 and dimension based on ligand
volume with Peryx, and active residue selection with Sybyl). Our
observations show that Autodock-vina and Peryx produce the most
accurate and effective results. The affinity of the complexes can
vary based on the number of carbon atoms in fragment R2, which
has been depicted in a correlative Fig. 15.
mpounds are shown in 2D docking poses.
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The four programs employed were used to describe the relation
of the affinities and carbon number of the hydrophilic substituents
in position R1 (CoMSIA/SEH) and the steric action (topomer-
CoMFA) of the fragment.
3.7.1. Re-docking results
The results of ligand superposition illustrated in Fig. 16, before

and after Molecular Docking show that the P1 position gives more
reliable results than P2 according to the RSMD values of Autodock-
vina, the other software gives values higher than these values.

We selected the Autodock-vina program to perform molecular
docking at the (P1) coordinates of the proposed molecules, based
on the results of redocking. The affinity results are shown in the
following Table 18 and the visualization of interactions are shown
in Fig. 17.

� Interactions of compound M63

The compound M63 is a reference ligand for the protein 1DZK.
pdb. It formed pi-sigma interactions of about 3.5 Å between the
aromatic of the amino acid PHE:88 and the isopropyl carbon. It also
formed three pi-alkyl bonds, one with the same amino acid at 4.9 Å
and two with ILE:100 at 3.9 Å and 4.91 Å. The methoxy group of
fragments R2 formed three bonds with the residues VAL:37
(4.12 Å), MET:39 (4.9 Å), and LEU:118 (5.08 Å). The common pyr-
azine structure also involves pi-alkyl interactions with the
ILE:100 amino acid at 5.4 Å and MET:114 at 5.32 Å. Although these
interactions are weaker than hydrogen bonds, they are still impor-
tant for odor transport, except for the amino acid PHE:88.

� Interactions of compound M65

The M65 complex formed pi-sulfur interactions between the
amino acid MET:114 and the common pyrazine ring structure at
a distance of 4.94 Å, while other interactions were pi-Alkyl type
such as MET:39 (4.65 Å), ILE:100 (5.24 Å, 4.15 Å) and VAL:80
(5.21 Å). However, the branching of the R1 fragment decreases
the olfactory threshold and these interactions are weaker than
hydrogen bonds, making this complex’s affinity smaller than that
of the reference ligand, meaning that the odor transduction of this
molecule is possible.

� Interactions of compound M57

The M57 compound formed non-classical hydrogen type inter-
actions between the oxygen of the aldehyde functional group of
the amino acid THR:115 specifically the non-bonding oxygen dou-
blet and the R2 fragment of the methoxy group with a distance of
3.52 Å, unfortunately the amino acid THR:115 does not belong to
the odor transporters keywords of the protein 1DZK.pdb (chain
B). Other remarkable interactions as keywords formed a pi-sigma
type bond between the ring of the amino acid PHE:88 and carbon
number 8 of the R1 fragment at a distance of 3.76 Å. However,
other amino acids VAL:80, ILE:100, and MET:114 formed pi-Alkyl
type bonds with distances of 5.10 Å, 4.25 Å, and 4.16 Å
respectively.

� Interactions of compound M58

The M58 compound formed non-classical hydrogen type inter-
actions between carbon number 5 of the common pyrazine struc-
ture and the non-bonding oxygen doublet of the aldehyde
functional group of amino acid PHE:35 at a distance of 3.69 Å
and a pi-Alkyl type bond with the linear chain of the R1 fragment
24
at a distance of 4.11 Å, unfortunately the amino acid PHE:35 does
not belong to the odor transporter keywords of protein 1DZK.pdb
(chain B). Other remarkable interactions as keywords formed a
pi-sigma type bond between the ring of amino acid PHE:88 and
carbon number 10 of the R1 fragment at a distance of 3.76 Å. How-
ever, other amino acids VAL:80, ILE:100, and MET:114 formed pi-
Alkyl type bonds with distances of 5.17 Å, 3.67 Å, and 5.24 Å
respectively.

� Interactions of compound P21

The compound P21 formed hydrogen bond interactions
between the carbon number 5 of the pyrazine structure and the
non-bonding oxygen doublet of the amide function of the amino
acid ASN:102 at a distance of 3.66 Å, and another conventional
hydrogen bond between the diazene hydrogen of the R3 fragment
and the non-bonding oxygen doublets of the aldehyde function of
the amino acids MET:114 and ILE:100 at a distance of 2.43 Å and
2.6 Å, respectively. Although the addition of diazenyl in the R3
position decreases the olfactory threshold, this fragment con-
tributes to attaching the compound P11/R3 during the transduc-
tion of the smell of this molecule.

� Interactions of compound P22

The compound P22 forms two conventional hydrogen bond
interactions between the diazene hydrogen of the R3 fragment
and the non-bonding double bonds of the oxygen atoms of
the aldehyde function of the amino acids MET:114 and
ILE:100 at a distance of 2.27 Å and 2.64 Å respectively. On
the other hand, there are three pi-Alkyl type bonds, two bonds
between the amino acid ILE:100, one with the R1 fragment at a
distance of 4.2 Å, and the other with the pyrazine structure
common ring, and another bond between the amino acid
PHE:88 and the R1 fragment at a distance of 4.2 Å. Although
the addition of diazenyl at R4 position decreases the odor
threshold, it contributes to binding the compound P11/R4 dur-
ing odor transduction of this molecule.

� Interactions of compound P3

The compound P3 forms important conventional hydrogen
bond interactions at a distance of 2.13 Å between the non-
bonding double bond of the oxygen atom of the aldehyde function
of the amino acid MET:114 and the sulfinic substitution hydrogen
of the R3 fragment and pi-sulfur type with the same amino acid at
a distance of 5.09 Å. Other interactions are formed of pi-Alkyl
type such as ILE:100 and the common pyrazine structure at a dis-
tance of 5.5 Å and between the methoxy substitution of the R2
fragment with the amino acids MET:39 and ILE:100 at a distance
of 4.57 Å, 4.26 Å respectively.

� Interactions of compound P4

The compound P4 forms conventional hydrogen bond interac-
tions between the primary amine hydrogen atom of the amino acid
ASN:102 and the non-bonding double bond of the sulfinic acid oxy-
gen atom at a distance of 2.98 Å, another interaction between the
sulfinic acid hydrogen and the non-bonding double bond of the
oxygen atom of the aldehyde function of the amino acid ILE:100
at a distance of 2.77 Å, another pi-Alkyl type bond of a distance
of 4.3 Å between the previous amino acid ILE:100 and the R1 frag-
ment. These interactions that we mentioned may be key factors in
the odor transduction of this molecule.



Fig. 18. RMSD values of the complexes during 100 ns of MD simulations.

Fig. 19. RMSF values of the complexes during 100 ns of MD simulations.
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� Interactions of compound P5

The compound P5 forms conventional hydrogen bond interac-
tions between the non-bonding double bond of the sulfonic acid
oxygen atom and the primary amine hydrogen of the amino acid
ASN:102 at a distance of 2.84 Å, and a carbon-hydrogen bond
between the non-bonding double bond of the oxygen atom of the
amide function of the same amino acid and the carbon hydrogen
number 5 of the common pyrazine structure. Another pi-Alkyl
bond is formed between the amino acid MET:39 and the methoxy
substitution of the R2 fragment at a distance of 4.43 Å. It should be
noted that other interactions such as a pi-sigma bond of the amino
acid PHE:88 and various pi-Alkyl bonds with other amino acids
influenced the affinity of this compound, but these residues do
not belong to the set of odor transduction keywords.
25
3.8. ADME-Tox results

The pharmacokinetic properties show (Table 19) that all com-
pounds are non-toxic, confirming the Lipinski rules. The logBB val-
ues are in the range [-1; 0.3], indicating that all the compounds are
poorly diffused in the brain, with a solubility in octanol preferable
to water, and a synthesis accessibility in the range [1; 10]. None of
the candidate molecules inhibit the enzymes involved in the meta-
bolic pathway.

3.9. Analyzing the binding stability of protein–ligand interactions
during MD simulations

The stability of the top complexes was assessed by performing
MD calculations during 100 ns simulations under ambient temper-
ature conditions. Visualization of the trajectories after running the
simulations showed that all ligands remained stable within the
protein binding pocket. Calculations of RMSD, RMSF, gyration
radius, hydrogen bonding, medium mass center (COM) distance
between the protein and ligands, and binding free energy
(MMPBSA) were performed to assess the stability of each complex.

The RMSD plots in Fig. 18 show the RMSD of the complex, pro-
tein backbone and ligand for each structure. The RMSD of the pro-
tein backbone and complex remained stable and below 2 Å after
10 ns of simulation.

The RMSF was calculated for the protein complex using GRO-
MACS, focusing on the C-alpha atoms. Overall, the size of the fluc-
tuations remains below 2.0 Å for all compounds, except for certain
residues that form loops or turns in the protein (Fig. 19). Similar
behaviors were observed for the RMSF, but with different intensi-
ties for each ligand. Ligand P22 showed significantly higher fluctu-



Fig. 20. Radius of gyration values of the complexes during 100 ns of MD simulations.

Fig. 21. Number of hydrogen bonds (protein–ligand) for the complexes during 100 ns of MD simulation.
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Fig. 22. Number of bonds (protein–ligand) for the complexes during 100 ns of MD simulation.

Fig. 23. COM distance of complexes during 100 ns of MD simulation.
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Fig. 24. From left to right: (A) Temperature, (B) pressure and (C) potential energy during the 100 ns MD simulations.

Table 20
Calculated binding free energies of tested compounds [kJ/mol].

Complex DG Binding Van der Waal energy Electrostatic energy Polar solvation energy SASA energy

M65 �111.58 ± 9.55 �132.82 ± 6.72 �13.12 ± 9.21 48.65 ± 5.68 �14.30 ± 0.58
P5 �132.14 ± 7.49 �165.60 ± 8.71 �29.99 ± 8.98 80.18 ± 8.26 �16.74 ± 0.80
P21 �100.15 ± 4.33 �154.86 ± 7.23 �21.05 ± 5.29 91.14 ± 3.76 �15.38 ± 0.75
P22 �83.38 ± 18.45 �133.37 ± 13.89 �24.19 ± 20.85 89.89 ± 14.50 �15.71 ± 0.80
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ations between the ranges (20–36) ns, (75–85) ns and (104–112)
ns, but still below 3.07 Å. On the other hand, the fluctuations of
ligand P5 were consistently lower compared to the other ligands.

Analysis of the radius of gyration (Fig. 20) shows high stability
for all complexes, with very low overall fluctuations and fluctua-
tions along the Y and Z axes of less than 1.25 nm. This indicates
the compactness and stability of the protein–ligand system. How-
ever, in terms of the radius of gyration along the X axis, we
observed values between 1.45 nm and 1.50 nm throughout the
dynamic simulation, indicating significant atomic vibration along
this axis. This finding suggests that there is a pronounced motion
or flexibility in the X-axis direction, which may be due to specific
residues or structural features of the protein–ligand complex. It
is important to further investigate the cause of this increased oscil-
lation and its potential impact on the stability and binding affinity
of the complex. Additional analysis, such as examining the local
environment and interactions in this region, may provide insight
into the structural dynamics and functional implications of the
observed fluctuations.

The total number of hydrogen bonds formed between the ligand
and the protein during the 100 ns simulation is presented in
Fig. 21. The P5 and P21 ligands have a higher number of hydrogen
bonds compared to M65, which formed only one hydrogen bond
throughout the simulation. In addition, the P22 ligand formed dis-
continuous hydrogen bonds with the protein, ranging from zero to
three hydrogen bonds, with an average of one hydrogen bond over
the entire simulation.

It is interesting to note that the P5 and P21 ligands also formed
several non-hydrogen interactions, Fig. 22 with respectively up to
six and eight of these interactions, at distances comparable to
those of a hydrogen bond throughout the simulation. This suggests
that the stabilizing interaction between the ligand and the protein
is of a different nature, possibly involving other types of non-
covalent interactions such as hydrophobic interactions or pi-
stacking. These additional interactions contribute to the overall
stability and binding affinity of complexes.

The COM distance shown in Fig. 23 remains relatively stable for
the three investigated complexes, with variations of about 0.34 nm
for M65, 0.37 nm for P5, 0.4 nm for P21 and 0.75 nm for P22.

These values indicate the average distance between the center
of mass of the ligand and the protein during the simulation. A
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stable and constant COM distance indicates that the ligand main-
tains a good affinity with the protein binding pocket throughout
the simulation. For M65, the COM distance remains relatively con-
stant, indicating stability and regular interaction with the protein.

However, slight fluctuations are observed for the P5, P21 and
P22 ligands, which may be due to dynamic motions or conforma-
tional changes of the protein or ligand during the simulation. These
fluctuations may reflect conformational adjustments necessary to
maintain a stable ligand–protein interaction.

It is important to note that although fluctuations in the COM
distance are present, they generally remain within a relatively
small range. This suggests that the overall stability and interaction
of the protein–ligand complexes studied is maintained for the
duration of the simulation.

COM distance analysis provides valuable information about the
dynamic properties of the protein–ligand bond and the flexibility
of the complexes. Understanding these fluctuations and their
structural implications can contribute to a better understanding
of molecular interactions and the design of more stable and effec-
tive ligands.

The potential energy, pressure and temperature of the system
during the 100n MD simulation, obtained from the GROMACS edr
file, are shown in Fig. 24. The graph shows a potential energy, pres-
sure and temperature converging over the 100 ns simulations. The
Molecular Mechanics/Surface Poisson-Boltzmann (MM/PBSA)
method was chosen for the re-evaluation of the complexes because
it is the fastest force-field based method for calculating the free
energy bond, compared to other free energy calculation methods
such as Free Energy Perturbation (FEP) or Thermodynamic Integra-
tion (TI) methods. The MM/PBSA calculation was performed using
the g-mmpbsa software. The calculated free energies of the com-
pounds are shown in Table 20.

Gibbs free energy is a measure of the overall stability of a com-
plex and a more negative D G value indicates greater stability. It
can be seen that P5 has the highest free energy, indicating greater
stability compared to the other molecules. M65 and P21 also have
negative values, but lower ones, while P22 has the lowest value
among the others, indicating a relatively lower stability. The Van
der Waals energy represents the ligand–protein interaction
through Van der Waals forces, which are attractive and repulsive
forces. Negative values indicate attraction and positive values
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repulsion. In this case it can be seen that P5 has the highest Van der
Waals energy, indicating a greater attraction between this ligand
and the amino acids.

The electrostatic energy measures the electrostatic interaction
between the ligand and the surrounding amino acids. It can be
observed that ligand P5 has the highest electrostatic energy, indi-
cating greater ligand–protein attraction. The polar solvation energy
is the energy required to dissolve the solute (ligand) in a polar sol-
vent. Negative values indicate better solubility as they indicate the
release of energy during dissolution. Comparing the values, it can
be seen that P21 has the highest polar solvation energy, indicating
a relatively lower solubility compared to the other ligands.

The solute accessible surface energy represents the energy of
interaction between the ligand and the solvent at the surface of
the ligand. Negative values indicate attraction and positive values
repulsion. Comparing the absolute values, it can be seen that P5
has the highest solute accessible surface energy, indicating greater
attraction between the molecule and the solvent at its surface.

From the data provided it can be concluded that P5 appears to
be the most stable molecule, while P21 has a relatively lower sol-
ubility and greater attraction to the solvent on its surface. M65 and
P22 fall between these two extremes in terms of the properties
evaluated.
4. Conclusion

Heterocyclic compounds based on pyrazine have been used for
the study of odorous properties by various QSPR methods.
Recently, many works have been devoted to the preparation of
these compounds and their application for therapeutic, food, cos-
metic, and photovoltaic purposes. it should be noted that the mole-
cules containing a 1,4-pyrazine ring can easily be functionalized by
addition or substitution on the different positions of the pyrazine
ring leading to new functional molecules, which constitutes the
chemical importance of these compounds.

We noticed that unfortunately few works in the literature
describe the QSPR analysis to predict the olfactory threshold of
molecules of this type. For these reasons, we sought an easy, appli-
cable, and reliable way to study this phenomenon. For this pur-
pose, we have chosen the olfactory threshold as an independent
variable to study the structure/odor relationship of these mole-
cules using the following techniques:

The Monte Carlo method is based on the SMILE representation
of the odorous studied molecules. indeed, the purpose of using this
method is to determine and highlight the promoters making it pos-
sible to increase and/or decrease the olfactory threshold. the
resulting extracted model (TF2), which met all internal and exter-
nal validation criteria, was successfully obtained.

The HQSPR Method, based on the study of molecular fragments,
lets us point out that the advantage of this method is that it does
not require molecular alignment and it allows the automatic anal-
ysis of large sets of data without manual intervention. This method
gives good and reliable results. Although it is a 2D method, it gives
precise information about the atoms that contribute significantly
to the odor threshold, the final obtained HQSPR (B/C) model
met all internal and external validation criteria.

In this work, other 3D-QSPR methods were used, notably the
CoMSIA/SEH and Topomer CoMFA models to confirm the results
obtained by the previous techniques. These results provided
imploring and predictive insight into the nature of the relationship
between chemical structure and odor properties.

The results obtained by the 2D-QSPR and 3D-QSPR techniques
in our work can be successfully used to predict the required prop-
erties and olfactory threshold of various related compounds. They
also make it possible to design and screen various odorant mole-
29
cules, avoiding extensive and costly experimental analyses for less
potent molecules. In addition, the compounds P5, P21 and P22 pro-
posed, have formed strong interactions with porcine odor-binding
protein (pOBP) located in the pOBP beta-barrel cavity and were
stable during dynamic simulation time and had good pharmacoki-
netic properties.
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