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A B S T R A C T   

In this work, a simple, time saving, accurate and sensitive method for the direct spectrophotometric detection of 
cobalt ion using two new fluorophore azo dyes, R1 and R2, were achieved. The method based on a complex 
formation between Co(II) and these two azo compounds-based fluorene and pyrene moieties. To attain the 
optimal conditions for the detection of cobalt ion, several parameters such as effect of solvents, pH, reagent 
concentration, sequence of addition, temperature and time were explored. The absorption maximum for Co(II)- 
R1 and Co(II)-R1 orange color complexes was accomplished at 472 nm using pH 8.97 of universal buffer and 470 
nm using pH 10.98, respectively. The calibration graphs were linear over the concentration range of 0.2–3 and 
0.4–3 µg mL− 1 of Co(II) for Co(II)-R1 and Co(II)-R1, respectively with a stoichiometric ratio of (1:2) (Co2+: 
reagent). Various statistical analytical parameters including molar absorptivity, limit of detection, limit of 
quantification, precision and accuracy were estimated. In addition, the established approach was efficiently 
exploited for Co(II) determination in some water samples. The findings of this investigation may pave the way for 
advancements in sensor technologies.   

1. Introduction 

Azo dyes are known as organic-colored compounds which contain 
the azo group (Ar–N = N–Ar) in the structure, and it is considered as the 
most diverse group (Benkhaya et al., 2020). Generally, the azo dyes- 
based compounds, the azo group is coupled with two mono or poly-
cyclic aromatic systems (Hashemi Kaykhaii 2022). Due to the physico-
chemical and biological qualities of azo compounds, a wide range of 
applications including pharmaceutical, cosmetic, food, dyeing/textile, 
corrosion inhibitors, and analytical chemistry industries use these dyes 
(Ali et al., 2018, Aljamali Hassen 2021). In addition, azo dyes have a 
huge number of biological activities which was previously reported for 
its pharmaceutical importance as antibiotic, antifungal, and anti-HIV 
(Ali et al., 2019, Węglarz-Tomczak and Górecki, 2012). Azo dyes are 
also used in analytical assays such as spectrophotometer techniques 
(Abdallah, 2012, Hulanicki and Głąb 1978, Nguyen and Saleh, 2016). 
The presence of azo group (R–N = N–R) led to shift their absorption 
maxima bathochrmically and absorbed in the visible light due to the 
chromophoric characteristic of this dye class. 

Substances such as heavy metals, organic amines, inorganic 

pollutants and nitrophenol have the potential to contaminate the envi-
ronment. Therefore, several methods have been proposed for the 
determination of these harmful compounds (Liu et al., 2020, Pan et al., 
2023, Zhang et al., 2024, Zhong et al., 2024). Cobalt is one of the natural 
earth elements that exist in trace amount in the earth’s environment. It 
has been applied for several purposes such as pigments, glass, metal 
alloys and as catalysts for petroleum industries (Kazi et al., 2012). It also 
exists in the chemical structure of vitamin B12, some enzymes, and it is 
well known to be an essential micronutrient in animals and plants for 
metabolic processes (Santos et al., 2020). However, one of the major 
issues in the environment is the elimination of large number of heavy 
metals from industries waste into the natural water. At high level, 
exposure to metals such as cobalt might lead to serious health problems 
and cause several diseases for human and animals including heart, lung 
and skin (Ali et al., 2021, Hussain et al., 2021, Kazi, et al., 2012). 
Consequently, it is essential to detect and determine cobalt element in 
different samples such as food and water. It’s worth mentioning that, 
many analytical techniques comprising atomic absorption spectroscopy 
(AAS) and ICP-MS have been applied for the determination cobalt along 
other heavy metal in various samples (Alorabi, 2022, El-Zomrawy, 
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2018, Khan and Kazmi, 1979). Nevertheless, these analytical in-
struments are expensive and time consuming. Accordingly, emerging a 
simple, selective, sensitive, inexpensive, and non-extractive spectro-
photometric method is indispensable and needed to determine the heavy 
metal concentration, via an economical spectrophotometric assay 
(Alorabi, 2022, Dhaka et al., 2015, Echioda et al., 2021, Hatam et al., 
2020, Khedr et al., 2010, Zhang et al., 2018). In this study, two new azo 
dye reagents were used at optimum parameters in order to determine 
cobalt ion through chelation with these reagents, namely, 1-[5-(9H-Flu-
oren-2-yl)-thiazol-2-ylazo]-naphthalen-2-ol, (R1) and 1-(5-Pyren-1-yl- 
thiazol − 2-ylazo)-naphthalen-2-ol, (R2). The effect of several experi-
mental variables on the sensitivity and stability of the method was 
examined. The approach herein was applied for Co(II) determination in 
some spiked local water samples. 

2. Experimental 

2.1. Instrumentation 

A Shimadzu UV-1800 spectrophotometer was used to acquire all 
UV–visible spectra. Melting points (uncorrected) were measured on 
SMP3 melting point apparatus. A Shimadzu FT-IR3600 spectropho-
tometer was used to collect IR spectra (KBr). All 1H, 13C, Dept-135 NMR 
spectra were obtained on Bruker Avance 600 (at 600, 100, 135 MHz for 
1H, 13C and dept, respectively) in fully deuterated chloroform (CDCl3) 
and DMSO‑d6. The pH for the used solutions was adjusted using pH- 
meter (METTLER TOLEDO MP220). 

2.2. Reagent and materials 

In this study, all solvents and chemicals were used without any 
further purification. Several buffer solutions were prepared according to 
the pervious method of Gomori (Gomorie, 1955). These prepared buffers 
included acetate, phosphate, borate and universal buffers. A stock so-
lution of 1.0x10− 3 M cobalt (II) nitrate hexahydrate, Co(NO3)2⋅6H2O, 
was prepared by dissolving an appropriate amount of the cobalt nitrate 
in a 100 mL measuring flask using bidistilled water. A working stock 
solution of 1.0x10− 3 M were prepared by dissolving an appropriate 
amount of the investigated reagents 1-[5-(9H-fluoren-2-yl)-thiazol-2- 
ylazo]-naphthalen-2-ol, (R1) and 1-(5-pyren-1-yl-thiazol-2-ylazo)- 
naphthalen-2-ol, (R2) in absolute ethanol. From these stock solutions, 
fresh diluted solutions were prepared regularly. 0.5 % (v/v) solution of 
Triton X-100 and 0.5 % (w/v) solution of sodium dodecyl sulphate (SDS) 
were prepared. These solutions were prepared by dissolving an 

appropriate amount of each surfactant in 100 mL bidistilled water. 
Hydrochloric acid, HCl (37 %, 1.2 g/mL) and NaOH (97.0 %, pellets) 
were obtained from Sigma-Aldrich. 

2.3. Synthesis of (E)-1-((5-(9H-fluoren-2-yl)thiazol-2-yl)diazenyl) 
naphthalen-2-ol (5a,R1) and/or (E)-1-((5-(pyren-4-yl)thiazol-2-yl) 
diazenyl)naphthalen-2-ol (5b,R2) 

The synthesis of (E)-1-((5-(9H-fluoren-2-yl)thiazol-2-yl)diazenyl) 
naphthalen-2-ol (R1) and (E)-1-((5-(pyren-4-yl)thiazol-2-yl)diazenyl) 
naphthalen-2-ol (R2) was undertaken (scheme 1). As shown, a Frie-
del–Crafts acylation of fluorene 1a and/or pyrene 1b gave 1-(9H-fluo-
ren-2-yl) ethanone (2a) and 1-(pyren-1-yl) ethanone (2b) in 86–92 % 
yield, respectively. Next, bromination of acetylated compounds 2a,b 
performed utilizing cuprous bromide as brominating agent in refluxing 
CHCl3/CH3CO2C2H5 for 9 h, to afford 2-bromo-1-(9H-fluoren-2-yl)etha-
none (3a) and 2-bromo-1-(pyren-1-yl)ethanone (3b) in 81–93 % yields. 
On the other hand, the aminothiazole derivatives 4ab were obtained in 
73–86 % yields as yellow crystals by refluxing compounds 3a, b with 
thiourea (1.1 eq.) in EtOH for 4 h. Products 4a, b were obtained as 
yellow crystals after recrystallization in ethanol. Finally the target azo 
dyes R1 and R2 were obtained via diazotization of the corresponding 2- 
aminothizole derivatives with freshly generated nitrous acid from 
NaNO2/ HCl at 0–5 ◦C. Coupling of the diazonium salt with β-naphthol 
in basic media (aq. NaOH) at 0–5 ◦C afforded the anticipated coupled 
products (E)-1-((5-(9H-fluoren-2-yl)thiazol-2-yl)diazenyl)naphthalen- 
2-ol (R1) and (E)-1-((5-(pyren-4-yl)thiazol-2-yl)diazenyl) naphthalen-2- 
ol (R2) as red-brown solid precipitate in 76–87 % yield, respectively. 
Both analytical and spectroscopic tools were used to characterize the 
synthesized compounds 2–4, R1 and R2 (see experimental section and 
supporting information). 

2.3.1. Synthesis of 1-(9H-fluoren-2-yl)ethenone (2a)and/or 1-(pyren-1-yl) 
ethanone (2a,b)(Weng et al., 2012) 

In an ice-cold bath, solution of fluorene (1a) and/or pyrene (1b) 
(100 mmol) in 250 mL CH2Cl2 was introduced drop by drop over a 
period of 2.5 h into an iced solution containing a mixture of 17.8 g of 
aluminum trichloride (132 mmol) and 9.6 mL of acetyl chloride (equi-
molar) dissolved in 30 mL of CH2Cl2. The resulting mixture was gently 
stirred at 0 ◦C for 6 h and then allowed to stand at room temperature 
overnight. Subsequently, the mixture was slowly poured into 500 L of 
deionized water to which 100 mL of concentrated hydrochloric acid was 
added, and the resulting solution was stirred for a period of 3 h. The 
complex formed during this process was then decomposed, yielding a 

Scheme 1. Synthesis of naphthalene and fluorene based azo dyes R1 and R2: (a) CH3COCl, AlCl3, DCM, 0 ◦C/ 6 h then rt/ overnight; (b) Cu2Br2, CHCl3/ 
CH3CO2C2H5/ rt/ reflux/ 9 h; (c) 1.1 eq. H2NCSNH2/ EtOH, reflux/ 4 h; (d) NaNO2/HCl/β-naphthol/NaOH. 
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clear yellow solution. The organic layer was separated, treated with 
anhydrous MgSO4, then filtered and evaporated in vacuo. The resulting 
product was purified on silica gel (elution: DCM) to give the titled 
compounds 2a, b in 86–92 yield, respectively. 

1-(9H-fluoren-2-yl)ethenone 2a: Light-yellow crystals; mp 
102–103 ◦C. IR (KBr): νmax = 3090, 2899, 1679 (carbonyl), 1632 (imine) 
cm− 1. 1H NMR (500 MHz, CDCl3): δ 9.19 (1H, s, fluorene-H), 8.02 (1H, s, 
fluorene-H), 7.86 (2H, s, fluorene-H), 7.61 (1H, s, fluorene-H), 
7.43–7.41 (2H, t, J = 1.78 Hz, fluorene-H), 3.97 (s, 2H, CH2, 9H-fluo-
rene), 2.68 (3H, s, CH3); 13C NMR (125 MHz, CDCl3): δ 198.05 
(carbonyl), 146.45 (C), 144.54 (C), 143.33C), 140.50 (C), 135.63 (CH), 
128.05 (CH), 127.77 (CH), 127.09 (C), 125.97 (C), 124.97 (CH), 120.91 
(CH), 119.86, 36.90 (CH2), 26.81 (CH3) ppm. 

1-(pyren-1-yl)ethenone 2b: Yellow crystals; mp 86–88 ◦C. IR (KBr): 
νmax = 3082, 2927, 1686 (carbonyl), 1632 (C = C) cm− 1.1H NMR (600 
MHz, DMSO): δ 8.90 (1H, d, pyrene-H), 8.51 (1H, d, J = 6.45 Hz pyrene- 
H), 8.31–8.33 (2H, t, J = 2.78 Hz pyrene-H), 8.23–8.27 (3H, q, pyrene- 
H), 8.16 (1H, d, J = 6.50.78 Hz pyrene-H), 8.07–8.10 (t, 1H, J = 2.45 Hz, 
pyrene-H), 2.85 (3H, s, CH3); 13C NMR (100 MHz, DMSO): δ 202.43 
(carbonyl), 133.76 (C), 132.15 (C), 131.03C), 130.30 (C), 129.88 (CH), 
129.82 (CH), 128.82 (CH), 127.55 (CH), 127.13 (CH), 126.94 (CH), 
126.49 (CH), 124.78 (CH), 123.87 (CH), 30.94 (CH3) ppm. 

2.3.2. Synthesis of 2-bromo-1-(9H-fluoren-2-yl)ethanone (3a) and/or 2- 
bromo-1-(pyren-1-yl)ethenone (3b)(El Guesmi et al., 2020) 

To a refluxing suspension of copper(I) bromide (17.22 g, 120 mmol) 
in 250 mL of ethyl acetate was added a solution containing 1-(9H-flu-
oren-2-yl)ethanone 2a and/or 1-(pyren-1-yl)ethenone 2b (100 mmol) in 
CHCl3 (0.1 L) was gently introduced over a span of 50 min. The resultant 
solution was maintained at reflux for a duration of 9 h. and subse-
quently, while still hot, it was filtered through Celite, approximately 1 
in. in thickness. The filter cake was thoroughly rinsed multiple times 
with EtOAc, and the combined filtrate was removed under vacuo to 
afford products 3a and 3b as buff color solid in 81–93 % yield. The 
obtained product we pure enough and used for the next step without 
further purification. 

2-bromo-1-(9H-fluoren-2-yl)ethanone (3a): Yellow needles, mp 
128–130 ◦C. IR (KBr): νmax = 3122, 2925, 1678 (carbonyl), 1632 
(imine) cm− 1. 1H NMR (500 MHz, CDCl3): δ 8.11 (1H, s, fluorene-H), 
7.95 (1H, s, fluorene-H), 7.89 (2H, s, fluorene-H), 7.63 (1H, s, 
fluorene-H), 7.46 (2H, t, J = 6.78 Hz fluorene-H), 4.14 (s, 2H, CH2), 3.98 
(2H, s, CH2, 9H-fluorene); 13C NMR (125 MHz, CDCl3): δ 186.77 
(carbonyl), 148.13 (C), 144.71 (C), 143.80 (C), 139.95 (C), 128.76 (CH), 
127.95 (CH), 127.32 (CH), 125.97 (CH), 125.40 (CH), 125.14 (CH), 
121.26 (CH), 120.14 (CH), 36.89 (CH2), 29.49 (CH2, 9H-fluorene) ppm. 
Anal. Calcd. for C15H11BrO (287.15): C, 62.74; H, 3.86; Br, 27.83. 
Found: C, 62.72; H, 3.85; Br, 27.97 %. 

2-bromo-1-(pyren-1-yl)ethenone (3b): Yellow crystals, mp 
134–135 ◦C. IR (KBr): νmax = 3038, 2887, 1670 (carbonyl), 1628 
(imine) cm− 1. 1H NMR (600 MHz, CDCl3): δ 9.18 (1H, d, J = 5.90 Hz 
pyrene-H), 8.56 (1H, d, J = 5.92 Hz pyrene-H), 8.47–8.45 (3H, m, 
pyrene-H), 8.38–8.32 (2H, m, pyrene-H), 8.30–8.25 (2H, m, pyrene-H), 
4.98 (2H, s, CH2); 13C NMR (100 MHz, CDCl3): δ 189.82 (C‚O), 129.84, 
126.19, 125.84, 125.67, 125.55, 125.44, 123.54, 122.25, 122.06, 
121.98, 121.84, 121.75, 120.23, 119.84, 119.25, 119.18, 29.57 (CH2) 
ppm. Anal. Calcd. for C18H11BrO (323.18): C, 66.89; H, 3.43; Br, 24.72. 
Found: C, 66.85; H, 3.41; Br, 24.64 %. 

2.3.3. Synthesis of 4-(9H-fluoren-2-yl)thiazol-2-amine (4a) and/or 5- 
(pyren-4-yl)thiazol-2-amine (4b) 

To a clear solution of 2-bromo-1-(9H-fluoren-2-yl)ethenone and/or 
2-bromo-1-(pyren-1-yl)ethenone (3b) (30 mmol) in EtOH (200 mL), 
obtained by heating to reflux, was added an ethanolic solution (50 mL) 
of thiourea (2.66 g), introduced dropwise over a period of 30 min. The 
reaction was maintained at reflux for 4 h and subsequently allowed to 
cool to room temperature. The precipitate that formed during cooling 

was rinsed with a sodium bicarbonate solution until no further effer-
vescence was observed. The resulting solid was then filtered and dried in 
vacuum oven (2d), affording compounds 4a and 4b in 73 %-86 % yields. 
The obtained product we pure enough and used for the next step without 
further purification. 

4-(9H-fluoren-2-yl)thiazol-2-amine (4a): Yellow crystals; mp =

169–172 ◦C. IR (KBr): νmax = 3265, 3175 (NH2), 3056, 2898, 1620 
(imine) cm− 1; 1H NMR (500 MHz, CDCl3): δ 8.01 (1H, s, thiazole), 7.86 
(2H, s, fluorene-H), 7.59 (1H, s, fluorene-H), 7.38 (1H, s, fluorene-H), 
7.31 (1H, s, fluorene-H), 7.06 (2H, t, J = 2.46 Hz fluorene-H), 3.95 
(2H, s, CH2, 9H-fluorene), NH2 protons is not showing up due to 
hydrogen bond formation and π-stacking as well; 13C NMR (125 MHz, 
CDCl3): δ 168.56 (C), 150.63 (C), 143.69 (C), 143.73 (C), 141.40 (C), 
134.13 (C), 122.28 (CH), 127.14 (CH), 125.60 (CH), 124.90 (CH), 
122.73 (CH), 120.44 (CH), 120.41 (CH), 101.71(C), 39.41 (CH2, 9H-flu-
orene) ppm. Anal. Calcd. for C16H12N2S (264.34): C, 72.70; H, 4.58; N, 
10.60; S, 12.13 Found: C, 72.69; H, 4.55; N, 10.57.97; S, 12.10 %. 

5-(pyren-4-yl)thiazol-2-amine (4b): Pale yellow powder; mp =
188–189 ◦C. IR (KBr): νmax = 3264, 3174 (NH2), 3044, 1627 (C‚N) 
cm− 1; 1H NMR (600 MHz, DMSO‑d6): δ 8.87 (1H, d, J = 2.46 Hz, pyrene- 
H), 8.27–8.24 (4H, m, pyrene-H), 8.19–8.14 (3H, m, pyrene-H), 
8.09–8.05 (1H, m, pyrene-H), 7.29 (2H, s, NH2), 6.96 (1H, s, thiazole- 
H); 13C NMR (100 MHz, CDCl3): δ 168.74 (C‚N), 150.71 (C), 131.43 
(C), 130.90 (C), 130.71 (C), 128.21 (C), 127.83 (CH), 127.81 (CH), 
127.74, (CH), 126.76 (CH), 126.19 (CH), 125.71 (CH), 125.41 
(C),125.29 (C), 124.50 (C), 106.30 (CH-thiazole) ppm. Anal. Calcd. for 
C19H12N2S (300.38): C, 75.97; H, 4.03; N, 9.33; S, 10.67. Found: C, 
75.91; H, 3.97; N, 9.29; S, 10.73 %. 

2.3.4. Synthesis of (E)-1-((5-(9H-fluoren-2-yl)thiazol-2-yl)diazenyl) 
naphthalen-2-ol (R1) and/or (E)-1-((5-(pyren-4-yl)thiazol-2-yl)diazenyl) 
naphthalen-2-ol (R2) 

In 250 mL conical flask, 2.0 g of aminothiazole derivatives 4a, b was 
dissolved in 26.6 mL of 50 % (v:v) HCl. The solution was cooled-down in 
ice-bath with vigorous stirring till the reaction solution reaches a tem-
perature of 0–3 ◦C. In another conical flask, a solution of sodium nitrite 
(3.4 g) in dissolved in 17 mL bidistilled water was chilled in an ice-bath 
at 0 ◦C. Then, sodium nitrite solution was added dropwise to the ami-
nothiazoles 4a, b solutions under vigorous stirring. After the complete 
addition of sodium nitrite solution, the diazonium salts were formed and 
kept in the ice-bath for 15 min. In another 250 mL conical flask, 6.24 g 
β-naphthol was dissolved in 50 mL of 20 % NaOH solution, and the 
naphthol solution was cooled in ice-bath for 15 min. The cold diazonium 
salt solution was then slowly added to the β-naphthol solution under 
continuous stirring and the reaction temperature must kept below 5 ◦C 
after complete addition of diazonium salt by adding crushed ice from 
time to time for 30 min to assure the complete coupling and formation of 
the desired azo dyes, R1 and R2. A red-brown color acquires and solid 
crude fluorene and pyrene azo-β-naphthols R1 and R2 were precipi-
tated. The reaction mixtures were left to stand for 2 h while being stirred 
to ensure the completion of the reaction. Subsequently, they were 
transferred to a refrigerator and left overnight. The red-brown solid 
products were decanted into a Büchner funnel under reduced pressure 
and washed 5x100 mL times with ice-cold water until the filtrate became 
clear. The solid products were dried under vacuum desiccator in absence 
of light for 2 days and the dried azo dye products were recrystallized 
from ethanol to afford the products R1 and R2 in 76–87 % yields. 

(E)-1-((5-(9H-fluoren-2-yl)thiazol-2-yl)diazenyl)naphthalen-2-ol 
(R1): Red-brown; mp = 232–234 ◦C. IR (KBr): νmax = 3321 (OH), 3059, 
2980, 2196 (N = N), 1627 (C‚N) cm− 1, 1H NMR (600 MHz, DMSO‑d6): δ 
8.01 (s, 1H, thiazole), 7.98 (d, 1H, J = 6.76 Hz Naphthol), 7.94 (d, 1H, J 
= 6.76 Hz, Naphthol), 7.83 (d, 1H, J = 6.80 Hz, Naphthol), 7.75 (2H, d, 
J = 6.80 Hz, fluorene-H), 7.61 (2H, d, J = 6.76 Hz fluorene-H), 7.54 (m, 
3H, Naphthol), 7.41 (1H, t, J = 2.76 Hz fluorene-H), 7.33 (1H, s, 
fluorene-H), 7.25 (1H, d, J = 6.76 Hz fluorene-H), 6.42 (s, broad, 1H, 
OH), 3.99 (2H, s, CH2, 9H-fluorene); 13C NMR (100 MHz, DMSO‑d6): δ 
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170.27 (C), 155.77 (C), 144.12 (C), 143.91 (C), 140.88 (C), 130.91 (C), 
130.56 (C), 129.73 (C), 127.71 (CH), 127.34 (CH), 125.70 (CH), 125.06 
(CH), 123.07 (CH), 122.28 (CH), 120.87 (CH), 119.08 (CH), 109.10 
(CH), 102.28 (C), 36.90 (CH2, 9H-fluorene) ppm. Anal. Calcd. for 
C26H17N3OS (419.50): C, 74.44; H, 4.08; N, 10.02; S, 7.64, Found: C, 
74.45; H, 4.03; N, 10.11; S, 7.60 %. 

(E)-1-((5-(pyren-4-yl)thiazol-2-yl)diazenyl)naphthalen-2-ol (R2): 
Red-brown powder; mp = 269–271 ◦C. IR (KBr): νmax = 3329 (OH), 
3068, 1637 (C‚N) cm− 1; 1H NMR (600 MHz, DMSO‑d6): δ 8.66 (1H, d, J 
= 4.80 Hz, pyrene-H), 8.30–8.33 (4H, m, pyrene-H), 8.21–8.23 (4H, m, 
pyrene-H), 8.09–8.11 (2H, t, J = 1.76 Hz Napthol), 7.73–7.76 (1H, m, 
Naphthol), 7.60 (1H, s, thiazole-H), 7.52–7.54 (2H, m, Naphthol);7.06 
(1H, s, Naphthol), 6.45 (s, broad, 1H, OH); 13C NMR (100 MHz, 
DMSO‑d6): d 169.34 (C‚N), 158.78 (C), 131.78 (C), 131.19 (C), 130.90 
(C), 130.82 (C), 130.54 (C), 129.74 (C), 128.52 (C), 128.24 (CH), 128.16 
(CH), 128.12 (CH), 127.99 (CH), 127.88 (CH), 127.78, (CH), 126.95 
(CH), 126.56 (CH), 126.44 (CH), 126.00 (CH), 125.70 (CH), 125.57 (C), 
125.57 (C), 125.27 (C), 124.60 (C), 124.32 (C), 119.09(C), 109.11 (CH- 
thiazole) ppm. Anal. Calcd. for C29H17N3OS (455.53): C, 76.46; H, 3.76; 
N, 9.22; S, 7.04. Found: C, 76.53; H, 3.70; N, 9.19; S, 7.06 %. 

2.4. General procedure 

2.4.1. Solvent effect of the free reagents 
The absorption spectra of the reagents R1 and R2 were investigated 

by measuring the reagents in different kind of solvents in order to 
examine a various parameters such as dielectric constant, refractive 
index, and H-bonding capacity (Avcı et al., 2016, Sayqal et al., 2020). 
The effect of different organic solvents (e.g., ethanol, methanol, dime-
thylformamide, acetonitrile, acetone, and hexane) were studied by 
measuring the absorption of 1.0x10− 5 M solution of each reagent in 
these solvents against a pure solvent as a blank within a UV/Vis 
spectrum. 

2.4.2. Spectrophotometric studies of complexes between Co(II) and the 
studied reagents 

To establish the optimum conditions between Co(II) and reagents R1 
and R2, numerous parameters such as concentration of reagents, 
wavelength, pH, buffers, time, sequence of addition, and temperature 
were investigated. The solution of the complexes formed between the 
two reagents and Co(II) were prepared by mixing 4.0 mL of 1.0 × 10− 3 M 
R1 and 2.5 mL of 1.0 × 10− 3 M R2 with 0.5 mL of 1.0 × 10− 3 M cobalt 
ion in 10 mL measuring flask comprehending optimum buffer solution of 
the optimum pH. The absorbance of these mixtures were measured 
against a blank solution prepared by the same manner except of the 
metal ion, at λmax 472 and 470 nm for Co(II)-R1 and Co(II)-R2, respec-
tively. In addition, the influences of time on the obtained complexes 
between the reagents and the metal ion were examined at different time 
intervals. Also, the effect of temperature was investigated at various 
temperature ranges 23–55 ◦C using thermoelectrically temperature 
controlled, Shimadzu UV-1800 spectrophotometer. 

2.5. Measurement of the nature of Co(II) complexes 

For the determination of the stoichiometric ratio, Job’s procedure of 
continuous variation was used to track the generation of the complexes 
between R1 and R2 reagents with cobalt ion (Job, 1928). In this method, 
at optimum conditions, the cobalt ion was mixed with a series of 10 mL 
portions of each reagent solution separately. These mixture solutions 
represent different complementary proportions, and they were subse-
quently processed as per the prescribed protocol. To determine the 
stoichiometric proportions of the obtained complexes, the line in-
tersections were calculated from the plot between the mole fraction of 
Co(II) and the measured absorbance signal. 

2.6. Analytical application 

To investigate the validation of the suggested approach, cobalt ion 
was measured in some water samples. All water samples were spiked 
with cobalt ion prior analysis. Tap water samples were collected from 
the laboratory at Umm Al-Qura University, whereas the wastewater 
samples were provided from a local wastewater treatments plant in 
Makkah region. An aliquot of standard solution of cobalt ion at the 
obtainable linearity range was transferred to each real tap water or 
wastewater sample. Samples were then investigated by the presented 
two approaches. 

3. Results and discussion 

A spectrophotometric assay is one of the most common analytical 
assay dependents on colorimetric properties of some compounds (Akram 
et al., 2020, Coulibaly, 2021, El-Zomrawy, 2018, Hatam, et al., 2020), 
Many compounds are characterized by their property to completely 
coordinate metal ion forming chelates. In this study, we report some 
results of this colorimetric assay using coupling with some prepared 
fluorophores based azo dyes that were effectively used to determine the 
concentration of Co(II) ion. 

3.1. Solvatochromic properties of R1 and R2 

Fig. 1 showed the impact of investigated solvents on the UV/Vis 
spectra for 1.0 × 10− 5 M of the studied reagents, the resulted spectra of 
each reagent was collected by measuring the absorbance of reagents in 
organic solvents against a pure solvent as a blank solution. The obtained 
results confirm that, the absorption spectra of the exploited reagents are 
influenced by all the used solvents. The recorded bathochromic, red 
shifts, of the organic solutions absorption signals are understood as 
indication of changing of the series of structurally-related organic 

Fig. 1. The electronic absorption spectra for 1.0x10− 5 M solution for reagent 
R1 and R2 in different organic solvent against a pure organic solvent as a blank. 
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molecules or the kind of organic solvents polarities (Masoud et al., 2005, 
Sayqal, et al., 2020, Yazdanbakhsh and Mohammadi, 2009). The studied 
solvents were selected based on the diversity of solvent parameters 
(Sayqal, et al., 2020). Table 1, showed the molar absorptivity at the 
different λmax for each reagent in the used solvents. Predominantly, 

three absorption peaks were observed for R1 within the range 200–450 
nm using most used solvents while for reagent R2, five peaks with 
different intensities were presented. After comparing the peaks at longer 
wavelength for both R1 and R2, which located around 370 nm for R1 
and 350 nm for R2, a high molar absorptivity for R2 was observed using 
all solvents where for ethanol and methanol, as examples, equals 
4.31x104 and 4.06x104 L mol− 1 cm− 1 for R2 and 0.72x104 and 0.47x104 

L mol− 1 cm− 1 for R1, respectively. As seen from Fig. 1, the two reagents 
under investigation have dissimilar absorption region. Therefore, it is 
clear that each absorption peak’s position and intensity was changed 
due to the diversity of solvent’s polarity. In general, the position of the 
absorption peaks for all synthesized organic reagents shifts to higher 
wavelengths (bathochromic shift,) as solvent polarity increases (Yaz-
danbakhsh and Mohammadi 2009). This performance is elucidated by 
the fact that molecules in the ground and excited states exhibit different 
polarities. For the reagents (R1 and R1) with positive inductive groups 
on the thiazole moiety, a solvatochromism take place in the (n → π*) 
absorption due to the increase of the push–pull character of the groups 
(Masoud, et al., 2005). These findings emphatically affirm the notion 
that the examined substances are likely to exhibit strong chromophoric 
signals. 

3.2. Spectrophotometric studies for Co(II) complexes with the studied 
reagents 

In order to investigate the relation between cobalt ion and the 
studied reagents, UV/Vis spectra were collected. As seen in Fig. 2 (a.b), 
the absorption spectra of free reagents R1 and R2 in a universal buffer 
exhibits absorption peaks in the ultraviolet region at λmax 358 and 360 
nm, respectively. Upon binding of reagents R1 and R2 with Co(II) ions, it 
was found that the spectra have some bathochromic shift of the ab-
sorption peaks with a change in the absorbance. This clear observation is 
due to formation of the complex which resulted from the addition of the 
cobalt ion to the investigated reagents (El-Zomrawy, 2018, Mostafa 
et al., 2021). In case of curve (C) in both complexes, where the blank 
solution was (the used reagent and the buffer), a clear peaks for the 
formed Co(II) were obtained in the visible region at λmax 472 and 470 
nm, respectively. This is bathochromic shift due to the complexation 
between Co (II) and the considered reagents indicating the formation of 
stable Co (II)-R1and Co(II)-R2 complexes. 

3.3. Optimum conditions for spectrophotometric determination of Co(II) 

3.3.1. Effect of pH on Co(II) complex 
For recognizing the most suitable buffer and the optimum pH used to 

achieve a maximum cobalt complex stability appeared in the highest 

Table 1 
UV/Visible spectral parameters for R1 and R2 in some organic solvent.  

Solvent Parameter* R1 R2 

Peak No. Peak No. 

1 2 3 1 2 3 4 5 

Ethanol λmax, nm 264 319 371 232 242 265 276 346 
ε, L mol− 1 cm− 1 2.83 1.65 0.72 9.64 10.44 5.91 6.16 4.31 

Methanol λmax, nm 263 313 365 232 241 265 276 343 
ε, L mol− 1 cm− 1 2.20 1.23 0.47 8.52 9.08 5.21 5.47 4.06 

DMF** λmax, nm — 307 369 — — — 277 352 
ε, L mol− 1 cm− 1 — 1.45 0.67 — — — 2.79 1.81 

Acetone λmax, nm — — 368 — — — — 354 
ε, L mol− 1 cm− 1 — — 0.73 — — — — 3.25 

Acetonitrile λmax, nm 270 317 370 232 241 — 275 352 
ε, L mol− 1 cm− 1 2.71 1.62 0.83 5.58 5.56 — 3.85 2.38 

Hexane λmax, nm 273 — 370 220 — — 273 370 
ε, L mol− 1 cm− 1 0.39 — 0.17 2.23 — — 1.44 0.64 

*ε: The molar absorptivity ×104. 
**DMF: Dimethylformamide. 

Fig. 2. Absorption spectra for the Co(II) complex between Co(II) and reagents 
(R1 and R2) where A) is the absorption spectrum for 1.0 mL of 1.0 × 10− 3 M 
reagent and universal buffer against buffer, B) the absorption spectrum for 0.5 
mL 1.0 × 10− 3 M Co(II), 1.0 mL of 1.0 × 10− 3 M reagent and buffer against 
buffer, C) the absorption spectrum for 0.5 mL of 1.0 × 10− 3 M Co(II), 2.5 mL of 
1.0 × 10− 3 M reagent and buffer against regent and buffer. 
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absorbance and most obvious peak, different kinds of buffer solutions 
were studied for complex formation between cobalt and the two previ-
ously prepared reagents, R1 and R2. In addition, Fig. 3 was designated to 
show the effect of pH values of universal buffer solutions on the Co(II) 
complexes. Particularly, the increase of absorbance appeared with 
increasing pH and gave the highest absorbance at pH 8.97 for Co(II)-R1 
and pH 10.98 for Co(II)-R1. As seen, the use of alkaline medium pro-
duced the best results for the Co(II) complexes under investigation. An 
increase in the absorption intensity at optimum pH values was reached 
to the optimal value after adding 3.0 mL of pH 8.97 for Co(II)-R1 and 
4.0 mL of pH 10.97 for Co(II)-R2 using a universal buffer solution. 

3.3.2. Effect of reagent volume 
The best reagent volume for the cobalt complexes with R1 and R2 

was investigated and determined in this study. The reagent volumes 
were varied in a range of 1.0–5 mL of 1.0x10− 3 M reagent concentration 
as shown in Fig. 4. For Co(II)-R1 complex, the use of 4.0 mL from R1 
reagent gave a high stability and orange color development while at 
lower volumes, the absorbance decreased. Whereas, a 2.5 mL of 
1.0x10− 3 M of R2 was the optimum in case of Co(II)-R2 complex. 

3.3.3. Effect of surfactants 
The effect of different types and different volumes (0.5, 1.0, 1.5 mL) 

0.5 % (w/v), for SDS and 0.5 % (v/v) for Triton X-100, and Tween-20 on 
the absorbance of Co(II)-R1 and Co(II)–R2 complexes was studied, and it 

showed no predictable effect in this study and did not affect the method 
sensitivity. 

3.3.4. Influence of sequence of addition 
The study also examined the impact of varying the sequence of 

addition during the complex formation between Co(II) and the two re-
agents, as this could potentially yield insightful findings. Interestingly, 
different sequence orders of mixing the reagents, cobalt ion, and buff-
ering solution revealed that the most effective order which produced the 
highest absorption for cobalt complexes with R1 and R2 was (Co(II)- 
buffer-R1) and (Co(II)-R2-buffer), respectively. Other achievable orders 
of addition present not perfect peaks with a low absorbance response. 
Notably, experimenting with different sequence orders for combining 
the reagents, cobalt ion, and buffering solution yielded interesting re-
sults. It was found that the most effective sequences, which produced the 
highest absorption for cobalt complexes with R1 and R2, were (Co(II)- 
buffer-R1) and (Co(II)-R2-buffer), respectively. 

3.3.5. Effect of temperature and time 
To investigate the influence of time on the peak intensity of the co-

balt complex at its maximum wavelength, (optimum conditions), the 
absorbance value was measured at different time intervals up to 30 min. 
The obtained results for R1-Co(II) complex found that six minutes is an 
appropriate time to reach the optimum absorbance properties. While in 
the case of R2 complexes, four minutes were required to reach a stable 
value of absorbance and a perfect peak. Furthermore, to elucidate the 
influence of temperature on cobalt complexes absorbance, different 
temperatures between 23 ◦C and 55 ◦C were examined. The results 
showed an obvious steady absorbance for all cobalt complexes at 
different temperature. Therefore, 23 ◦C was selected to perform all the 
measurements. 

3.4. Determination of stoichiometric ratio 

The stoichiometric ratios of the ion–associate complexes generated 
between the investigated cobalt ion and the azo dyes species were found 
by applying the continuous variation method (Gouda et al., 2016, Job, 
1928). Fig. 5 represents the stoichiometric ratio for cobalt complexes 
with two reagents (R1 and R2) was (1:2) (Co(II):Reagent). The plot 
between absorbance and mole fraction of Co(II) shows that the in-
tersections is at 0.3 and this finding support the stoichiometric ratio. 
Based on these results, the expected structure for cobalt complexes with 
the studied reagents are illustrated in Fig. 6. 

Fig. 3. The effect of pH of universal buffer on the absorption intenistry for Co 
(II) complex between 1.0 mL of 1.0 × 10− 3 M Co(II) and 1.0 mL of 1.0 × 10− 3 M 
reagent solution. 

Fig. 4. The volume effect of 1.0x10− 3 M solution of R1 and R2 on the ab-
sorption spectra for Co(II) complexes using 0.5 mL of 1.0 × 10− 3 M Co(II). 

Fig. 5. Job s process of continuous variation for Co(II) complexes with R1 and 
R2 at the optimum conditions. 
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3.5. Validation of the developed methods 

3.5.1. Statistical analytical parameters 
By numerous methods of optimal complex formation parameters, the 

relationship between peaks and their absorbance’s for the two synthe-
sized azo dyes reagents and concentration of Co(II) is obtained. Fig. 7 (a, 
b) represents the calibration graph for spectrophotometric determina-
tion of cobalt ion with reagents R1 and R2, in that order. 

Table 2 shows the statistics of the used two reagents with results 
showing that, the linearity range for micro determination of Co(II) uti-
lizing the reagents R1 and R2 were 0.2–3.0 and 0.4–3.0 μg mL− 1, 
respectively. The calibration curves of Co(II)-R1 and Co(II)-R2 com-
plexes represent a good linearity with a correlation coefficient (r) 0.9929 
and 0.994, in that order. The detection limit (LOD) and quantification 

(LOQ) were calculated according to IUPAC recommendations (Guide-
line, 2005). The LOD was found to be 0.034 and 0.025 and LOQ deter-
mined as 0.102 and 0.076 μg mL− 1 in that order. 

Table 3 showed a comparison between some previous studies for 
spectrophotometric quantification of Co(II) using reagents and our ob-
tained results using R1 and R2. This comparison indicated that the ob-
tained linear range, detection limit and molar absorptivity, are in a good 
agreement and reasonable values in the light previous methods (Akl 
Alharawi 2018, Chandravanshi Asgedom 1995, Devi Reddy 2012, Nas-
sir, 2007, Rajni Usha 2012, Shaheed et al., 2016, Soomro Shar 2014, 
Sulaiman Hamoudi 2018). Despite the existence of prior spectrophoto-
metric techniques and alternative approaches for cobalt ion estimation, 
the discovered method employing newly synthesized azo dyes reagents 
stands out for its ease of use, high sensitivity, and time-saving nature. 
Consequently, the proposed method for the determination of cobalt ions 
was conducted in a few actual samples, in order to verify its reliability 
and validity. Furthermore, the created approach was labor-saving as the 
performance of any extraction or the use of numerous chemicals is not 
required prior to analysis. 

Fig. 6. The (2:1) (R:Metal) structure for Co(II) complexes with R1 and R2 (X = fluorene moiety for R1 and pyrene moiety for R2).  

Fig. 7. Calibration curve for determination of Co(II) using 4.0 mL of 1.0 × 10− 3 

M R1 after addition of 3.0 mL universal buffer of pH 8.97 and 2.5 mL of 1.0 ×
10− 3 M R2 after addition of 4.0 mL universal buffer of pH 10.98. 

Table 2 
The optimum conditions and statistics of data analysis for spectrophotometric 
determination of Co(II) using the R1 and R2.  

Parameter Co(II) – R1 Co(II) – R2 

Color of complex Orange Orange 
Type of buffers Universal Universal 
Working pH 8.97 10.97 
Volume of buffer, mL 3.0 4.0 
Amount of reagent,1 × 10− 3, mL 4 2.5 
Sequence of addition Co-B-R1 Co-R2-B 
Time, min 6.0 4.0 
λmax (nm), A curve 358 nm 360 nm 
λmax (nm), B curve 424 nm 444 nm 
λmax (nm), C curve 472 nm 470 nm 
Beer law range, (μg/mL) 0.2 – 3.0 0.4 – 3.0 
Detection limit, (μg/mL) 0.034 0.025 
Quantification limit, (μg/mL) 0.102 0.076 
Standard deviation (SD) 0.018 0.045 
Relative Standard deviation (RSD) 2.46 % 5.65 % 
Variance 3.37 × 10 − 4 2.0332 × 10 − 3 

Error % 0.75 1.84 
Slope 0.316 0.436 
intercept 0.108 − 0.099 
Correlation coefficient 0.9929 0.994 
Molar Absorptivity (×104 L mol − 1 cm− 1) 1.78 2.6 
t-test 1 − 1.33 0.434 
Confidence limit 1 ± 0.0192 ± 0.047 

1Confidence level 95 %, n = 6 and the theoretical value of t at 5 degree of 
freedom is 2.571. 
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3.5.2. Analytical applications 
Based on the exceeding achieved methods and at the optimal con-

ditions, Co(II) was spectrophotometric micro determined in some tap 
and wastewater samples. Table 4 represents data measured for spiked 
H2O with a various quantity of Co(II), the average of recovery percent of 
the methods for all measurements were in the ambit of 99.1 % con-
firming that this assay can be applied to be used for determination of 
cobalt metal ions in different analytical samples with high degrees of 
efficacy and precision. 

4. Conclusions 

Utility of the two new synthesized azo dyes based fluorophores re-
agents, R1 and R2 were used successfully for spectrophotometric 
detection of cobalt ion. The structure of the prepared reagents was 
investigated and confirmed using 1H NMR, 13C NMR and DEPT-135 
NMR. The developed procedure based on a formation of stable com-
plexes between Co(II) and R1 and R2. Based on this research, the stoi-
chiometric ratio for the azo dye reagents and cobalt complexes was 
determined to be (1:2) (Co(II):reagent). The chelation between cobalt 

and the used reagent was employed for the determination of cobalt in 
many spiked water samples, which can be easily determined with rapid, 
accurate, and cost-effective methods. The results obtained were highly 
accurate compared to previously published methods. 
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