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Abstract Microtubules are tube-shaped, filamentous and cytoskeletal proteins that are essential in

all eukaryotic cells. Microtubule is an attractive and promising target for anticancer agents. In this

study, three-dimensional quantitative structure activity relationships (3D-QSAR) including

comparative molecular field analysis, CoMFA, and comparative molecular similarity indices

analysis, CoMSIA, were performed on a set of 45 (E)-N-Aryl-2-ethene-sulfonamide analogues as

microtubule-targeted anti-prostate cancer agents. Automated grid potential analysis, AutoGPA

module in Molecular Operating Environment 2009.10 (MOE) as a new 3D-QSAR approach with

the pharmacophore-based alignment was carried out on the same dataset. AutoGPA-based

3D-QSAR model yielded better prediction parameters than CoMFA and CoMSIA. Based on the

contour maps generated from the models, some key features were identified in (E)-N-Aryl-2-

arylethene-sulfonamide analogues that were responsible for the anti-cancer activity. Virtual screen-

ing was performed based on pharmacophore modeling and molecular docking to identify the new

inhibitors from ZINC database. Seven top ranked compounds were found based on Gold score

fitness function. In silico ADMET studies were performed on compounds retrieved from virtual

screening in compliance with the standard ranges.
ª 2015 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Microtubules made up of a- and b-tubulin heterodimers, are
dynamic, long and filamentous protein polymers (Fig. 1a).

They are vital in the growth and preservation of cell shape
(Jordan and Wilson, 2004) and have key roles in migration,
signaling and cell propagation in eukaryotic cells. Microtu-

bules are very crucial in the process of mitosis in stage followed
by equal division of duplicated chromosomes before
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Figure 1 (a) The subunit of each protofilament is tubulin

heterodimer which is created from a pair of a- and b-tubulin
monomers. Protofilaments arrange in parallel to form microtu-

bule. (b) Colchicine represses microtubule dynamics by complex

formation with tubulin heterodimers and copolymerization into

microtubule.
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conversion of the cell into two daughter cells. Dynamic struc-

tures and role of microtubules in mitosis make them become

an important target for anticancer drugs. Microtubule binders

have been considered as a member of pharmacopoeia of cancer

for decades. However, before the advent of targeted therapy

microtubules, DNA was only cancer therapeutic target

(Dumontet and Jordan, 2010). Microtubule binding agents

are divided into two major classes according to the mechanism

of amendment of microtubule dynamics: agents that inhibit

microtubule polymerization and agents that enhance its poly-

merization. Both classes cause cell cycle stop at G2/M and

finally cell death (Amos, 2011; Chou et al., 1994; Jordan and

Wilson, 1998, 2004; Panda et al., 1996; Wilson et al., 1999).

Colchicine is one of the most important inhibitors of tubulin

polymerization but its toxicity in clinical trials has led to not

finding wide application in therapy of cancer (Fig. 1b). So,

there is an essential requirement to propose new inhibitors

for microtubules (Hearn et al., 2007; Pellegrini and Budman,

2005). Many molecules for inhibition of polymerization which

compete with site of colchicine binding of tubulin have been

introduced so far. But until now, no colchicine-site binder

has been authorized for therapy of cancer (Chaplin et al.,

2006; Hsieh et al., 2005; Kemnitzer et al., 2009; Lee et al.,

2010; Mahindroo et al., 2006; Nam, 2003; Pirali et al., 2006;

Sirisoma et al., 2009; Tron et al., 2005; Xie et al., 2011;

Zhang et al., 2007).
Quantitative structure–activity relationship (QSAR) has a
fundamental role in computer-assisted-drug discovery. This
method tries to determine a reliable relationship between

molecular attributes and biological activity (Du et al.,
2008a,b, 2005a, 2008b, 2009b; Prado-Prado et al., 2008; Wei
et al., 2009). So far, many different QSAR studies have been

accomplished for discovery of anti-cancer agents, including
anti-prostate agents (Marzaro et al., 2011; Munteanu et al.,
2009; Planche et al., 2013; Prakash and Khan, 2013; Speck-

Planche et al., 2011a,b, 2012a,b; Vilar et al., 2009). 3D-QSAR,
namely CoMFA (Cramer et al., 1988b) and CoMSIA (Klebe
and Mietzner, 1994) uses three-dimensional shape of molecules
and serves as useful guide for the design and generation of new

drugs with more bioactivity or selectivity. The grid potential
analysis employing in these models creates spatial distribution
of effective fields as independent variables about superimposed

molecules (Cramer et al., 1988b). The spatial distribution
extremely depends on bioactivity of conformation of active
ligands. In cases that 3D structure of bioactive conformations

is not available, generation of a valid 3D-QSAR model for the
exhibition of actual active site of receptor is difficult (Asakawa
et al., 2012). In AutoGPA modeling (Meena et al., 2011),

pharmacophore features that are common among most active
ligands are used to find bioactive conformers of ligands and
align them. According to the definition by IUPAC, ’’a pharma-
cophore is an ensemble of steric and electronic features that is

necessary to ensure the optimal supramolecular interactions
with a specific biological target and to trigger (or block) its
biological response’’ (Wermuth et al., 1998). In the present

study, we developed pharmacophore-based AutoGPA model
to identify the critical pharmacophore features necessary for
potent inhibitors. The popular CoMFA and CoMSIA models

were built in comparison with AutoGPA model on a set of
(E)-N-Aryl-2-ethene-sulfonamide analogues as anti-prostate
cancer agents (Ramana Reddy et al., 2013). At present,

Prostate cancer is second reason of mortality due to cancer
in men in the United States (Jemal et al., 2010). Recently,
many investigations were done to treat this cancer (Cai
et al., 2012). In order to investigate interaction of tubulin

and these analogues, molecular docking was applied. Molecu-
lar docking studies (Du et al., 2009a; Huang et al., 2008) can
provide useful information for in-depth understanding of some

subtle action mechanisms at the molecular biology level, such
as the marvelous allosteric mechanism revealed recently by the
NMR observations on the M2 proton channel of influenza A

virus (Pielak et al., 2009; Schnell and Chou, 2008). They can
also provide useful insights to stimulate drug developments
as demonstrated by previous investigators (Cai et al., 2011;
Chou, 2004b; Chou et al., 2003; Du et al., 2009a, 2010,

2005b; Huang et al., 2008; Li et al., 2011; Ma et al., 2012;
Wang and Chou, 2011, 2012; Wang et al., 2009). The informa-
tion of a binding pocket of a receptor for its ligand is very

important for drug design, particularly for conducting muta-
genesis studies (Chou, 2004b). In the literature, the binding
pocket of a protein receptor to a ligand is usually defined by

those residues that have at least one heavy atom (i.e., an atom
other than hydrogen) within a distance of 5 Å from a heavy
atom of the ligand. Such a criterion was originally used to

define the binding pocket of ATP in the Cdk5-Nck5a* complex
(Chou et al., 1999) that has later proved quite useful in identi-
fying functional domains and stimulating the relevant trunca-
tion experiments (Zhang et al., 2002). The similar approach
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has also been used to define the binding pockets of many other
receptor–ligand interactions important for drug design (Chou,
2004a; Chou et al., 2003; Huang et al., 2008; Li et al., 2011;

Pielak et al., 2009; Wang and Chou, 2011, 2012; Wang et al.,
2007). Many marvelous biological functions in proteins and
DNA and their profound dynamic mechanisms, such as switch

between active and inactive states (Wang and Chou, 2009),
cooperative effects (Chou, 1989), allosteric transition (Chou,
1987), intercalation of drugs into DNA [30], and assembly of

microtubules (Chou et al., 1994), can be revealed by studying
their internal motions as summarized in a comprehensive
review (Chou, 1988). Likewise, to really understand the inter-
action of a protein receptor with its ligand and to reveal their
Table 1a pIC50 values for compounds of the general structure I.

Cmpd no. R

1a H

2a 4-Cl

3 4-F

4 4-F

5a 4-OCH3

6 4-OCH3

7 4-OCH3

8 4-OCH3

9 4-OCH3

10 2,4,6-(OCH3)3
11 4-OCH3

12 4-OCH3

13a 3-F, 4-OCH3

14 3-OCOCH2C(CH3)2-C6H(CH3)2O2, 4-OCH3

15 3-OPO(ONa)2,4-OCH3

16 3-NH2, 4-OCH3

17 3-NO2, 4-OCH3

18 3-NH2,4-OCH3

19 3-NO2, 4-OCH3

20 3-NH2, 4-OCH3

21 3-OH, 4-OCH3

22 3-NO2, 4-F

23 3-NH2, 4-F

24 3,5-(NO2)2,4-OCH3

25 3,5-(NH2)2,4-OCH3

26a 3-F, 4-OCH3

27 3-F, 4-OCH3

28 3-NO2, 4-OCH3

29 3-NH2, 4-OCH3

30 2,3,4,5,6-F5

31 2,3,4,5,6-F5

32 2,3,4,5,6-F5

a Prediction set.
binding mechanism, we should consider not only the static
structures concerned but also the dynamical information
obtained by simulating their internal motions or dynamic pro-

cess, and we are to make efforts in this regard in our future
work. Virtual screening is a computational drug discovery
method where large libraries of compounds are assessed for

their potential to bind specific sites on drug target and identify
small numbers of virtual hits (Klebe, 2006). Herein, virtual
screening was performed by the pharmacophore model as

ligand-based and molecular docking as structure-based screen-
ing. It is reported that about fifty percent of all drugs fail in
coming to marketing stage because of poor human pharmaco-
kinetics (Shen et al., 2003; Zheng and Tropsha, 2000). Thus,
R1 pIC50

H 5.00

H 4.70

4-Br 5.00

4-OCH3 5.00

4-OCH3 5.30

2,4-(OCH3)2 4.82

2,6-(OCH3)2 6.43

2,4,6-(OCH3)3 6.70

3,4,5-(OCH3)3 4.46

4-OCH3 5.12

2,6-(OCH3)2, 4-OH 5.00

2,4,6-F3 4.12

2,4,6-(OCH3)3 7.52

2,4,6-(OCH3)3 7.40

2,4,6-(OCH3)3 5.60

2,4,6-(OCH3)3 4.12

3,4,5-(OCH3)3 4.46

3,4,5-(OCH3)3 4.00

2,6-(OCH3)2, 4- O(CH2)3COOH 5.00

2,6-(OCH3)2, 4-O(CH2)3COOH 5.00

2,6-(OCH3)2, 4-O(CH2)3COOH 4.00

2,4,6-(OCH3)3 5.00

2,4,6-(OCH3)3 5.00

2,4,6-(OCH3)3 5.00

2,4,6-(OCH3)3 5.60

4-OCH3 5.30

2,3,4,5,6-F5 5.00

2,3,4,5,6-F5 4.00

2,3,4,5,6-F5 4.12

3-NO2, 4-OCH3 4.00

3-NH2, 4-OCH3 4.46

2,3,4,5,6-F5 4.46
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in silico ADMET studies were performed on new compounds
recognized by virtual screening to compare the computed
ADMET descriptor values with the accepted ranges.
2. Materials and methods

2.1. Dataset

A set of 45 (E)-N-Aryl-2-ethene-sulfonamide analogues as

anti-prostate cancer agents with associated activity data were
collected from the literature (Ramana Reddy et al., 2013).
The IC50 (lM) values of original paper were converted into

molar units. These values were transformed into negative log-
arithm scale value (pIC50) as dependent variable for all models
subsequently developed. The pIC50 values of the data set

extend from 4 to 7.5. For developing models, the total
Table 1b pIC50 values for compounds of the general structure II.

Cmpd no. R2

33 CH2

34 CH(CH3

35 C(CH3)2
36a CH(C6H

37 CH(C6H

38 CH(C6H

Table 1c pIC50 values for analogous of the general structure III.

Cmpd no. R2

39 CH2

40 CH(CH3

41 C(CH3)2
42 CH(C6H

43a CH(C6H

44 CH(C6H

45a CH(C6H
compounds as usual were divided into two training and test
sets consisting of 37 and 8 compounds, respectively. The chem-
ical structures and experimental pIC50 values of all compounds

are listed in Tables 1a–1c.

2.2. CoMFA and CoMSIA studies

The CoMFA and CoMSIA models were developed by SYB-
YL7.3 software package (Tripos Inc., St. Louis, USA, version
7.2) the details of model building steps can be found in the lit-

erature (Ghasemi and Shiri, 2012; Pirhadi and Ghasemi, 2010).

2.3. AutoGPA studies

To use the new alignment for the construction of a better
model, AutoGPA software based on pharmacophoric
pIC50

6.46

) 7.00

6.70

5) 5.60

4-F) 5.60

4-Br) 5.12

pIC50

6.40

) 7.40

7.15

5) 7.12

44-F) 7.12

44-Cl) 7.12

44-Br) 6.60



Figure 2 Important steric and electrostatic fields around the aligned compounds generated by AutoGPA model. For better presentation,

only one molecule was shown instead of the superposition of all molecules.
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alignment which is a grid potential analysis that evaluates ste-
ric and electrostatic fields around pharmacophore-based
aligned ligands, has been used, Fig. 2 (Asakawa et al., 2012).

MMFF94s force field with generalized Born solvation model
was employed for energy minimization of structures. Two
separate databases that consist of structures of molecules

and their related pIC50, were created for training and test sets.
Conformation search option in MOE2009.10 was used to
generate probable conformers for each molecule in data sets.

Strain energy for conformations was considered less than
7 kcal/mol and RMSD gradient was defined 2.5 Å by default.
Conformer generation was continued until a maximum

number of 10,000 conformers per ligand (Chen and Foloppe,
2008). Finally, 38,837 conformations for training set and
3784 conformations for test set were generated.

2.3.1. Pharmacophore elucidation and alignment

The generated conformers for ligands should be aligned over
the common pharmacophore queries. Hydrogen bond accep-

tor, hydrogen bond donor, hydrophobic area and positively
and negatively ionized areas as pharmacophore features were
searched in each conformation. When biologically active
molecules join to binding site of receptor, they form similar

interactions, so, it is expected that their bioactive conforma-
tion carries common three-dimensional arrangement of
pharmacophores. The option named AutoGPA looked for

pharmacophore queries (three-dimensional arrangement of
the pharmacophore features) that derive good overlay of the
most active molecules. At last, using this option, pharmaco-

phore queries which were satisfied by all or a large number
of the most active molecules were extracted and used to align
all compounds of training set. Common geometry features of
active compounds in case no 3D structure of target is avail-

able, can give information about key interactions between
the active molecules and receptor (Asakawa et al., 2012;
Kumar and Tiwari, 2013).

2.3.2. 3D-QSAR model construction

AutoGPA-based 3D-QSAR model was generated by superim-
posed ligands using pharmacophore alignment. It calculates
fields based on theory of CoMFA. A cubic lattice with 2.0 Å
grid spacing surrounding all of the compounds was created
and a probe atom that was sp3 carbon atom with charge

+1.0 was used at each intersection grid point. Steric and
electrostatic energies interaction based on van der Waals and
columbic between atoms and probe was calculated (Pirhadi

and Ghasemi, 2010). In calculation of grid potential, 30 kcal/
moles limit of van der Waals potential and a threshold 0.15
for maximum variance were considered. PLS regression was

used to develop a model that correlates grid potential fields
to biological activity. The optimum number of components
was fixed to 10. In this manner, 3D-QSAR models were

constructed, sorted based on q2 criterion of leave-one-out
crossvalidation (LOOCV) (Section 2.4) and final AutoGPA
model was achieved.

2.4. Validation of models

Crossvalidation as an internal validation technique was used
to assess the prediction quality of the models. In a standard

internal validation method, named LOOCV (leave one out
crossvalidation), one compound is excluded from the original
training set, and a new model is built based on new training
set and this model is used to predict the activity of the excluded

one. For each model, this procedure is repeated for whole com-
pounds of data set, and each compound has been excluded
once, then cross validated q2 which is considered as a criterion

of robustness and predictive ability of the models, was calcu-
lated by Eq. (2) (Cramer et al., 1988a; Wold, 1978) as follows:

q2 ¼ 1�
P
ðyi � ŷÞ2P
ðyi � �yÞ2

ð1Þ

where �y presents average activity value of the entire dataset

and yi and ŷ are observed and predicted activity values, respec-
tively. A high q2 value (q2 > 0.5) is used as an evidence of high
predictive ability of the model (Hawkins et al., 2003). Gol-

barikh and Tropsha reported that the high value of q2 is essen-
tial and important but not adequate for a predictive model (Lu
et al., 2010) and an external analysis by test set of molecules
should be employed to investigate the prediction of model.



Figure 3 Workflow for the process of generation of AutoGPA, CoMFA and CoMSIA, in this study.
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They said a QSAR model is predictive if it fulfills the following
conditions (Tropsha et al., 2003):

q2 > 0:5

R2 > 0:6
R2�R2

0ð Þ
R2 < 0:1 or

R2�R02
0ð Þ

R2 < 0:1

0:85 6 k 6 1:15 or 0:85 6 k0 6 1:15

where R2 is squared correlation coefficient values between the
observed and predicted values of the test set compounds (Lu
et al., 2010). The R2
pred value was calculated according to Eq.

(2):

R2
pred ¼ 1�

Pm
i¼1ðyi � ŷiÞ2Pm
i¼1ðyi � �yÞ2

ð2Þ

where ŷi and yi indicate predicted and observed activity values

of the test set, respectively, and �y is the average value of train-
ing set activities and m is the number of compounds in the test
set (Ebrahimi et al., 2013). R2

0 and R020 are squared correlation
coefficient values for observed versus predicted and predicted
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versus observed activities, through origin, respectively and k0 is

the slope of regression lines through the origin (Lu et al.,
2010).

In addition, for better predictive potential of models, Roy

and Roy (2008) introduced following modified r2 (r2m):

r2m ¼ r2 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r20

q����
����

� �
ð3Þ

If r2m value for a model is greater than 0.5, it states high predic-
tive power of model. The concept of r2m was applied to the pre-

diction of test set [r2m (test)] and overall set of compounds
[r2m (overall)] (Pratim Roy et al., 2009).

To demonstrate the reliability of predictions of AutoGPA

model, applicability domain was determined by leverage
approach (Dragos et al., 2009). Standardized residuals versus
leverage values visualize the applicability domain of the model.
The warning leverage is calculated as 3(k + 1)/n, where k is the

number of latent variables of the model and n is the number of
training set molecules. Compounds with higher leverage value
than h* are called X outliers that indicate structurally signifi-

cant chemicals, and compounds which have higher standard-
ized residual than 3 are considered as Y outliers (Stanforth
et al., 2007; Tetko et al., 2008).

2.5. Molecular docking

X-ray structure of tubulin with the stoichiometry ‘‘hetero-5-

mer-A2B2C’’ was extracted from protein data bank (PDB
code: 3HKE). Docking studies were conducted on colchicine
as one of binding pockets of tubulin by Gold algorithm using
Discovery Studio 2.5 (Discovery Studio). Ligand structures

were typed with CHARMm force field and partial charges
Table 2 Summary of the results obtained from the CoMFA, CoM

Component CoMFA

q2 0.69

R2
ncv 0.86

RMSEC 0.4

n 5

RMSEP 1.07

F value 53.25

R2
pred 0.68

R2 � R2
0

� �
=R2 0.08

k 0.84

k0 1.17

r2m (overall) 0.68

r2m (test) 0.52

Fraction

Steric 0.88

Electrostatic 0.12

Hydrophobic

H-bond donor

H-bond acceptor

q2 = Cross-validated correlation coefficient after the leave-one-out proce

R2
ncv = Non-cross-validated correlation coefficient.

RMSEC= Root-mean-square-error for training set.

n= optimum number of components.

RMSEP= Root-mean-square-error for test set.

R2
pred = predictive correlation coefficient.

R020 = correlation between predicted versus observed activity setting the

r2m = modified squared correlation coefficient.
were calculated by Momany-Rone option. Then, resulting
structures were minimized with Smart Minimizer which per-
forms 1000 steps of steepest descent with a RMS gradient tol-

erance of 3, followed by conjugate gradient minimization. In
next step, for preparation of tubulin, complex typed with
CHARMm force field, hydrogen atoms were added, all water

molecules were removed and pH adjusted to neutral 7.4. A 8 Å
radius sphere was defined as the binding region for docking
study. Other parameters were set by default protocol settings.

Gold method employs a strong genetic algorithm approach for
conformational search and molecular docking (Politi et al.,
2010) to guess, how fine the compounds join to the tubulin
active site (Sakkiah et al., 2011). This program considers com-

plete flexibility of side chains of residues of receptor at binding
site. Finally, all of the datasets were docked into binding site of
receptor, and fitness scores were obtained. Compounds with

larger fitness score have been docked better (Ardakani and
Ghasemi, 2013; Li et al., 2012).

2.6. Virtual screening and ADMET analysis

The ZINC database was screened with the best generated
pharmacophore AutoGPA model through ZINCPharmer

(http://ZINCpharmer.csb.pitt.edu) (Jasuja et al., 2014). ZINC-
Pharmer is an online website that uses pharmer pharmaco-
phore search method to explore ZINC database (Koes and
Camacho, 2012). Molecular weight (<500), total number of

rotatable bonds to 10 and number of conformations per mol-
ecule to 1 were considered as primary filters in this step of
screening. Then, the obtained hits were filtered using Lipinski’s

rules (Ca, 2000; Lipinski CAF and Feeney, 1997; Yadav and
Khan, 2013). The remaining molecules were screened by
SIA and AutoGPA analyses.

CoMSIA AutoGPA

0.56 0.55

0.75 0.92

0.41 0.35

3 3

0.85 0.42

32.40 206.04

0.76 0.91

0.08 0.06

0.88 0.98

1.12 1.02

0.79 0.89

0.53 0.65

0.17 0.11

0.05 0.89

0.32

0.26

0.2

dure.

intercept zero.

http://ZINCpharmer.csb.pitt.edu
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docked into binding site of receptor by Gold algorithm.
Absorption, distribution, metabolism and excretion, ADME
parameters, were calculated to investigate pharmacokinetic

properties of hit compounds. If a drug absorbed fast and com-
pletely by gastrointestinal tract (GIT), distributed selectivity to
its receptor, its effect did not eliminate quickly in metaboliza-

tion and in excretion process, removed in a proper procedure
without creating any harm, is considered ideal. Some chemical
descriptors were used to calculate pharmacokinetics properties

that have relationship with chemical structure (Hodgson, 2001;
Winiwarter et al., 1998). ADME studies on virtual hits were
performed by Qikprop version 3.2 of Schrodinger suite,
(2010) (Schrodinger Suite, 2010: QikProp and New York).
Table 3 The experimental and predicted pIC50 values of all compo

Compound no. Experimental CoMFA

Pred. Res.

1a 5 4.88 0.12

2a 4.7 4.67 0.03

3 5 4.84 0.16

4 5 4.91 0.09

5a 5.3 4.56 0.74

6 4.82 4.93 �0.11
7 6.43 4.96 1.47

8 6.7 5.81 0.89

9 4.56 4.71 �0.25
10 5.12 5.26 �0.14
11 5 5.78 �0.78
12 4.12 4.49 �0.37
13a 7.52 5.7 1.82

14 7.4 7.41 �0.01
15 5.6 5.6 0.00

16 4.12 5.1 �0.98
17 4.46 4.35 0.11

18 4 4.07 �0.07
19 5 4.78 0.22

20 5 4.87 0.13

21 4 4.35 �0.35
22 5 4.85 0.15

23 5 4.92 0.08

24 5 5.13 �0.13
25 5.6 5.08 0.52

26a 5.3 4.22 1.08

27 5 4.73 0.27

28 4 3.9 0.10

29 4.12 3.82 0.30

30 4 4.32 �0.32
31 4.46 4.37 0.09

32 4.46 4.55 �0.09
33 6.46 6.62 �0.16
34 7 7 0.00

35 6.7 6.86 �0.16
36a 5.6 5.33 0.27

37 5.6 5.33 0.27

38 5.12 5.18 �0.06
39 6.4 6.35 0.05

40 7.4 7.37 0.03

41 7.15 6.83 0.32

42 7.12 7.32 �0.2
43a 7.12 5.53 1.59

44 7.12 7.22 �0.1
45a 6.6 5.4 1.20

a Prediction set.
To assess toxicity risk for obtained hits, mutagenicity, tumor-
igenicity, irritant and reproductive effects were investigated by
OSIRIS property explorer (Explorer. et al.). Also, drug like-

ness and drug score values were determined for each
compound.
3. Results and discussion

3.1. Comparison of 3D-QSAR models

The 3D-QSAR models were derived for a dataset of 45 tubulin
inhibitors. Fig. 3 shows the trend followed for the development
unds.

CoMSIA AutoGPA

Pred. Res. Pred. Res.

4.90 0.1 5.31 �0.31
4.94 �0.24 5.12 �0.42
4.67 0.33 4.65 0.35

4.75 0.25 4.66 0.34

4.58 0.72 5.51 �0.21
5.14 �0.32 4.88 �0.06
5.50 0.93 6.29 0.14

5.58 1.12 6.73 �0.03
5.00 �0.54 4.45 0.01

4.79 0.33 5.1 0.02

5.38 �0.38 5.53 �0.53
4.56 �0.44 5 �0.88
5.82 1.7 6.68 0.84

7.48 47 �0.08 6.77 0.63

5.61 �0.01 5.48 0.12

4.97 �0.85 5.27 �1.15
4.52 �0.06 4.45 0.01

4.33 �0.33 4.34 �0.34
4.58 0.42 5.22 �0.22
4.54 0.46 5.17 �0.17
5.07 �1.07 4.3 �0.3
5.05 �0.05 5.09 �0.09
5.03 �0.03 5.01 �0.01
5.02 �0.02 5.17 �0.17
5.33 �0.27 5.93 �0.33
4.59 0.71 5.24 0.06

4.79 0.21 5.12 �0.12
4.12 �0.12 4.43 �0.43
4.05 0.07 4.4 �0.28
3.86 0.14 3.56 0.44

4.30 0.16 4.38 0.08

4.67 �0.21 4.04 0.42

6.63 �0.17 6.47 �0.01
6.56 0.44 6.8 0.2

6.86 �0.16 6.87 �0.17
5.42 0.18 5.4 0.2

5.52 0.08 5.4 0.2

5.27 �0.15 5.43 �0.31
6.83 �0.43 6.42 �0.02
7.25 0.15 7.34 0.06

7.35 �0.2 7.35 �0.2
6.97 0.15 7.1 0.02

6.03 1.09 6.55 0.57

7.04 0.08 6.7 0.42

5.81 0.79 6.66 �0.06
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of CoMFA, CoMSIA and AutoGPA models. The statistical
parameters associated with the models were listed in Table 2.
Although results indicate the CoMFA model gives higher q2

than those obtained by AutoGPA and CoMSIA, other specifi-
cations of AutoGPA model are better. The prediction ability
of models was determined using a set of 8 test compounds

not included in the model generation. As we can see in this
table, non-cross-validated correlation coefficients and the pre-
dicted R2

pred value of AutoGPA model were 0.92 and 0.91 with

a number of optimized components of 3. Therefore, this model
can be used reliably in new inhibitors design. The values of
experimental and predicted activities of all models are depicted
in Table 3. The graphs of actual activity versus predicted activ-

ity of the training set and test set for all models are illustrated
in Fig. 4a–c. The analysis of the applicability domain of the
AutoGPA model, Fig. 5, denotes no outliers in the test set

and demonstrates the ability of model in predicting the action
of new compounds.

3.2. Contour maps analysis

To visualize the information of derived models contour maps
are generated. They are calculated as the product of the stan-

dard deviation of field (StDev) at each grid point and PLS
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Figure 4 Observed vs. predicted activities for the training and

test sets of compounds based on CoMFA (a), CoMSIA (b) and

AutoGPA (c) models.
coefficient. The contour maps show regions where differences
in molecular fields are related to differences in activity (Mao
et al., 2012). Interpretation of the steric and electrostatic con-

tours, using compound 40 as the template structure of Auto-
GPA model is trivial and displayed in Fig. 6a and b. The
steric maps are represented by green and yellow contours while

the green color indicates regions in space around aligned mol-
ecules where bulky groups would favorably interact with the
receptor and yellow color shows regions where bulky groups

would decrease the activity. Fig. 6a shows the yellow region
near 6-methoxy (R1) substituent that suggests a bulky group
is not favorable and decreases the activity. It can explain the
activity of compound 16 lower than compound 17 due to the

existence of OCH3 bulky group. A small green contour around
position 3rd of terminal phenyl ring (R) reveals the bulky sub-
stituent increases the activity. For example, the comparison of

this position in compounds 14 (OCOCH2C(CH3)2C6H) with 8
(without any substituent), 15 (OPO(ONa)2) and 16 (NH2) con-
firms the observation. The electrostatic field represented by

blue contours shows regions where an electron donating group
would increase the activity and red contours indicate regions
where electron withdrawing group would increase the activity.

A small red region near position 5th (R1) shows the electroneg-
ative substituent causes increasing of the activity (Fig. 6b). The
compound 9 with electron donating group –OCH3 is less acti-
vate in comparison with compound 8. In the same way, the

activity of compound 16 (without any substituent) is more
than compound 18 (OCH3). Two blue regions near 4-methoxy
group in positions R1 and R indicate electron donating groups

would increase the activity demonstrated by the order of activ-
ities in some compounds such as: 8 > 7, compound 8 has an
extra OCH3 at R1; 5 > 4, compound 5 possesses an OCH3

instead F in compound 4; and 1 > 2, compound 2 with Cl
at R indicates lower activity than compound 1 with H atom.
The big blue contour near side chain R2 exhibits the electron

withdrawing group decreases biological activity. Taking the
compounds 36–38 (R2 = CH(C6H5), CH(C6H44-F), CH(C6-

H44-Br)), the electron withdrawing groups at the R2 situation
resulted in decreasing activity with regard to compounds 34

and 35 (R2 = CH(CH3),C(CH3)2). Fig. 7a provides the
hydrophobic contour for compound 40 of the CoMSIA model.
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Figure 5 Standardized residuals vs. leverages. Dashed lines

represent ±3 standardized residual and dotted line represents

warning leverage (h* � 0.32).



Figure 6 AutoGPA contour maps based on compound 40: steric

(a), electrostatic (b).

Figure 7 COMSIA contour maps based on compound 40: hydro-

phobic (a), hydrogen donor (b) and hydrogen bond acceptor (c).
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The yellow and white plots indicate hydrophobicity and
hydrophilicity in that region is expected to increase the activity
of the molecule. In Fig. 7a, two yellow contours around 4-

methoxy group at R1 and R positions which favored the exis-
tence of hydrophobic substituents are toward these regions.
Compound 8 with hydrophobic group (OCH3) in 4th situation

of R1 displayed higher activity than compound 12 (F). One
white contour near amine group in 3rd situation of R suggests
that a hydrophilic group may be favored. This can explain why

derivative 25 exhibited higher activity than compound 24
(compound 25 possesses an NH2 instead NO2 in compound
24) and also compound 29 exhibited higher activity than 28

(compound 29 possess an NH2 instead NO2 in compound
28). The hydrogen bond donor field interaction for CoMSIA
model was shown in Fig. 7b. The cyan contours display the
hydrogen bond donor groups are favorable while purple con-

tours state these groups would decrease activity. One medium
size cyan contour around 4-methoxy (R1) suggests that hydro-
gen donor group in this region would increase activity. This is

a possible reason why compound 11 has higher activity than
compound 2 and also compounds 19 and 20 have higher activ-
ity than compounds 16, 17 and 18. Two purple contours near

2- and 5-methoxy positions of R1 indicated that hydrogen
bond acceptor substituent would benefit the activity. This
may explain why derivative 32 with two hydrogen bond accep-

tor substituents (-F) at these positions exhibits higher activity
than compound 30 (without any substituent). In hydrogen
bond acceptor field, the magenta and red plots indicate favor-
able and unfavorable situations. In Fig. 7c, one H-bond accep-

tor favorable to magenta contour located near 6-methoxy (R1)
considering cyan contour of hydrogen donor field in this situ-
ation, revealed that both hydrogen bond donor and acceptor

groups can increase activity. Great number of the derivatives
involved in this study possessed hydrogen bond acceptor
group (OCH3) at this site which demonstrates the importance

of the hydrogen bond acceptor substituent. Fig. 8 indicates the
best pharmacophore hypothesis including 4 features. An
orange sphere as aromatic (Aro|PIR) p-ring center on the phe-

nyl ring states all compounds can create p-interaction from
this position. Three blue spheres oriented toward sulfur mon-
oxide of all compound, amine group and methoxy group in 3rd
and 4th situations of R (Acc2), respectively. This feature shows

the ability of diverse positions of compounds of data set for
establishing hydrogen bond. The common pharmacophoric
features can help in screening out the potential ligand. Modi-

fication of substituents of the phenyl rings considering the



Figure 8 The best pharmacophore model of AutoGPA, mapping with the most active compound 40.
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derived AutoGPA models (3D-QSAR and pharmacophore)
motivated us to propose more desirable compounds.

3.3. Molecular docking analysis

Molecular docking was employed to find binding mode of

compounds, and additionally to evaluate the reliability of
obtained contour maps and pharmacophore model. All com-
pounds were docked in colchicine site of target. The most

active compounds in dataset 14 and 40 were selected for more
detailed analysis. Fig. 9 displays the hydrogen bonds between
the compound 40 and the binding site of receptor, the key res-
idues were labeled. Investigation of the binding mode of com-

pound 40 shows a hydrogen bond between O of 6-methoxy
(R1) and Thr179 from the a chain as is mapped to the magenta
contour in CoMSIA. In addition, there is one hydrogen bond

between O of carbonyl group 3rd situation of R with Val181
from the same chain. The 4-methoxy (R1) formed H-bond with
Ala250 from the b chain of tubulin. The hydrogen atoms of

amine group of the molecular frame and hydroxyl group on
substituent 3 (R) act as hydrogen bond donor against Ser178
from the a chain and Asn349 from the b chain, respectively.

In compound 14, carbonyl group 3rd situation of R as hydro-
gen bond acceptor gives a hydrogen bond with nitrogen atom
of amino acid Thr353. Meanwhile, there are not any hydrogen
Figure 9 Hydrogen bonding interactions between compound 40

and key residues.
bonds in inactive compound 28, and it could confirm what is
the reason of weaker binding between inactive compounds

and the binding site. There is an p-cation interaction between
the conjugated ring on 3rd situation of R in compound 14 and
ammonium group of Lys352 which confirms the ring aromatic

feature of pharmacophore model. Docking results illustrated
many electrostatic interactions between 2, 4 and 6-methoxy
groups (R1) with residues of binding pocket. 4-Methoxy group

(R) of compound 14 has electrostatic interaction with polar
residues Gln176, Ser178 and Thr179 from the a chain and
Lys352 from the b chain in compliance with the blue contour
map of AutoGPA model. Several polar residues such as

Lys352, Thr314, Asn258 and 350 from the b chain around side
chain R2 of template confirm the increasing electropositivity of
this substituent, and the more power interaction can be

formed, that is in agreement with electrostatic blue contour
map AutoGPA.

3.4. Virtual screening analysis

Fig. 10 shows summarized protocol for virtual screening of the
molecular libraries in this study. The pharmacophore model

usually gives an accurate hypothesis of required attributes
for a new lead (Gopalakrishnan et al., 2005). The optimized
derived AutoGPA model was used as 3D virtual query to
searching in ZINC database using 
pharmacophore model through ZINC pharmer

Druglikness filter using Lipinski ' rules of five

Molecular docking 
(GOLD)

Pharmacokine�cs filter based on ADME 
proper�es

Lead iden�fica�on

Figure 10 Workflow for combined ligand-based and structure-

based virtual screening.



Table 4 Structure of retrieved compounds from virtual screening with their Gold fitness scores.

Compound name Structure ZINC number Gold score

Vs1 ZINC21721788 72.78

Vs2 ZINC21721781 71.84

Vs3 ZINC12569439 77.65

Vs4 ZINC21537504 74.88

Vs5 ZINC21721756 72.20

Computer-aided molecular design 2161



Table 4 (continued)

Vs6 ZINC20987079 74.76

Vs7 ZINC63212443 73.96

2162 F. Shiri et al.
screen the ZINC database for finding new and potent hits. 693
conformers were obtained from the initial screening. As the

second step, Lipinski’s rules assessed the drug-likeness of
remained compounds, a subset of 488 molecules were
retrieved. In the subsequent structure-based screening step,

they were docked into active site of protein to refine the hits
using defined sphere of compounds in the data set by the Gold
program. Finally, 7 hits which were docked well and gave high

Gold fitness scores, are listed in Table 4. Fitness scores were
more than the most active compound of data set with score
52.77. The 7 hits fitted in 4 diverse structural scaffolds and
were different from the compounds in the training data set.

More investigation was performed on Vs3 with Gold fitness
score of 77.65. Cyanide group attached to phenyl ring of this
hit that mapped with acceptor feature in pharmacophore

model acts as hydrogen bond acceptor and forms two hydro-
gen bonds with Ala20 and Asp251 residues. The methyl group
in meta position of aromatic ring in compound Vs1 forms sev-

eral hydrophobic interactions with Val238, Leu242 and 255
hydrophobic residues. The methyl group in para position
Table 5 Prediction of ADME properties of compounds obtained f

Descriptors Vs1 Vs2 Vs3

Apparent Caco-2 permeability (nm/s) 158 114 37

Apparent MDCK permeability (nm/s) 158 81 14

Jm (max. transdermal transport rate) 0.002 0.001 0.028

LogS (aqueous solubility) �4.615 �4.483 �3.532
% human oral absorption in Gl (±20%) 80 76 62

logBB for brain/blood �1.709 �1.840 �2.592
logKhsa (serum protein binding) �0.125 �0.159 �0.975
logP for octanol/water 2.348 2.144 1.220

Skin-permeability coefficient (log KP) �3.655 �3.999 �3.713
a For 95% of known drugs, based on Qikprop v.3.2 (Schrçdinger, USA
Vs2 is exposed to polar amino acids Asn258 and Thr239 and
40. So, this hit is unable to establish appropriate interaction

in this position and shows the Gold fitness score less than
Vs1. The results indicated the AutoGPA pharmacophore
model is a powerful tool in finding new inhibitors for virtual

screening.

3.5. ADMET studies

All the seven reported hits have drug-likeness properties
according to Lipinski’s rules. We investigated several physico-
chemical properties related to pharmacokinetic parameters for
these molecules and results are summarized in Table 5. LogP

was calculated to measure the hydrophobicity of compounds.
Compound with high lipophilicity and also high logP will have
a poor surface contact with the gut and likely poor absorption.

It is known that compounds with a logP < 5 can be absorbed
well. Aqueous solubility (logS) was calculated to recognize
poorly soluble compounds because a low solubility governed

by logS causes a bad absorption, distribution and absorption
rom virtual screening using Qikprop.

Vs4 Vs5 Vs6 Vs7 Stand. rangea

44 195 148 470 <25 poor, >500 great

139 153 146 218 <25 poor, >500 great

0.001 0.006 0.005 0.226 lg/cm2 h

�5.645 �4.601 �5.522 �4.278 �6.5/0.5
77 81 85 96 <25% is poor

�2.065 �4.601 �1.701 �1.102 �3.0/1.2
0.249 �0.261 0.180 0.158 �1.5/1.5
3.436 2.218 3.322 3.697 �2.0/6.5
�3.289 �3.206 �2.388 �1.994 �8.0 to �1.0, KP in cm/h

, 2009) software results.



Table 6 Toxicity risk assessment test on (E)-N-Aryl-2-ethene-sulfonamide analogues.

S. no. MUT TUM IRR RE CLP S DL DS

Vs1 No risk No risk No risk Medium risk 2.86 �5.67 1.07 0.38

Vs2 No risk No risk No risk Medium risk 2.86 �5.67 �1.34 0.26

Vs3 No risk No risk No risk No risk 1.12 �4.13 �3.34 0.33

Vs4 No risk No risk No risk No risk 2.49 �6.06 4.87 0.40

Vs5 No risk No risk No risk Medium risk 2.51 �5.32 1.67 0.44

Vs6 No risk No risk No risk No risk 2.17 �5.39 6.66 0.57

Vs7 No risk No risk No risk No risk 1.98 �3.07 5.99 0.78

MUT: Mutagenicity; TUM: Tumorigenicity; IRR: Irritating Effects; RE: Reproductive effects; CLP: cLogP; S: Solubility; DL: Drug likeness;

DS: Drug Score (Calculated through OSIRIS property explorer).
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of a compound. Calculations related to blood–brain barrier
(logBB) and apparent MDCK cell permeability, gut-blood
barrier (Caco-2 cell permeability), transdermal transport rate

(Jm), aqueous solubility,% human oral absorption in Gl
(±20%) serum protein binding, logP for octanol/water and
skin permeability (kp) showed that these values for hits fell

within the standard range of 95% of known drugs for drug
likeness (Yadav and Khan, 2013). The results of toxicity risk
assessment indicates that hits do not have any mutagenicity,

tumorigenicity and irritant effects, and reproductive effects
for 3 hits had medium limit. The calculated toxicity risk assess-
ment parameters for virtually screened hits are listed in
Table 6.

4. Conclusion

In this study, 3D QSAR modeling, molecular docking, virtual

screening and ADMET approaches were employed to predict
the biological activity of compounds and find the probable
lead compounds from virtual screening. The CoMFA and

CoMSIA models were generated using common substruc-
ture-based alignment of compounds in training set. The
AutoGPA model as a pharmacophore alignment-based

method was applied to find the bioactive conformers and
yielded better predictive and reliable model. The calculation
of parameters for prediction ability of the derived models
confirms that the AutoGPA model is more predictive. Also,

the AutoGPA contour maps were more interpretable to
explain the effective features on activity. The pharmacophoric
model, Lipinski’s rules and molecular docking screened ZINC

database to suggest 7 hits with high score fitness and diverse
structures. In silico ADMET studies indicated the hits are in
standard ranges. Therefore, AutoGPA model can be used as

a beneficial method for screening large library and finding
new inhibitors.
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