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Abstract The current research is focused on development of machine learning model for estima-

tion of pharmaceutical solubility in supercritical CO2 as the green solvent. The main aim is to assess

the suitability of supercritical processing for preparation of nanomedicine. Oxaprozin was taken as

model drug for the solubility measurements, and its solubility was determined at different opera-

tional conditions by variation of temperature and pressure of the process. Artificial Neural Network

(ANN) model was implemented for simulation of the drug solubility, and the best model was

obtained with R2 greater than 0.99 for the training and validation as well. The tested model was

then exploited to understand the process, and it turned out that both pressure and temperature

had major and considerable influence on the solubility of Oxaprozin in supercritical carbon dioxide

as solvent. However, the effect of pressure was shown to be more significant on the solubility com-

pared to the effect of pressure, which was attributed to the effect of pressure on the density of the

supercritical solvent. The developed ANN model was indicated to be robust in estimating the values

of drug solubility in wide range of conditions which can save time and cost of the measurements.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Manufacturing of nanomedicine has been of great importance for

pharmaceutical industry given that these nano drugs can provide better

solubility compared to other micron sized drugs (Khoshmaram, 2021).

Due to their enhanced surface area and subsequently free energy, the

drug nanoparticles possess higher solubility in aqueous media which

can resolve the issue of poor water solubility for majority of drugs

specifically BCS Class II of drugs according to Biopharmaceutical

Classification system (Saeed, 2021; Agostinho, 2021; Elworthy,

2008). Apart from nanonization method, other techniques have been

used in this area to enhance the solubility of drug substances such as
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Fig. 1 Chemical structure of Oxaprozin drug studied in this

work.

Table 1 Observed and predicted values of Oxaprozin solu-

bility in supercritical solvent at different conditions using

ANN.

No. Temperature

(K)

Pressure

(bar)

Observed Predicted

1 3.08E+02 1.20E+02 8.19E�05 9.08574E-05

2 3.08E+02 1.60E+02 1.58E�04 0.000142509

3 3.08E+02 2.00E+02 2.24E�04 0.000208631

4 3.08E+02 2.40E+02 2.80E�04 0.000279781

5 3.08E+02 2.80E+02 3.44E�04 0.000347313

6 3.08E+02 3.20E+02 4.06E�04 0.000407448

7 3.08E+02 3.60E+02 4.73E�04 0.000465522

8 3.08E+02 4.00E+02 5.33E�04 0.000537732

9 3.18E+02 1.20E+02 7.55E�05 8.79459E�05

10 3.18E+02 1.60E+02 1.41E�04 0.000162564

11 3.18E+02 2.00E+02 2.45E�04 0.000256985

12 3.18E+02 2.40E+02 3.56E�04 0.000361461

13 3.18E+02 2.80E+02 4.64E�04 0.000466362

14 3.18E+02 3.20E+02 5.58E�04 0.000565694

15 3.18E+02 3.60E+02 6.60E�04 0.000661188

16 3.18E+02 4.00E+02 7.66E�04 0.000764756

17 3.28E+02 1.20E+02 5.34E�05 4.01401E�05

18 3.28E+02 1.60E+02 1.28E�04 0.000146205

19 3.28E+02 2.00E+02 3.02E�04 0.00027729

20 3.28E+02 2.40E+02 4.14E�04 0.000422876

21 3.28E+02 2.80E+02 5.82E�04 0.000572095

22 3.28E+02 3.20E+02 7.87E�04 0.000716947

23 3.28E+02 3.60E+02 8.51E�04 0.000856172

24 3.28E+02 4.00E+02 1.03E�03 0.000997934

25 3.38E+02 1.20E+02 3.31E�05 0.000042786

26 3.38E+02 1.60E+02 9.09E�05 0.000105806

27 3.38E+02 2.00E+02 2.98E�04 0.000284763

28 3.38E+02 2.40E+02 4.81E�04 0.000482399

29 3.38E+02 2.80E+02 6.77E�04 0.000686093

30 3.38E+02 3.20E+02 8.89E�04 0.000885361

31 3.38E+02 3.60E+02 1.08E�03 0.001075718

32 3.38E+02 4.00E+02 1.24E�03 0.001261726
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co-crystallization, amorphous solid dispersion, salt formation, and so

on (Okamoto, 2022; Jennotte, 2022; de Assis, 2022; Butreddy, 2022;

Queiroz, 2022; Morissette, 2004; Mahapatra, 2010; Ma, 2020).

The method of drug nanonization can be performed by various

unit operations among which supercritical processing is efficient owing

to its superior characteristics in pharmaceutical processing such as

green technology, easy, and low-cost processing. The method can be

categorized as top-down approach unlike the bottom-up approach

where nanoparticles are synthesized in the solution phase and con-

trolled to prepare the nanosized drug particles. The method of super-

critical processing utilizes a solvent, mainly CO2, and the drug is

dissolved in the solvent for further processing (Zabihi, 2021; Zabihi,

2021; Pishnamazi, 2020; Bagheri et al., 2018). For utilizing the process

for different drug molecules, the first step is to determine the solubility

of the drug in the supercritical solvent, thereby the process can be real-

ized to be feasible for the manufacturing the nanomedicine.

For determination of drug solubility in supercritical solvents such

as CO2, the simple method of gravimetric is usually employed which

is based on weighing the drug powder before and after contacting with

the solvent. This method is easy and facile which has attracted much

attention in measuring solubility of drugs in different solvents

(Keshavarz, 2019; de Souza, 2018). The method can be employed for

measuring the solubility of drugs in supercritical solvents as well in

which the treatment is done on the drug with the solvent and the

weight difference is measured accordingly (Pishnamazi, 2021; Zabihi,

2020; Cao, 2021; Hartono et al., 2001).

Due to the difficulty of measuring the drug solubility in wide range

of temperature and pressure, computational techniques can be used for

estimation of drug solubility in all range of pressure and temperature

which can be further used for design and optimization of nanomedi-

cine manufacturing. Usually, thermodynamic models are employed

for estimating drug solubility in solvents (Sodeifian, 2018; Sodeifian,

2020; Sodeifian et al., 2020), however recently machine learning based

models have been successfully employed in estimation of drug solubil-

ity in supercritical carbon dioxide (Chinh Nguyen, 2022; Tianhao,

2022). The models of machine learning are shown to be accurate in

estimation of drug solubility in supercritical CO2, provided that mea-

sured data are available as function of temperature and pressure. The

models can be utilized to find the relationship between solubility and

pressure/temperature so that the cost and time of measurements can

be saved.

In machine learning models, a set of data are used to train the net-

work, and once the network has been trained, it can be used for pre-

diction of process. However, the testing needs to be performed to

check the validity of the model prior to use for process description

and prediction. Selection of the algorithm is of fundamental impor-

tance and depends on the type of data and amount of data points

for training and validation. Artificial neural networks (ANN) have

attracted more attention in description of complex processes and can

be used to estimate the solubility of drugs in supercritical carbon

dioxide.

The main aim of the current study is to utilize the Artificial neural

networks (ANN) method as machine learning technique for simulation

of drug solubility in supercritical CO2. We selected Oxaprozin as the

model drug in this work and developed ANN model for the first time

in prediction of drug solubility in supercritical CO2. A bunch of solu-

bility data for Oxaprozin was collected from resources and used for

training and validation of the ANN model. Finally, the trained

ANN model was used to assess the effect of parameters on the drug

solubility.

2. Materials and methods

The data of Oxaprozin was collected from resources
(Khoshmaram, 2021) and used for model development in this

study. There are 32 datasets describing the solubility values of
the drug as function of temperature and pressure (T & P). The
molecular structure of Oxaprozin is illustrated in Fig. 1. The
set of data was obtained following a design of experiment
work, with variations of temperature between 308 and

338 K, and pressure between 120 and 400 bar in the process,
as reported by (Khoshmaram, 2021). The data was used to



Fig. 2 Design of the model employed in this work for simulation

of Oxaprozin solubility in supercritical solvent.

Fig. 3 Scatterplot matrix of predicted solubility of Oxaprozin

drug in CO2 vs pressure.
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train and test the ANN model for simulation of the solubility
data. The detailed description of the process and solubility
measurements are reported elsewhere (Khoshmaram, 2021).

3. Modeling and simulation

In this study the Artificial Neural Network (ANN) method

was used for simulation of Oxaprozin solubility in supercritical
solvent at different pressure and temperature as listed in
Table 1. Generally, ANNs are well suited for learning and clas-

sifying data, as they are inspired by human brains and nerves.
The ANN model consists of a set of layers: input, hidden, and
output layers with neurons (nodes) and weights (connections)

which are distributed parallel to each other (Pelalak, 2020;
Pelalak, 2021). Here, a three-layer, an input layer with two
neurons (pressure (bar) and temperature (K)), an output layer

with one neuron (Oxaprozin solubility), and one hidden layer
with seven nodes are used in which the topology of this net-
work is presented in Fig. 2. The experimental data were
divided to training and testing data. The basis of ANN model

is according to data training in which a meaningful relation is
generated between input and output data according to the
Fig. 4 Scatterplot matrix of predicted solubility of Oxaprozin

drug in CO2 vs temperature.



Fig. 6 3D surface plot of predicted solubility of Oxaprozin drug

in CO2.
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weights and biases in the designed network. After training
step, the validation of model is evaluated with a portion of
data according to the holdback method. The calculations of

ANN for prediction of Oxaprozin drug solubility were
achieved in JMP software. The validity of the provided
ANN network was studied according to the linear regression

between the experimental data and the predicted data by
model. Also, the two and three dimensional diagrams predict-
ing the drug solubility value (output) as a function of pressure

and temperature of process (inputs) were obtained to analyze
the process and understand the influence of inputs on the out-
put parameter.

4. Results and discussion

The best dataset was obtained for the validation based on the

validation method employed in the designed network. The
observed and predicted data versus temperature and pressure
are listed in Table 1. It is seen that 32 data points have been
used in the model among which 33 % was used for the testing

the model. It is clearly observed that the trained model is well
capable of predicting the drug solubility in supercritical CO2 at
various temperature and pressure, while R2 values of greater

than 0.99 are obtained for both the training and validation.
The fitted and validated model was then used in this study

in order to assess the effects of temperature and pressure on

the variations of Oxaprozin solubility in the solvent. The
results are useful to evaluate the solubility of Oxaprozin at dif-
ferent conditions so that one can save time and costs associ-
ated with measurements. The results of simulations are

indicated in Figs. 3–6. Furthermore, the fitting accuracy and
the residual of fitting are illustrated in Figs. 7 and 8, respec-
tively. It is clearly observed that both temperature and pres-

sure have influence on the drug solubility, and the values of
Fig. 5 Surface map of Oxapro
solubility change with variation of these two factors. However,
it is observed that the effect of pressure on the Oxaprozin sol-

ubility if more significant than the effect of temperature. This
observation could be attributed to the effect of pressure on the
density of the solvent and consequently enhance of solvation

power of the supercritical solvent with increasing the pressure.
Also, it is observed that the highest value of Oxaprozin solubil-
ity is observed at the highest pressure and temperature, i.e.,

400 bar and 338 K.
zin drug solubility in CO2.



Fig. 7 Training and validation data computed for solubility of

Oxaprozin drug in CO2.

Fig. 8 The residual of fitting for data computed for solubility of

Oxaprozin in CO2.
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5. Conclusions

We developed a machine learning model based on ANN (Artificial

Neural Network) for estimation and analysis of drug solubility in

supercritical carbon dioxide as solvent. The neural model consisted
of one hidden layer and non-linear activation functions, while two

inputs including temperature and pressure were considered for the

model. The network was trained using the experimental data collected

from literature to predict the value of solubility as the sole output. The

training and validation steps turned out excellent results with R2 of fit-

ting more than 0.99 for both the training and validation steps. The

tested model was then utilized to assess the effect of pressure and tem-

perature on the solubility of Oxaprozin, and it was revealed that pres-

sure had more significant influence on the Oxaprozin solubility in

supercritical carbon dioxide. The model developed in this work indi-

cated to be accurate and robust in prediction of drug solubility in

supercritical solvents and can be used for development of supercritical

processing for advanced pharmaceutical manufacturing of solid-

dosage oral formulations.
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