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KEYWORDS Abstract The aim of this work is to provide the numerical solutions of the fluid model by using the
Ml memefluak stochastic computing paradigms. The linear/exponential stretching sheets on magneto-rotating flow
Variable thermal/chemical based on the Maxwell nanofluid have been provided using the Buongiorno model with the impacts
reactions; of uneven heat source/sink, varying thermal conductivity and reactive species. The solutions of this
Deep neural network; transformed ordinary differential exponential stretching sheet model have been presented using a
Radial basis; novel ‘radial basis’ (RB) activation function together with the Bayesian regularization deep neural
Rotating ﬂow; } network (BRDNN), i.e., RB-BRDNN. The deep neural network is presented into two hidden lay-
Exponential stretching sheet ers, while thirteen and twenty-five numbers of neurons have been used in the first and second layer.

A reference dataset is proposed using the Runge-Kutta scheme for the model. The correctness of the
stochastic RB-BRDNN procedure is examined through the comparison of proposed and database
results, whereas minimal absolute error values provide the accuracy of the scheme. The reliability
and competence of the computing RB-BRDNN solver is authenticated using the state transitions,
correlation, regression, and error histograms.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Non-Newtonian fluids (NNFs) have huge importance because of the
variety of industrial and engineering applications, some of them are
polymer, petroleum, chemical engineering, and food processing indus-
tries. These models also arise in the motor oils, biological fluids, com-
plex mixtures, pastes, polymeric liquids, and slurries. Several NNFs
represent the nonlinear behavior between strain and stress. The process
known as stress relaxation when the shear strains are reduced.
Recently, Maxwell fluid (MF) model is known as one of NNFs that
has been studied by various scholars. Maxwell (Maxwell, 2003) pro-
posed the elastic and viscous impacts of air based on MF model. An
exponentially extending layer was used by Singh et al (Singh and
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Nomenclature
Q Angular velocity D/Dt  Material derivative
u,v,w  Velocities 0 Fluid density
T, Convective surface Dr Thermophoresis coefficient
T Ambient fluid temperature K Chemical reaction constant
Cy Sheet surface T* Particle to fluid capacity
Coo Ambient concentration pCp Heat capacitance
S Extra stress tensor for MF T Temperature
Ay Rivlin-Ericksen tensor K Thermal conductivity
u Viscosity k(T) Variable thermal conductivity
Dy, Dy, Ei, E, Constants koo Ambient thermal conductivity
Vr Thermophoretic velocity vk} Thermophoretic coefficients
T, Reference temperature q" Uneven heat sink/source
e Thermal conductivity A*,B* Space and temperature coefficients
rad Radiative heat flux P and Q Temperature and concentration exponents
fn), g(n), 0(n), p(n) Dimensionless variables p Rotation parameter
A Relaxation parameter R Radiation parameter
M Magnetic field parameter Ecy, Ec; Eckert number in x and y directions
Pr Prandtl number S and S, Thermal and concentration stratification param-
Nt and Nb Thermophoresis and Brownian motion param- eters
eters T Thermophoretic parameter
Sc Schmidt number r Concentration difference parameter
o Stretching ratio parameter
A Relaxation time

Agarwal, 2014) evaluated the Magnetohydrodynamic (MHD) heat
transfer along with MF flow in a porous media under the varying heat
capacity. Nadeem et al. (Nadeem et al., 2014) considered the MHD
boundary flow based on the MF produced by the stretching a surface
based on the nanoparticles. In their discussion of MHD flow, the
increasingly stretched sheet behavior is noticed. Farooq et al.
(Farooq et al., 2019) employed the Buongiorno system. Ali et al.
(Ali et al., 2019) signified the analysis using the heat/mass transport-
based MF using an exponentially extending sheet. For the mass/heat
transfer based on MF flow at a stagnation point using the slip condi-
tion, Khan et al. (Khan et al., 2019) proposed a stretched surface. The
bio-convective MF flow across the exponentially stretched surface was
explained by Khan et al (Khan and Nadeem, 2020). Three dimensional
bioconvective MF flow past on an exponentially stretching surface
with chemical reaction and variable thermal conductivity is presented
by Ahmed et al (Ahmad et al., 2022; Khan et al., 2021). Analysis of
irreversibility using the Ellis hybrid nanofluid along with the reaction
of surface catalyzed and the impacts of multiple slip past on the porous
horizontal cylinder is proposed by Khan et al (Khan et al., 2022). Bio-
convective natural MF past on a stretching surface along with the con-
vective boundary condition and slip impacts is studied by Wang et al
(Wang et al., 2022). Joule heating and compound slips based on MF
over a slandering surface is proposed by Ahmed et al (Ahmad et al.,
2021). The chemical reactive type of species in MF is presented by
Nadeem et al (Nadeem et al., 2017).

The steady/unsteady rotational flow have frequent applications in
the chemical/geophysical fluids along with various industries including
generation of thermal power, food processing, high-speed aircraft cool-
ing and rotating machinery. Nazar et al. (Nazar et al., 2004) applied a
similarity technique to evaluate the unstable boundary layer based on
the rotating fluid flow past on a stretching sheet. A mathematical con-
cept of rotating fluid past a stretching sheet was initially addressed by
Wang (Wang, 1988). Shafique et al. (Shafique et al., 2016) examined
the mass/heat transfer using the rotating MF flow on a stretched sheet
with an activation energy. Ibrahim et al. (Ibrahim and Seyoum, 2019)
proposed the characteristics of the heat transfer using the Sisko fluid in

the rotational frame. Rashid et al. (Rashid et al., 2020) discussed the
boundary layer over a stretching sheet of a spinning Maxwell nanopar-
ticle using the activation energy. By employing the Buongiorno system,
Ahmed et al. (Ahmed et al., 2020) examined the mixed convective
boundary layer MF flow using a vertical rotational cylinder. Hafeez
et al. (Hafeez et al., 2020) investigated the stagnation point with
Oldroyd-B flow using the thermal radiation. Ferrofluid uses with elec-
tric field insertion inside a porous cavity to assume the forced convec-
tion is studied by Shah et al (Shah and Ullah, 2023). Computational
investigations and magnetized gold-blood Oldroyd-B characteristics
and heat transfer are presented by Tang et al (Tang et al., 2023). Mag-
netized mixed convection hybrid nanofluid using the heat absorption/-
generation effects along with the conditions of velocity slip are
presented by Asghar et al (Asghar et al., 2023). Hybridized nanofluid
flow along a triangular-molded obstacle within a splitting lid-driven
trapezoidal space is presented by Khan et al (Khan et al., 2022;
Khan et al., 2022). In another study, Khan et al (Khan et al., 2022)
proposed the flow based on the double-diffusion using a porous trape-
zoidal field with constant heat flux. The natural convection in an
angled trapezoidal space with sinusoidal wall temperature is also pro-
vided by Khan et al (Khan et al., 2021; Khan et al., 2020).
Stratification is such a phenomenon that is caused by changing the
concentration, temperature, or the presence of fluids based varying
proportion. Waves evolution inside the air circulation across the
mountains and haze in the air are two examples of stratification that
affect the environment. The operation of biological systems prohibits
the thermal boundary layer thickness from causing the bottom water.
Since it is adjusted the temperature/concentration based on the hydro-
gen/oxygen, which can be hazardous for the evolution of aquatic life.
The stratification phenomena arise in the geophysical flows, e.g., reser-
voirs of ground water, seas, lakes, and rivers. The significance of both
nature and industry, stratification has drawn the attention of numer-
ous scientists. The convective heat transfer based on the micropolar
fluid was produced by Cheng et al. (Chang and Lee, 2008) along with
uniform and steady heat flux throughout a vertical wall. Mukhopad-
hyay et al. (Mukhopadhyay and Ishak, 2012) calculated the flow of
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mixed convection using the thermal stratification based on the stretch-
ing cylinder. Ibrahim et al. (Ibrahim and Makinde, 2013) conducted
the nanofluid boundary layer flow, which has an influence through
the stratification past on a vertical plate. The flow based on the
Darcy-Forchheimer using the MF with binary stratification past on
the stretching surface is presented by Lakshmi et al. (Lakshmi et al.,
2018). Sandeep et al. (Sandeep and Gnaneswara Reddy, 2017) studied
the Oldroyd-B fluid using the double stratification passing on a melting
surface. Tlili et al. (Tlili et al., 2020) provided the MF flow using the
double stratification passing on a stretching surface. The boundary
layer flow using the thermal lamination past on a stretching surface
is studied by Daniel et al. (Daniel et al., 2018). The estimation of arti-
ficial neural network based on the coefficient of skin friction using the
cylindrical surface is provided by Rehman et al (Rehman et al., 2023;
Rehman et al., 2023). In another study, Rehman et al (Rehman et al.,
2023) provided the computational performances using the magnetized/
non-Magnetized boundary layer flow of Casson fluid passing over a
cylindrical surface through the artificial neural networks.

The mass/heat transfer presents the natural phenomenon, which
has a variety of submissions, e.g., thermal action of pain using the
hot bag water, boiling of milk and food cooking using the metal pots.
The phenomenon based on the mass transfer arises in various progres-
sions, e.g., mixture thermal insulation concentration, vaporization,
food dispensation, absorption, cooling towers and nutrients diffusion
in tissues. Hossain et al. (Hossain and Rees, 1999) studied the mass/
heat transfer using the flow of natural convection based on the wavy
surface. Khan (Khan et al., 2019) adjusted the transfer of mass/heat
examination based on the mixed MHD convection of 2nd grade fluid
using the thermophoresis inspiration along with the hall current
impacts. In another investigations, Shateyi (Shateyi, 2013) proposed
the heat transfer flow based on the MF with chemical reaction and
thermophoresis past on a stretching surface. Cu nanoparticles were
used to improve the heat transport in a nanofluids based water pre-
sented by Saleem et al. (Saleem et al., 2020). Nawaz et al. (Nawaz
et al., 2020) examined the characteristics of mass/heat using the bound-
ary layer flow via nonlinear stretching surface with the coefficient of
variable diffusion and partial slip. Few more investigations related to
this study are presented in these references (Sajid et al., 2020; Ayub
et al., 2022; Ayub et al., 2021).

The other paper parts are given as: Section 2 shows the physical
problem statement, Section 3 indicates the methodology and valida-
tion. Section 4 provides the results and discussions. Conclusions are
presented in the last Section.

2. Physical problem statement

The idea of exponential stretchable coaxially rotating sheets in
fluid is presented as:

The idea of exponential stretchable coaxially rotating sheets
in fluid has significant importance in fluid mechanics, particu-
larly in the study of vortex dynamics and turbulence. Here are
some of the reasons why this idea is important:

1. Understanding of vortex dynamics: Coaxial rotation of
sheets produces a series of vortices that interact with each
other, leading to complex and chaotic flow patterns. The
exponential stretching of the sheets leads to a wide range
of scales of vortices, which can be studied to gain insights
into the complex dynamics of turbulence.

2. Modeling of real-world flows: The behavior of fluids in
many real-world situations, such as the flow around aircraft
wings or the behavior of fluids in the Earth’s atmosphere, is
highly turbulent and difficult to model accurately. The
study of exponential stretchable coaxially rotating sheets

provides a simplified model for these flows, allowing
researchers to gain insights into the underlying physics of
turbulence.

3. Potential for technological applications: The insights
gained from the study of exponential stretchable coaxially
rotating sheets can be applied to the design of a wide range
of technological applications, such as the design of more
efficient aircraft or the optimization of wind turbines.

4. Development of new mathematical techniques: The study
of the complex behavior of fluids in exponential stretchable
coaxially rotating sheets requires the development of new
mathematical techniques, which can have applications in
many other areas of mathematics and physics.

2.1. Physical description

The Buongiorno model MF flow from a linear and exponential
stretchable coaxially rotating sheets using the heat source/sink,
variable reactive species and variable thermal conductivity is
considered. In construction of the mathematical model, the
flow is controlled to z > 0 with angular velocity Q as depicted
in the Fig. 1. The fluid stretching velocities are taken as u, v and
w in the x direction conjecture as u,, = ax,u, = a /', in the y
direction are conjecture as v, = by, v, = b e (a,b > 0) based
on the linear/exponential sheets. The convective surface is 7,
while the fluid’s ambient temperature of fluid is taken as 7.
The sheet surface is C,, and the ambient concentration is rep-
resented by C., the boundary layer laminar flow contains
z > 0. The extra stress tensor for MF is S, which is defined
as (Khan and Nadeem, 2021):

D

In the above equation, Rivlin-Ericksen tensor (4,), viscos-
ity (p), relaxation time (4;), and material derivative (D/Dr).
With the assumptions of equation of continuity, equation of
momentum, equation of energy and mass for the three-
dimensional Maxwell Buongiorno model boundary layer
nanofluid flow are achieved to combine the previous system
(Khan and Nadeem, 2021) as follows:

Uy +uy, +u. =0, (2)

(uue+vu,+wu.—2Qv)
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Fig. 1  Physical model for linear and exponential stretching sheet.
T+ Ty +wT.) = (k(T) T). q" =" (T = TO{A'f + B (1. 75)},
» X w—To (]O)
" (Graa): -1 2 2 o T
+Zj_%+ﬂ(pcp) {(VZ) +(u3) } (5) (qmd)z = _136T(T4):: = _%(T)zz
+pf: {%(TZ)2 + Dy T. CZ}, A" and B* are the coefficients of space and temperature
' dependent based on the heat or sink source. ¢* and k" indicate
UCi+vC +wC. + (VC). the Stevfan-Boltzmann }radiatiot'l cpns'tant and mean absprption
’ - coefficient. The applicable similarity form is provided as
=Dy C.. +& T. - K(C—-C)" (6) (Khan and Nadeem, 2021):
T For linear sheet
The boundary conditions (BCs) on linear sheet are given as: v=axg(), u=axf(n),n= \/%27 w=—vavfy),
at z—=0;  v=m(x), u=uy(x), w=0, T=T.+T,000)—To0(n), C=Cx+ Cuon) — Copn).
Ty=T=T;+D;x, Cu=C=Cy+Dyx ™ (11)
at z— 00 =0, u—=0, For exponential Sheet
THTOC:T()+E1X, CHCDO:C0+E2X
— x/1 — X/l y— . fad ,x/21 +
The BCs on exponential sheet are: u=aelf(, ! v=aenigl), w 7 e+ S )},
T =T+ Ay e™ 0(n), C=Cux+Bye® o(n), n=\/3z2
at z—0; v=v,(x), u=u,(x), w=0, (12)
Tw =T= T()+D1 eX/ZI, CW =C= Dz e*/2'+C0
at z— o0 u— 0, v— 0, (8) Where f(1), g(n), 0(n) and ¢(n) are dimensionless variables

with similarity variable 5, further, P and Q are the exponents
of temperature and concentration, while 4y and B are the pos-
where p denotes the viscosity, p represents fluid density, Dy itive constants. Using the Egs. (9 to 12) in Egs. (2 to 8), the

T—To=To+E & C— Cy=Cy+ E, /¥

denotes the thermophoresis coefficient, K denotes chemical transformed momentum, energy, and mass equations at linear
reaction constant, t* denotes ratio of particle to fluid capacity, and exponential sheet with corresponding BCs are as follows:
pc, denotes the heat capacitance, T denotes the temperature, k For linear sheet

denotes the thermal conductivity. Further, Dy, D,, FE| and E,

denote the positive constants. The variable thermal conductiv-  firr — 228 gt + 11" — A fin — 21 'ff1) + 2pg — (1)

ity k(T) and the thermophoretic velocity V7 are modelled with ~ Mof'fi — Mfi =0, (13)
the following equations (Khan et al., 2017): ’

K1) = k{14 o525 ) o (1= iF)g =2 w2l ~ 2B+ i S+ f) ~
Vp=—" (T.). +(1— Mi)fg — Mg =0, "

Where k., denotes the ambient thermal conductivity, 7, is
the reference temperature, v, k; shows the thermophoretic
coefficient, and & presentes the thermal conductivity. ¢” is
uneven heat sink/source and ¢,,, shows the net radiative flux
of heat using as (Sulochana et al., 2017):

(14+ 60+ R)O + Pr{ftf — f0 + Ec\f> + Ecg? + Nt6> + Nbo' ¢’ — 8./}
+(1 4+ e0)(A*f + B0 — A*S\f) + 0% =0,
(15)
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ol + Sc{fo' —f o} — Set(0'¢ —TO" — o0") + ]]\\:—20"
—SeS,f —ScK.9"=0 (16)
For exponential sheet

I (3000 = @i +2)1° = Mf =208 +nf g) + 4Pg

o : (17)
—0SHPL" —nf 17) = MAff =0,

¢ +341g —28f — 23’ — 054 —nf’g) + 12

(18)
4B — (5~ /" ~4eg — £)0) ~ Mg~ Mifg =0,

(1460 + RO + Pr{ftf — PO+ Ec.f
+Ecg? + Nt0” + Nbb' o' — ./} (19)
+(14e0)(Af + B0 — A"S\f) +¢0” =0,

‘ / /! /! Nt
¢" + Sc{fo' — Q f o} —Sct(0 ¢ —TO" — pb") +m

—Sc S,f — Sc K.¢" = 0. (20)

9/!

The final BCs in dimensionless form are
M0)=0, f(0)=1, g00)=0a, 6(0)=1=35), ¢(0)=1-35),

S =0,  gmn=0, 0(n) =0, o(n) = 0.
21

The non-dimensional quantities arising in Eqs (13) - (21)
are given as:

l—ah. f=2 M= 5 _a
A=ak, B=%M= ST

_ 160" T3, _ L
w0 R=5 ,Prf;,,qu

, v T Dr(Tw—Tso) Dp(Co—Cao) E
Ee, = gy Nt = — g, Nb = aCe) s =1L,
KT T (GC) o B g _K
Se=pt=—g === S =5,K =

(22)
The parameters, which are changed in the exponential sheet
are:

_ah

A ﬁex/l O'Bg !

e, ﬁzg[ex/’,Krz M =00 (23)
l a a ap

Where (4, f8) stands for relaxation and rotation parameters,
M is the magnetic field parameter, R denotes the radiation
parameter, Pr shows the Prandtl number, Ec;, Ec, are the Eck-
ert number in x and y directions, Nt and Nb are the ther-
mophoresis and Brownian motion parameters, S; and S, are
the parameters of thermal and concentration stratification,
Sc is the Schmidt number, 7 shows the thermophoretic param-
eter, « denotes the Stretching ratio parameter, I" signifies the
concentration difference parameter, K. and ¢ are called the
chemical reaction and thermal conductivity parameters.

This numerical study provides the solutions of the exponen-
tial stretching sheet on magneto-rotating flow of Maxwell
nanofluid employed with the Buongiorno model using the
impacts of uneven heat source/sink, varying thermal conduc-
tivity and reactive species. The ordinary differential exponen-
tial stretching sheet model has been solved numerically using
a novel radial basis (RB) activation function together with
the Bayesian regularization deep neural network (BRDNN),
i.e., RB-BRDNN. Recently, there are various differential mod-
els that been used to solve by the stochastic computing

schemes, however the exponential stretching sheet model has
never been solved through the process of deep neural networks
(Sabir, 2022; Umar et al., 2020; Sabir, 2022; Sabir et al., 2021;
Sabir et al., 2021; Shah et al., 2023). Few novel features of this
work are reported as:

e The linear and exponential stretching sheets on magneto-
rotating flow of Maxwell nanofluid employed with the
Buongiorno model using the impacts of uneven heat
source/sink, varying thermal conductivity and reactive spe-
cies have been presented.

e The rendered highly nonlinear coupled ordinary differential
equations of momentum, energy and mass equations from a
Navier-Stokes based partial differential equations have
been obtained wusing the influential similarity
transformations.

e The numerical performances of the exponential stretching
sheet on magneto-rotating flow of Maxwell nanofluid
employed with the Buongiorno model have been presented.

e A novel stochastic computing RB-BRDNN scheme is pre-
sented successfully to solve the exponential stretching sheet
model.

e The process of RB-BRDNN is provided by using thirteen
and twenty-five neurons in hidden layers 1 and 2.

e The procedure’s precision is authenticated through the
comparison of reference and proposed solutions, while the
reduceable absolute error (AE) performances authenticate
the exactness of the stochastic procedure.

3. Methodology and validation

The current section presents the process of DNN through the
radial basis activation function along with the optimization of
Bayesian regularization for the numerical results of fluid
dynamics model using the exponential sheet. The process of
DNN based on the radial basis activation function is provided
mathematically and graphically through the layer
construction.

3.1. Radial basis deep learning process

This current section presents the DNN process through the
radial basis activation function along with the optimization
of Bayesian regularization for the numerical results of fluid
dynamics model using the exponential sheet by taking thirteen
and twenty-five numbers of neurons in the hidden layer 1 and
2. The feed-forward using the neural network process is pre-
sented in three-layer as:

[ ] [ wi ] [ by ]
[25] Wi bl-,2
us w13 by

LU13 | L W13 | L biis |
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Fig. 3 Multilayer layers procedure for the fluid dynamics model using the exponential sheet.
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Fig. 5 Graphs through the MSE and STs performances for the fluid dynamics model of exponential sheet.
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where the weights are represented as w, i and @ in the first,
second, and output layers. u and v indicate the first and second
layers together with output layers f(n), g(n), 0(n) and ¢(n). b
indicates the bias and ¢ is the radial basis activation function,
written as:

0= exp(—wu="7_ (wi,)+b (27)
=1

where n signifies the number of neurons. Fig. 2 shows the
mathematical model, process of neural network, the multi-
layer construction along with the obtained performances of
the results. A targeted dataset is proposed using the Adam
scheme, which is approved further with the training and testing
process. Fig. 3 shows the multi-layers procedure based on the
single input, two hidden layers with 13 and 25 neurons along
with output layers.

Fig. 4 (a) presents the neural network process, the algo-
rithm used for the solution, the Bayesian regularization opti-
mization along with MSE performances. The progress of
Epochs that have been selected as 500, time executed, perfor-
mances, gradient and Mu is also presented for each case of
the fluid dynamics model using the exponential sheet. Fig. 4
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(b) indicates the DNN performances with 13 and 25 numbers
of neurons in the hidden layers.

3.2. Bayesian regularization

The process of Bayesian regularization is applied together with
the neural network, which presents the quality of the results in
an efficient way despite of other conventional solvers. The
Bayesian regularization approach is applied to reduce the
lengthy requirement of the cross-validation. This method is
documented as a mathematical approach, which alters the per-
formances of the nonlinear regression into the special statisti-
cal system through the ridge regression. Recently, Bayesian
regularization is implemented in the variety of applications,
e.g., measurable susceptibility map rebuilding through MR
phase data (De Rochefort et al., 2010), improve the perfor-
mances in pulse radar detection (Kumar et al., 2004), a com-
parative empirical study on social data (Kayri, 20106),
prediction of austenite formation temperatures
(Rakhshkhorshid and Teimouri Sendesi, 2014), and deconvo-
lution for space signal response assessment (Lin and Lee,
2006).

4. Discussion of results

This section presents the numerical performances of the fluid
dynamics model by taking three different values of the mag-
netic parameter M =0.1,M =0.5 and M = 0.7, while the
other parameter values have been fixed in the system (17) to
(21) as 2=0.5, =03, 7=0.1, e=0.1, R=0.2, Pr=3.5,
P=0.3, Ec; =0.1, Ec; =02, Nt=0.1, Nb=0.2, S; =0.1,
A"=B"=03,8¢=250=2Kc=a=0.1and T =0.2.
The process of deep neural network (DNN) is presented
through the radial basis activation function along with the
optimization of Bayesian regularization for the numerical
results of fluid dynamics model using the exponential sheet.
The input is selected as 0 and 1 with the step size of 0.01.
The activation radial basis function is implemented in both
form of the hidden layers with thirteen and twenty-five neu-
rons for the numerical performances of fluid dynamics system
using the exponential sheet. Fig. 5 shows the mean square
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Fig. 9 EHs for the fluid dynamics model based exponential sheet for cases 1 to 3.
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Fig. 10  Regression for the fluid dynamics model based exponential sheet for cases 1 to 3.

Table 1 DNN process for the fluid dynamics model using the exponential sheet.

Case MSE Performance Gradient Epoch Time
Train Test

1 1.7657 x 1072 3.0779 x 1072 1.77 x 107 1.74 x 10 270 12 Sec

2 1.1821 x 1072 9.4363 x 10713 1.18 x 10712 2.13 x 108 129 07 Sec

3 1.2655 x 10712 2.0271 x 1072 1.27 x 1072 241 x 10 143 05 Sec
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Fig. 11  Comparison performances for the flui

error (MSE) and state transitions (STs) values for solving the
fluid dynamics system using the exponential sheet. This figure
depicts the convergence through MSE based on the dataset of
validation, testing, training. It is examined that by increasing
the Epochs, the curves based on the validation, training, and
testing scheme to steady state point up to 10712, The selection
of epochs has been taken 500 for each case of the model.
MSE performances are provided in Fig. 5 that are performed
as 1.7657 x 1072, 1.1821 x 107'% and 1.2655 x 107'? at epochs
270, 129 and 143. Fig. 5 authenticates the num parameters,
gradient, sum squared, Mu, and authentication checks. The
gradient values are indicated in Fig. 5, which are found as
1.7449 x 10%, 2.1349 x 10 and 2.4111 x 10°. An error
form of the gradient shows the magnitude and direction. It is
calculated through the designed neural network training,
which is applied to enhance the weights of the network in
the right amount and direction. In the neural network fitting,
backpropagation calculates the loss function gradient relating
to network weights based on the example of single input/out-
put effectively, disparate a simple direct calculation of the gra-
dient relating to each weight. Mu shows the obtained training,
which stands for momentum parameter or constant including
the updated weights to prevent the local minimum problem.
Occasionally network can stop to the local minimum and does
not converge. It estimates the Hessian matrix inverse that is
considered a complex function. Mu represents the control
algorithm parameter that is used in the training of neural net-

d dynamics model based exponential sheet.

work. Figs. 6-8 are the function fitness using the DNN through
the radial basis activation function along with the optimization
of Bayesian regularization for the numerical results of fluid
dynamics model for the exponential sheet. Fig. 9 indicates
the performances of error histograms (EHs) values by applying
DNN through the radial basis activation function along with
the optimization of Bayesian regularization for the numerical
results of fluid dynamics model using the exponential sheet.
The values of the EHs are performed as 3.79 x 107, —6.80
x 10 and 3.36 x 10°7. EHs is created to verify the errors
between predicted and targeted performances after training
the proposed neural network. These errors represent how pro-
jected performances differ through the targeted measures.
Fig. 10 represents the regression measures for 1st to 3rd case
of the fluid dynamics model using the exponential sheet.
R presents the correlation coefficient, which is applied together
with MSE based on the performance indexes of neural net-
works. The values of R vary between —1 and + 1, while, if
R performs close to + 1, high network performance and a pos-
itive linear relationship can be achieved. These values are per-
formed as 1 that indicates the perfect modelling. The train/test
data based MSE are tabulated in Table 1 for the fluid dynam-
ics model using the exponential sheet.

Fig. 11 provides the comparison of the outcomes for f, g, 0
and ¢ classes of the fluid dynamics model based exponential
sheet. The correctness of the scheme is observed through the
matching of these solutions for solving the fluid dynamics

Table 2 AE for the classes f, g, 0 and ¢ of the fluid dynamics model.
AE
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f 4x107  2x107  1x107 3x107 7x107 4x107 1x107 5x107  4x107 3x10% 2x10°
4% 107 7x107 6x107 2x107 2x107 3x107 4x10% 3x107 3x107 2x107 1x10°
1x10° 3x107 8x10° 1x107 2x107 2x10% 3 x107 5x107 1x107 2x107 2x10°
g  4x10% 2x10° 2x10° 9x107 2x107 8x107 3x107 7x107 1x10°® 3x107 3 x10°
5x10°  2x10° 9x107 1x107 9x107 8x107 5x107 9x107 6x107 1x107 3 x10°
4%x10° 2x10° 1x10% 8x107 6x107 1x10° 5x107 1x10% 2x10° 4x107 4x10°
0  2x10° 2x10° 2x10° 1x10° 3x107 7x107 1x10° 1x10° 5x10% 1x10° 4x10°
1x10% 1x10° 7x107 1x107 6x107 9x107 1x107 9x107 1x10® 1x10° 4x 107
9x 107 1x10° 6x107 8x107 8x107 4x107 2x107 6x107 3x107 2x107 2x10°
¢ 4x10° Ix10° 4x107 3x10% 1x10® 2x10° 1x10° 3x107 9x107 2x10°% 3 x10°
5x10°  9x107 1x10° 9x107 2x107 5x107 1x10% 4x107 6x107 1x10° 4x10°
5x10°  4x10% 2x10° 1x10° 2x107 9x107 1x10% 4x107 4x107 7x107 1x10°
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model based exponential sheet using the DNN through the
radial basis activation function along with the optimization
of Bayesian regularization.

The graphs of AE for parameters f, g, 6 and ¢ of the fluid
dynamics model based exponential sheet are drawn in Table 2
using the DNN through the radial basis activation function
along with the optimization of Bayesian regularization. These
performances have been plotted between 0 and 1 using 0.1 step
size. The best measures of the AE for the classes f, g, 6 and ¢
are calculates as 10°° to 10 of the fluid dynamics model
based exponential sheet using the stochastic scheme.

5. Conclusions

The current investigations provide the numerical solutions of fluid
dynamics nonlinear system by applying the deep neural network pro-
cess. The linear and exponential stretching sheets on magneto-
rotating Maxwell nanofluid have been presented to the Buongiorno
model using the impacts of uneven heat source/sink, varying thermal
conductivity and reactive species. The coupled ordinary differential
models based on momentum, energy and mass have been obtained
through the similarity transformations. The exponential stretching
sheet model has been numerically solved by using a novel radial basis
activation function together with the Bayesian regularization deep neu-
ral network. The deep neural network process is divided into two hid-
den layers, which has taken thirteen and twenty-five neurons in 1st and
2nd layer. The dataset is proposed using the Runge-Kutta technique of
the fluid system. The correctness of the stochastic RB-BRDNN has
been obtained using the comparison of proposed and database results.
The exact overlapping of the solutions indicates the correctness of the
procedure. The negligible values of the absolute error enhance the
competence of the stochastic scheme. The competence and reliability
of the designed stochastic RB-BRDNN procedure is observed through
the error histograms, state transitions, correlation, and regression.

In future, the procedure based on deep neural network along with
the radial basis activation function and Bayesian regularization can be
implemented to get the performances of various nonlinear models
(Baskonus et al., 2019; Yokus and Giilbahar, 2019; ilhan and
Kiymaz, 2020; Brzezinski, 2018; Khalique and Mhlanga, 2018; Khan
et al., 2020; Khan et al., 2022; Rehman et al., 2022).
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