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Abstract Different research synthetic methods have been developed recently for the synthesis of
bis-benzimidazole analogs to investigate various biological significances. In this present study, an
attempt was made to synthesize a new series of bis-benzimidazole analogs in a fast and efficient
method. A variety of spectroscopic techniques, including '*C NMR, '"H NMR, and HREI-MS,
were used to establish the existence of every synthesized scaffold. Molecular docking profiles were
also carried out to ascertain the binding interactions of the compounds. All derivatives (1-18) were
evaluated for their biological potential to investigate the inhibitory activity of o-amylase and o-

glucosidase through SAR study. Almost all derivatives were found to be engaged in a highly
promising activity when compared to referenced drug acarbose (ICso = 8.24 £+ 0.08 pM), in this
regard among the tested series analog 9 (ICso = 0.10 £ 0.50 and 0.20 £+ 0.50 uM respectively),
showed excellent activity. Moreover, ADME predictions were also studied for potent compounds,

exhibited drug like properties.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A chronic condition called diabetes mellitus prevents the body from
properly metabolizing proteins, carbs, and lipids. It also causes several
issues in the body that lead to hyperglycemia (American Diabetes
Association, 2013). Diabetes presently affects 4.4% of the global pop-
ulation, up from 2.8% in 2000. Diabetes is going to impact approxi-
mately 366 million people globally by 2030 (Wild et al., 2004; Sacks,
1997). A range of synthetic oral hypoglycemic medicines, such as sul-
fonylureas, biguanides, and alpha-glucosidase inhibitors, are used to
decrease elevated blood glucose levels. Unfortunately, their longer
usage has shown more of its different negative effects (Edwin et al.,
2006) such as hypoglycemia, headache, nausea, and dizziness
(Chaudhury et al., 2017). The negative effects made it necessary to dis-
cover innovative, efficient, and safer substitutes that have the highest
priority (Es-Safi et al., 2020). Researchers are actively focusing on hete-
rocyclic compounds because to its potential for being efficient, accessi-
ble, and having fewer adverse effects. The current study also based on
heterocyclic compounds such benzimidazole-based thiadiazole deriva-
tives. The primary aim of this study was to investigate the inhibitory
potential of synthesized scaffolds in contrast to both a-amylase and
a-glucosidase enzymes. In compared to other heterocyclic compounds,
the benzimidazole ring got considerably more attention. Its ring is
commonly referred to as “privileged” due to its wide range of biolog-
ical significance. The structure of benzimidazole and the chemistry of
their ligands are of great interest to researchers (Mechchate et al.,
2020; Bonnett, 1963). Similar products, including thiabendazole,
misonidazole, omeprazole, astemizole, clotrimazole, and cimetidine
were a significant source of biologically active drugs as well as they
have some other positive effects in agricultural and veterinary fields
(Al-Muhaimeed, 1997). Due to the presence of various groups on the
benzimidazole ring, drugs containing benzimidazole moiety exhibit a
wide range of pharmacological profiles such as Bactericidal
(Carcanague et al, 2002), analgesic (Aghatabay et al., 2007,
Demirayak et al., 2005; Gaba et al., 2014; Sondhi et al., 2006; Achar
et al., 2010), fungicidal (Lezcano et al., 2002; Sun et al., 2021; Sun
et al., 2021), antiviral (Tewari and Mishra, 2006; Basha, 2022; Ibba
et al., 2022; Huo et al., 2021), and HIV-1 infectivity inhibition
(Gardiner et al., 1995). Benzimidazole and thiadiazole moieties have
been extensively studied and found with better inhibitory potential
against varied infections, especially diabetes mellitus. Therefore in
the project, the aim was to synthesize and evaluate bis-
benzimidazole-based thiadiazole analogs and screen against o-
amylase and a-glucosidase. They were also found effective inhibitors
against both enzymes. Moreover, binding interactions were confirmed
through molecular docking studies. Besides, rationales of the current

analog-A (Aroua et al., 2021) and analog-B (Zawawi et al., 2016) have
been mentioned in the comparison activity of synthesized analogs with
previously reported compounds as shown in Fig. 1.

2. Results and discussion

2.1. Chemistry

The synthesis of bis-benzimidazole-containing thiadiazole
derivatives was conducted using a stepwise reactions technique
(1-18). Initially, benzimidazole bearing aldehyde group (I) and
thiosemicarbazide were mixed in methanol and refluxed in the
reaction mixture for about 3 h in the presence of sodium acet-
ate to obtain Schiff base an intermediate (yields = 88% II).
Upon addition of iodine in 1,4-dioxane in the presence of
potassium carbonate, the reaction was refluxed for about
12 h, afforded benzimidazole-based thiadiazole containing an
amine group (yields = 72% III). Compound (III) was further
refluxed for about 6 h with s-substituted benzimidazole-based
ketone derivatives in ethanol followed by the addition of acetic
acid gives bis-benzimidazole bearing thiadiazole derivatives as
shown in the Scheme 1.

2.2. Spectral analysis

A structure interpretation of the represented compound-10
was identified and their proton, as well as carbon peaks, were
identified through NMR spectroscopic technique. The proton
value of the represented compound has appeared at different
ppm which indicates the shielded and de-shielded region of
the proton, carbon as well as HREI-MS.

'"H NMR (600 MHz, DMSO dy): . The first proton
appeared at 11.87 showing a singlet for NH of benzimidazole
ring bearing nitro group similarly, another proton appeared at
11.62 also showing a singlet for NH of second benzimidazole
ring. —OH proton appeared at 9.57 showing singlet while other
aromatic proton appeared at 8.78 showing doublet with cou-
pling constant (J) 7.1, and another proton appeared at 8.51
showing doublet with J = 6.8 Hz. Similarly, 8.36 shows singlet
for Benzimidazole-H and 7.57 showing doublet, with
J = 6.7 Hz, of Benzimidazole-H, 7.33 showing singlet for
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Fig. 1

Rationale of the current study.

4.12

Scheme 1

2H of Benzimidazole-H and 7.10 doublet with J = 8.1 Hz, of
Benzimidazole-H, 6.86 displayed as a doublet with J = 8.1 Hz,
for 2H of Benzimidazole-H, 6.59 doublet with J = 7.1 Hz of
Benzimidazole-H and 3.83 singlets for 2H of -SCH, and '*C
NMR (150 MHz, DMSO d,): showing in descending order ¢
162.2, 159.9, 149.6, 148.9, 148.0, 147.1, 145.0, 144.3, 142.0,

Thiadiazole derivatives based on the synthesis of bis-benzimidazoles (1-18).

140.9, 139.8, 139.4, 134.1, 128.7, 128.4, 127.6, 125.9, 123.4,
121.5, 118.6, 115.5, 109.4, 100.9, 55.6 as well as HR EI-MS:
m/z caled for C24H14C12N803S2 [M]+ 5960630, Found:
596.0518. The detailed spectral analysis of all the compounds
(1-18) has been incorporated in the supplementary
information.
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3. Structure-activity relationship (SAR)

3.1. a-amylase and a-glucosidase inhibitory profile

Biological profiles of synthesized analogs were compared with
one another and the standard drug acarbose. Most of the ana-
logs were found with good to moderate activity when com-
pared to the standard drug. Variation in biological activity
might be the position, numbers and type of substituents
attached among trifluoro, nitro and hydroxyl-containing ana-
logs were found with excellent potential. Comparisons of ana-
logs based on their substituents and position are given below.

Nitro and trifluoro-substituted analogs were arranged for
comparison study due to their excellent biological profile when
compared to their potential with standard drug acarbose
(ICs9 = 3.66 £ 0.12 and 4.85 + 0.11 puM). These analogs
showed a varied range of inhibitory profiles such as 1
(ICso = 1.10 £ 0.10 and 1.80 £ 0.10 uM), 4 (IC5o = 1.20 +
0.20 and 2.0 £ 0.20 uM), 9 (IC5o = 0.10 = 0.50 and 0.20 =+
0.50 uM) and 11 (3.40 £+ 0.10 and 4.70 £+ 0.10). Among the
screens analog 9 was found with remarkable potential while
others showed good to moderate activity might be the presence
of the trifluoro group which makes strong hydrogen bonding
and nitro moiety also dominate the negative charge at meta-po-
sition therefore the over effect was found greater as compared
to other analogs.

Chloro-substituted analogues 3 (ICsy = 3.40 £+ 0.10 and 5.
80 £+ 0.10 uM), 12 (IC59p = 6.10 £ 0.10 and 7.70 = 0.10 uM),
and 17 (IC5p = 2.80 + 0.10 and 3.70 £+ 0.10 uM), were shown
to have action similar to that of the medication acarbose (ICsq
= uM). The position of substituents also significantly affects
the inhibitory potential of analogs, as demonstrated by this
measurement, where para-Chloro (17) was found to be much
more potent than ortho and meta. In this case, the chloro
group is attached to a different position of an aromatic ring,
which has a significant impact. The strong inhibitory potential
of analogs might be the presence of halogen atom at para-po-
sition dominantly increases the ring charge which produces
greater effects for inhibitions.

Similarly, hydroxyl group-containing analogs (10, 14, and
16) were found with excellent a-amylase and a-glucosidase
inhibitory profiles. The creation of powerful hydrogen bonds
with the active sites of enzymes may be the cause of the —
OH-bearing analogs’ inhibitory potentials. In this regard posi-
tion and the number of the -OH group on the aromatic ring
are also crucial for greater interactions therefore analog 14
(ICso = 0.70 £ 0.50 and 1.20 £+ 0.10 pM) has two —OH
groups at meta-position. The presence of one —-OH 16

(ICs 250 £ 0.10 and 3.50 + 0.10 pM) activity
profile was found lower and analog 10 (ICs, = 1.30 £ 0.10
and 1.70 £ 0.10 uM) showed somewhat better activity than
analog 16 might be the presence of two Chloro group on both
meta-position of the ring. The activity profile of —OH analogs
was found potent when comparing their biological potential to
standard drug acarbose (ICsy = 3.66 = 0.12 and 4.85 +
0.11 uM).

Methyl-substituted analogs (2 and 8) were also discovered
to have an action similar to that of the medication acarbose.
Here, in this comparison position of attached substituents also
matters to the biological profile of the analog. The Methyl
group attached to the aromatic ring at para and ortho-position
respectively. The activity profile of the competitive analog was
found better in the case of para-substituted analog 2 (ICsy =
4.60 £ 0.10 and 5.90 = 0.10 uM) than analog 8 (ICsy =
5.30 £ 0.20 and 7.20 £ 0.10 uM).

3.1.1. The general structure of the molecule

The general structure represents the different parts of the
molecule and varied substitutions attached to the aromatic
ring. These substituents play a key role in the biological nature
of molecules as discussed above. General representation of
molecule as displayed in Fig. 2.

All of the screen compounds were discovered to have simi-
lar activity, however, certain analogs were discovered to have a
few folds better results in both amylase and glucosidase than
the conventional medication acarbose. Compounds 1, 4, 9,
and 14 had impressive potential in this respect, suggesting that
the improved activity may be caused by the presence of con-
nected functional groups, which improves ring activity for bet-
ter interaction.

4. Molecular docking study

A molecular docking study was conducted for subjected (syn-
thesized molecules having much potential against a-amylase
and o-glucosidase) analogs which were found with excellent
interactions in a superimposed complex. Analogues’ potent
binding abilities are caused by the functional group that is con-
nected at a variety of positions on the aromatic ring. Grater
hydrogen bonding was observed in the case of triflouro, nitro
and hydroxyl-containing moieties. Most of the analogs were
found with good to poor interactions this may be the attached
substituents but 1, 4, 9 and 14 were the most active analogs
with the greater number of interactions (see Table 1).

The binding interaction of a molecule with an enzyme’s
active site is revealed by molecular docking research, which

Varied Substitutedi

Thiadiazole

Bis-Benzimidazole

Fig. 2

General representation of the molecule.
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Table 1 Bis-benzimidazole-based thiadiazole (1-18) derivatives and their a-amylase, a-glucosidase inhibitory profile.

S.NO R a-amylase inhibition 1Cs a-glucosidase inhibition 1Cs,
(uM) (uM)
1.10 +£ 0.10 1.80 + 0.10
e 0,N OH
2 4.60 + 0.10 5.90 £ 0.10
3 3.40 £ 0.10 5.80 £ 0.10
i
s /@ 120 = 0.20 2.0 + 0.20
cl CF,
5 19.80 + 0.20 21.50 £ 0.20
o) Br
6 17.40 £ 0.05 18.10 + 0.05
|l
N
7 15.60 + 0.30 16.30 £+ 0.30
/N\
5 CH; 530 + 0.20 7.20 + 0.10
9 0.10 £ 0.50 0.20 + 0.50
O,N CF;
OH
10 1.30 +£ 0.10 1.70 + 0.10
Cl Cl
CHj;
1 3.40 + 0.10 4.70 £ 0.10
12 6.10 + 0.10 7.70 £ 0.10
Cl
Cl
23.20 £+ 0.50 24.30 + 0.50
13 Br
14 0.70 = 0.50 1.20 + 0.10
HO OH

(continued on next page)


http://S.NO

S. Khan et al.

Table 1 (continued)

S.NO R a-amylase inhibition ICs a-glucosidase inhibition I1Cs,
(uM) (uM)
O 6.10 £ 0.10 8.30 + 0.10
" J
16 2.50 £ 0.10 3.50 £ 0.10
~ OH
- 2.80 + 0.10 3.70 £ 0.10
NCV\I,
18 22.70 + 0.20 23.70 + 0.10
Br
Standard drug Acarbose 3.66 + 0.12 4.85 + 0.11
Table 2 Represent the binding interactions of the molecule with enzyme active residues.
Compound Receptor Interaction Distance Docking Score
Analog 1(A) against a-Amylase TYR-A-334 Pi-Sulphur 4.54A° -12.9
TYP-A-334 Pi-Pi-Stacked 4.50A°
TRP-A-279 Pi-Pi-T-Shaped 5.76A°
SER-A-286 Hydrogen-Bond 4.35A°
GLY-A-117 Hydrogen-Bond 3.35A°
TYR-A-116 Vander wall 6.86A°
TRP-A-84 Pi-Pi Stacked 5.48A°
PHE-A-330 Pi-Pi Stacked 4.58A°
TYR-A-121 Hydrogen-Bond 7.74A°
SER-A-81 Carbon-Hydrogen 3.54 A°
Analog 1(B) against a-Glucosidase ALA-A-328 Pi-Alkyl 6.33A° -11.4
TRP-A-82 Conventional H-B S.13A°
GLY-A-116 Pi-Pi Stacked 4.30A°
HIS-A-438 Pi-Cation 6.19A°
GLU-A-197 Pi. Hydrogen-Bond 6.14A°
SER-A-287 Hydrogen-Bond 3.00A°
ASP-A-70 Hydrogen-Bond 3.78A°
TYR-A-332 Amide Pi-stacked 4.92A°
Analog 4(C) against a-Amylase SER-A-287 Hydrogen-Flouride 4.58A° -11.7
SER-A-287 Hydrogen-Flouride 5.39A°
TYR-A-322 Hydrogen-Bond 5. 78A°
ASP-A-70 Conventional H-B 4.34A°
PHE-A-329 Pi-Pi- T-shaped 5.22A°
TRP-A-430 Vander wall 5.31A°
TRP-A-440 Vander wall 5.96A°
ALA-A328 Pi-Alkyl 5.25A°
TRP-A-82 Conventional H-B 4.37A°
GLU-A-197 Conventional H-B 4.19A°
Analog 4(D) against a-Glucosidase ASN-A-85 Hydrogen-Flouride 3.53A° -12.5
TYR-A-84 Hydrogen-Flouride 6.17A°
TYR-A-70 Hydrogen-Flouride 6.71A°
ASP-A-72 Pi-Anion 4.33A°
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Table 2 (continued)

Compound Receptor Interaction Distance Docking Score
TYR-A-121 Vander wall 7.13A°
PHE-A-330 Pi-Pi T-shaped 4.58A°
TYR-A-130 Vander wall 6.85A°
GLY-A-117 Hydrogen-Bond 3.41A°
PHE-A-331 Pi-Pi T-shaped 5.65A°
TYR-A-334 Pi-Pi Sacked 4.57A°
TRP-A-279 Pi-Pi T-shaped 6.69A
Analog 9(E) against a-Amylase TRP-A-334 Hydrogen-Flouride 4.95A° -12.8
TRP-A-279 Pi-Alkyl 5.82A°
TRP-A-334 Pi-Sulphur 4.11A°
TRP-A-121 Vander wall S.TTA°
ASP-A-72 Pi-Sulphur 4.35A°
GLY-A-123 Hydrogen-Bond 3.96A°
ASN-A-85 Carbon-Hydrogen bond 3.91A°
PRO-A-86 Carbon-Hydrogen bond 4.46A°
GLU-A-199 Pi-Anion 7.85A°
GLY-A-118 Pi- Hydrogen-Bond 3.76A°
ARG-A-289 Conventional H-B 4.85A°
Analog 9(F) against o-Glucosidase TRP-A-231 Pi-Alkyl 4.33A° -12.3
PHE-A-398 Pi-Alkyl 6.69A°
GLY-A-117 Carbon-Hydrogen bond 3.83A°
PHE-A-329 Pi-Pi-Stacked 6.88A°
HIS-A-438 Vander wall S.11A°
SER-A-198 Conventional H-B 4.40A°
TYR-A-332 Pi-Pi T-shaped 5.48A°
TRP-A-82 Conventional H-B S.13A°
TYR-A-440 Conventional H-B 5.54A°
ALA-A-328 Pi-Alkyl 6.39A°
ALA-A-277 Pi-Alkyl 4.18A°
Analog 14 (G) against o-Amylase TYR-A-130 Conventional H-B 6.75A° -12.2
GLY-A-117 Hydrogen-Bond 3.36A°
PHE-A-330 Pi-Pi T-shaped 4.59A°
TRP-A-84 Carbon-Hydrogen bond 5.46A°
TYR-A-121 Conventional H-B 7.17A°
SER-A-81 Hydrogen-Bond 2.76A°
TYR-A-334 Pi-Pi Stacked 4.64A°
TRP-A-279 Pi-Pi T-shaped 5.76A°
PHE-A-331 Carbon-Hydrogen bond 4.51A°
SER-A-286 Conventional H-B 4.23A°
Analog 14 (H) against a-Glucosidase TYR-A-128 Conventional H-B 6.06A° -11.5
TRP-A-82 Pi-Pi T-shaped 4.19A°
TRP-A-82 Pi-Pi T-shaped 6.17A°
GLY-A-117 Hydrogen-Bond 3.50A°
SER-A-198 Carbon-Hydrogen bond 4.16A°
PHE-A-329 Pi-Pi Stacked 5.94A°
PRO-A-285 Conventional H-B 6.06A°
ASP-A-70 Pi-Anion 3.90A°
Acarbose in a-amylase complex ASP-A-300 Conventional H-B 4.69A° -70.5
ASP-A-300 Conventional H-B 4.94A°
GLU-A-233 Conventional H-B 4.62A°
GLU-A-233 Conventional H-B 4.63A°
HIS-A-201 Carbon H-B 4.63A°
GLU-A-240 Conventional H-B 5.50A°
Acarbose in o-glucosidase ASP-A-232 Conventional H-B 4.50A° -91.5
LYS-A-506 Conventional H-B 3.71A°
ASN-A-496 Conventional H-B 4.81A°
SER-A-505 Conventional H-B 3.72A°
GLU-A-603 Conventional H-B 4.08A°

ALA-A-232 Carbon H-B 5.29A°
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[[] vander waals [ Pisufur
- Conventional Hydrogen Bond - Pi-Pi Stacked
[] carbontydrogen Bond [ PiiT-shaped

Fig. 3 Represent 2D and 3D structure for analoguel-A in a-amylase complex.

A119 A287
Interactions
[] vanderwaais I PiPistacked
- Conventional Hydrogen Bond - Pi-Pi T-shaped
[[] Halogen (Fluorine) [ Piakyl

Fig. 5 Represent 2D and 3D structure for analog 4-C in o-amylase complex.
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Fig. 6 Represent 2D and 3D structure for analog 4-D in a-glucosidase complex
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Fig. 8 Represent 2D and 3D structure for analog 9-F in a-glucosidase complex.
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Fig. 10 Represent 2D and 3D structure for analog 14-H in a-glucosidase complex.

depends on the kind of attached substituents and how they
affect the interactive features. Molecular docking was per-
formed by using varied software such as Auto dock vina
(1.5.7), Molecular operational environment (MOE-2015) and
discovery studio visualizer (DSV-2021) (Kharb et al., 2012;
Khan et al., 2022; Li et al., 2015; Rao et al., 2021; Khan
etal., 2022; Khan et al., 2022). Molecular docking studies were
performed in three steps, in the first step both protein (re-
trieved from RCSD protein data bank by thorough codes
1b2y and 3w37 for a-amylase and a-glucosidase respectively)
and ligand were prepared and energy was minimized in
MOE. In the next step, both protein and ligand were trans-
ferred to the auto dock where water was removed and polar
hydrogen, as well as Kollman and Gasteiger charges, were
added. After completion, the protein, ligand and their X, Y

and Z coordinate were saved in PDBQT and text format
respectively. In the last step, the location of the docking folder
was set and using command prompt to carry out the molecular
docking study. Finally, DSV was used to explore the binding
interaction (Table 2) in the form of 2D and 3D structures as
shown in Figs. 3-10.

Docking score were calculated for analogs 1, 4, 9 and 14
due to varied functionalities and position produced different
affect which also increase or decrease the binding interaction
therefore their docking score is different from one another
and their interactions ranges also. The potency of these com-
pounds might be the presence of functional group, position
and number of substituents which enhance or reduce the bind-
ing interactions of molecules in a complex (Table 2) (see
Fig. 11).
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Fig. 11  Represent 2D and 3D structure for acarbose in both a-amylase and a-glucosidase complex.

o
e
<

@\o o
{2

6 1-5.13

Sl &
NN N

-5.76

Graph 1

5. ADMET prediction

Through the use of the online tool SwissADME, several fea-

Show compound-1's ADMET characteristics.

Graph 2 Describe compound-4's ADMET characteristics.

significant, as shown in Graph 1-4. The characteristics of the

tures of the compounds used in this research were identified

to assure absorption, distribution, metabolism, excretion,

6. Conclusion

and toxicity. This research observed the log Kp, Ghose, Veber,

Lipinski, Muegge violations, gan, PAINS, Brenk alerts,
Bioavailability score, as well as Leadlikeness violations.
The findings for the tested candidates 1, 4, 9 and 14 were

examined substances showed a definite difference.

A series of processes were used to create the bis-benzothiazole-based
thiadiazole analogs (1-18), and these reactions were verified by
employing spectroscopic methods such as 1H NMR, 13C NMR,
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4.07

Graph 3  Represent the ADMET properties of compound-9.
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Graph 4  Represent the ADMET properties of compound-14.

and HREI-MS. All of the produced analogs were also tested against
the enzymes glucosidase and amylase. When compared to the stan-
dard medication acarbose, the derivatives 1, 4, 9, and 14 were found
to have excellent activities against both -amylase and -glucosidase.
The majority of them, which had various substituents at various posi-
tions of the aromatic ring, displayed good to moderate inhibitory
activity. An analysis of the topic analogs’ major binding modes using
molecular docking technology was also found. As well as ADMET
study also revealed the varied significant properties of the selected
compounds. Among the evaluated (E)-N-(5-(1H-benzo[d]imidazol-4-
yl)-1,3,4-thiadiazol-2-yl)-2-((6-nitro- 1 H-benzo[d]imidazol-2-yl)thio)-1-
(3-nitro-5-(trifluoromethyl)phenyl)ethan-1-imine 9 (ICso = 0.10 £ 0.
050 and 0.20 + 0.05 uM respectively) was considered as the most
potent one. Inhibitors of -amylase and -glucosidase are found in a
novel family of thiadiazole compounds based on bis-benzimidazoles
in this investigation.
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