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Abstract The recovery of agricultural and food wastes are one of the main areas of current
research for optimal biowaste management to reduce greenhouse gas (GHG) emissions that are gen-
erated when it is not properly treated. Corn silk (CS) as biowaste from the agricultural sector is a
rich source of natural compounds especially polysaccharides. We present here a chemical activation
method to convert CS to values added heterogeneous catalyst for the synthesis of triazoles com-
pounds via copper catalyzed azide—alkyne cycloaddition (CuAAC) reaction. For this purpose,
cuprous oxide coated CS (CS@Cu,0) and multifunctional Fe;O0,@SiO,—para-aminomethyl ben-
zoic acid—CS—Cu,0 composite (denoted as Fe;04@SiO,-pAMBA-CS-Cu,0) were fabricated. Dif-
ferent analytical techniques have been used to describe the size, crystal structure, elemental
composition and other physical properties of the fabricated catalysts. These heterogeneous catalysts
showed excellent catalytic activities for the synthesis of 1,4-disubstituted-1,2,3-triazoles via click
reaction in H,O at 70 °C under base and external-reductant-free conditions. The magnetic proper-
ties of the catalyst allowed easy separation after reaction by simply applying an external magnet.
Other advantages of this work are the recyclability of the catalyst, the absence of reducing agent
and base, besides utilisation of bio wastes for the production of heterogeneous catalyst.
© 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Growth of human population contributes to increasing

E-mail address: shjavan@iust.ac.ir (S. Javanshir). demands for agricultural products and related products of
Peer review under responsibility of King Saud University. food industry (Ravindran et al., 2021), (Usmani et al., 2020).
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In general, Bio-wastes emanate from 3 specific sources which
are agricultural, municipal and industrial wastes (Ravindran
et al., 2021). Bio-wastes originates from agricultural sources,
mostly consists of livestock manure and crop residues.
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Agricultural and food industries generate enormous liquid and
solid wastes which inability to effectively convert these materi-
als into valuable substances can lead to environmental damage
(Ravindran et al., 2021). This issue has led chemists to pro-
mote routs for reducing the amount of the pollutants and turn
them into more valuable materials (Sun et al., 2021),
(Athinarayanan et al., 2019).Scheme 1.

Corn is the one of the most versatile and widely consumed
agricultural products around the world. CS, also known as
Maydis Stigma or Zea Mays, is the waste of the corn. In fact,
CS, the long shiny fibers at the top of an ear of corn, is one of
the agricultural by-product (Rahman and Rosli, 2014). This
Bio-waste is used as traditional medicine for treatment of dia-
betes and diuresis in China (Jia et al., 2021). It also has health
benefits such as diuretic, antioxidant, anti-obesity, anti-
coagulation, anti-tumor and it might alter blood sugar levels
so used to treat diabetes, and help reduce inflammation
(Hasanudin et al., 2012), (Liu et al., 2011), (Ren et al., 2013).
This Bio-waste is a rich source of bioactive compounds such
as proteins, carbohydrates, vitamins, minerals, fiber, and ster-
oids such as sterols and stigma sterols, alkaloids, tannins and
saponins (Jia et al., 2021; Hasanudin et al., 2012; Liu et al.,
2011; Ren et al., 2013). In studies of the CS components has
been shown that carbohydrates (67.3%) constitute of the bulk
of its structure (Jia et al., 2021; Haslina et al., 2017). For this
reason, this natural compound can be widely used as a carbo-
hydrate structure that chemical modification of this bio-
composite can be another effective way for the advancement
of chemical biology and drug development (Choi et al.,
2020). On the other hand, due to the presence of natural reduc-
ing compounds such as ascorbic acid in the composition of CS
(Rahman and Rosli, 2014) CS can also act as a reducing agent
(Kumar et al., 2020).

Click chemistry first was reported by Sharples in 2001, to
describe an effective method for the synthesis of various com-
pounds especially various pharmaceuticals. One of the most
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important categories of click reactions is the CuAAC reaction
between terminal alkynes and azides in the presence of a cop-
per catalyst(I) to form 1,4-disubstituted 1,2,3-triazoles (Kolb
et al., 2001; Bahsis et al., 2018; Finn and Fokin, 2010;
Wang et al., 2015) that have applications in the various fields
such as pharmaceutical industry, dyes, agriculture, corrosion
inhibitors, optical brighteners and biological activity like
hypotensive medications, anti-tuberculosis, anti-allergic,
anti-bacterial, anti-HIV and Src-kinase inhibitors (Zirak
and Garegeshlagi, 2018; Vibhute et al., 2018; Aghbash
et al., 2019; Pagliai et al.,, 2006; Dolatkhah et al., 2018;
Choi et al., 2020). Several example of 1,2,3-triazole com-
pounds have anticancer property such as carboxy amido tri-
azole (CAI), tert-butyl dimethyl silyl spiroamino oxathiole
dioxide(TSAO), b-lactum antibiotic Tazobactum and Cefa-
trizine (Fig. 1) (Agalave et al., 2011; Mohammadi et al.,
2018).

Considerable research has focused on using bio-based
materials to reduce costs, create cost-effective and environ-
mentally friendly materials, and numerous reports have docu-
mented the use of natural compounds as catalysts. Among the
reports on the use of natural substances as catalyst for triazoles
synthesis, the use of Cel/Cu (Hamzavi et al., 2020), CulCC
(Ghosh et al., 2020), GO-Fe;04@CuO(Jain et al., 2020), L-
Proline-MCM-41-CuCl(Zhao et al., 2020), Y-
Fe,03@Sh@Cu,O (Norouzi and Javanshir, 2020), Whey pro-
tein (Garg et al., 2021), CuBr/[DBU]JOAc (Garg et al., 2020)
and Cu,O@PS(Dolatkhah et al., 2019) can be pointed out.
These documents, along with articles which use magnetic core
as based of the heterogeneous catalyst, emphasize on the easier
use and green synthesis procedure (Hassankhani et al., 2021;
Nourmohammadi et al., 2021). All these issues led us to design
a project in which CS bio-waste was used as a support and
reducing agent to prepare CS@Cu,O and Fe;04@SiO,-
PAMBA-CS-Cu,0 as heterogeneous catalysts for the synthesis
of triazole derivatives

PAMBA

Graphical scheme of the reaction.
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2. Methods

2.1. Materials

All chemicals were purchased from Merck, Aldrich or Fluka
were used without further purification. All of them were ana-
lytical grade. Fourier-transform infrared (FT-IR) spectroscopy
spectra were recorded in KBr on Bruker FT-IR spectrometer
and are reported in wave numbers (cm ™). All melting points
were measured on a capillary melting point apparatus.'H
NMR spectra were performed by a Bruker Avance DPX
300. Scanning electron microscopy (SEM) was recorded on a
VEG//TESCAN 100EM10C-KV and transmission electron
microscopy (TEM) was recorded on a Zeiss EM900. The sur-
face area of catalyst was recorded Brunauer-Emmett-Teller
(BET) Surface Area & Porosity Analyzer. Energy-dispersive
X-ray (EDX) spectroscopy was recorded on a VEG//
TESCAN-XMU. X-ray diffraction (XRD) pattern was
recorded on a Bruker AXS D8-advance X-ray diffractometer
using Cu Ko radiation (A = 1.5418A°). Magnetic measure-
ments were performed using a vibrating sample magnetometer
(VSM) analysis. The metal loading was detected by an induc-
tively coupled plasma-atomic emission spectrometer (ICP).

X-ray photoelectron spectroscopy (XPS) spectra are
obtained using the Thermofisher Scientific K-Alpha XPS spec-
trometer. Thermal Gravimetric Analysis (TGA) and Differen-
tial Thermogravimetric (DTG) were recorded on a STA 504
BAHR Thermoanalyse GmbH (Hiillhorst, Germany).

2.2. Preparation of CS@ Cu,0

The collected corn silks were washed with distilled water sev-
eral times to remove impurities, dried in an oven at 60 °C,
and powdered in a ball-mill. The ball-milled CS (1 g) and
EtOH (30 mL) were mixed in a round-bottom flask and stirred
at room temperature for 30 min. Then 0.5 g of Cu(OAc), was
added to the mixture under vigorous stirring for overnight.
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Anticancer compounds containing 1, 2, 3-triazole.

The catalyst was then centrifuged and washed with water,
ethanol, and acetone and dried in the oven at 70 °C.

2.3. Preparation of Fe;0, nanoparticles

Fe;04 nanoparticles was synthesized according to our previous
method (Dolatkhah et al., 2018). In a typical procedure, a
solution with a 2:1 ratio of Fe**/Fe’" from FeCly-4H,O
and FeCl;-6H,0 in deionized water was prepared. After 2 h
of stirring under N, atmosphere, the participation was per-
formed by dropwise addition of NaOH solution (I M) until
pH was adjusted to 10. The magnetic nanoparticle was sepa-
rated by an external magnetic field, then washed three times
with deionized water and ethanol. Eventually, Fe;O, particles
dried for 10 h in an oven at 65 °C.

2.4. Preparation of Fe30 ,@SiO>pAMBA-CS-Cu,0

First, 1 g of Fe;04 magnetite in 50 mL of water were added in
a round-bottom flask and stirred at room temperature for
30 min. Then, 5 mL of ammonia solution and 50 mL EtOH
was added to the mixture. In the next step, a mixture of
1.5 mL TEOS and 10 mL ethanol was added into the suspen-
sion drop by drop under vigorous stirring for 24 h. The
obtained precipitate Fe;04@SiO, was collected with a magnet,
washed several times with H,O and EtOH and dried.

1 g of Fe;0,@SiO, in 100 mL of water were dissolved in a
round-bottom flask. Then, 0.3 g of para-aminomethyl benzoic
acid was added to the mixture. The mixture was stirred vigor-
ously for 12 h under reflux conditions the obtained precipitate
Fe;04@SiO,-pAMBA was Exit with a magnet, washed with
H,O and EtOH and dried at 50 °C.

1 g of Fe;0,@SiO,-pAMBA in 50 mL of EtOH were mixed
for 30 min at room temperature. Then, 0.2 g of powder CS was
added to the mixture and the mixture was stirred vigorously
for 6 h under reflux conditions. Finally, the obtained precipi-
tate Fe;O04@SiO>,-pAMBA-CS was magnetically separated,
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washed several times with H,O and EtOH and dried at 50 °C
for 12 h.

1 g of Fe30,@SiO,-pAMBA-CS in 30 mL of EtOH were
dispersed in a round-bottom flask and stirred at room temper-
ature for 30 min. Then, 0.5 g of Cu(OAc), was added to the
mixture under vigorous stirring for overnight (Scheme 2).
The final catalyst was washed with distilled water, then dried
at room temperature.

NH;, TEOS
FeCl, + FeCl; ———» —

COOH

Scheme 2

2.5. General procedure for click reactions

NaN; (1.2 mmol), alkyne (1.2 mmol) and benzyl halide
(1 mmol) were added to a suspension of CS@Cu,0O (7 mol%
Cu, 0.05 g catalyst) or Fe;04,@SiO,-pAMBA-CS-Cu,O
(7 mol% Cu, 0.06 g catalyst) in H,O (2 mL). The reaction mix-
ture was stirred at 70 °C and monitored by TLC (EtOAc:n-
hexane (1:5). After completion of the reaction, the catalyst
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Synthesis of Fe;04@SiO,-pAMBA-CS-Cu,0.
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was easily removed from reaction mixture and the filtrate was
extracted with chloroform (2 x 2 mL). The organic solvents
were removed under vacuum and the pure product was
obtained by recrystallization with CHCl;: n-hexane (1:3). All
of the Click products are known compound and were reported
previously.

3. Results and discussions

3.1. Characterization of the catalyst

The catalysts were characterized by diverse physicochemical
techniques such as FT-IR, XRD, SEM, TEM, EDX, VSM,
BET, XPS and ICP.

3.1.1. FT-IR investigation

The FT-IR spectra of CS, CS@Cu,0, and recycled CS@Cu,O
after five runs in click reaction are shown in Fig. 2. The wide
peak at 3400 cm ™! indicates the presence of an acidic group
in the CS. The peaks around 1654 cm™!' and 1049 cm™!
belongs to C—0 and C—O bond respectively. The slight shift
from 1654 cm ™" in CS to 1643 cm ™' in CS@Cu,0 may be due
to the chelation of copper on the surface of CS.

The FT-IR spectra of FC304, FC304@SiO2, FC304@Si02-
PAMBA-CS, Fe;04,@SiO-pAMBA-CS-Cu,0O and recycled
Fe;04@Si0O5,-pAMBA-CS-Cu,O after five runs are shown in
Fig. 3. The FT-IR spectrum of Fe;O4 displays an intense
absorption band at 588 cm™! attributed to the typical Fe-O
vibrations of the magnetite structure whereas a broad band
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Fig 2 FT-IR spectra of CS (a), CS@Cu,O (b), CS@Cu,O after 5 times use (c).
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Fig3 FT-IR spectra of Fe;04 (a), Fes0,@Si0; (b), Fe;04@Si0,-pAMBA-CS (c), Fe;0,@Si0,-pAMBA-CS-Cu,0 (d), Fe;04@SiO»-
PAMBA-CS-Cu,0 after 5 run in click reaction (e).
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at 3340 cm ! is relevant to the surface OH groups. The absorp-
tion band appeared at 1030 cm ! in Fe;0,@SiO; structure can
be attributed to Si-O(Zandipak et al., 2020). The wide peak at
around 3400 cm ™" indicates the presence of acidic group in the
magnetic CS. The bands at 1654 cm ™' in the IR spectrum of
Fe;0,@Si0,-pAMBA-CS-Cu,O were assigned to carbonyl
groups. The slight shift from 1090 cm™' in Fe;04@SiO,-
pAMBA-CS to 1085 em™! in Fe;0,@Si10,-pAMBA-CS-
Cu,0 may be due to the chelated-copper on the surface of Fes-
O4@SlOz-pAMBA-CS

a)

-+

Counts

3.1.2. Morphology study

The XRD pattern of the CS@Cu,O shown in Fig. 4a exhibited
a diffraction peak at 26 = 20°, which revealed the formation
of amorphous copper oxide (Faeghi et al., 2018). The diffrac-
tion peak under 20 = 30° belongs to CS which is amorphous
organic material (Wang et al., 2014; Norouzi and Javanshir,
2020).

In the XRD pattern of the Fe;O4@SiO,-pAMBA-CS-
Cu,0, the diffractions at 20 = 35.6°, 43.3°, 62.7°, and 74.8°
can be assigned to the (111), (200), (220) and (311) lattice
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Fig 4 XRD pattern of CS@Cu,0 (a), Fe304@SiO>,-pAMBA-CS-Cu,0 (b).
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Fig5 EDX and map analysis of CS@Cu,0 (a), Fe;0,@SiO,-pAMBA-CS-Cu,O (b)The morphology and size of Fe304, Fe;04@SiO,,
Fe;04@Si0,-pAMBA-CS, Fe;04,@Si0,-pAMBA-CS-Cu,0O and CS@Cu,0 NPs were investigated using SEM analysis (Fig. 6a—e). The
SEM images of Fe;04@SiO,-pAMBA-CS-Cu,O show the formation of spherical particles in size around 38-56 nm (Fig. 6d).
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Fig 6 SEM images of Fe;04 (a), Fe;04@SiO; (b), Fe;04@SiO-pAMBA-CS (c), Fe;04@SiO,-pAMBA-CS-Cu,0 (d), CS@Cu,0 (e).

planes of Cu,O, in accordance with Cu,O standard data
(JCPDS card NO. 05-0667). The diffractions at 26 = 30.3°,
35.6°, 43.3°, 53°, 57.1° and 62.9° can be assigned to the
(220), (311),(400), (422), (511) and (440) crystalline planes
of cubic lattices structure of Fe;O4 respectively (JCPDS No.
85-1436). Also, the peaks at around 20 = 14.4 and 18.2° in
the XRD pattern is due to the amorphous silica shell on the
surface of the magnetite nanoparticles. (Fig. 4b).

Comparing the EDX analysis of CS@Cu,O clearly shows
the presence of Cu, C, O and N elements in the structure of this
material (Fig. 5a). Also, the presence of Cu, C, O, N, Fe and Si
elements in the catalyst structure have been confirmed from the
EDX analysis of Fe;04@SiO,-pAMBA-CS-Cu,O (Fig. 5b).

The TEM image of the prepared CS@Cu,O is shown in
Fig. 7a and b. The TEM images shown two regions with differ-
ent size and electron density which are related to CS@Cu,O
nanoparticles and Cu.

The TEM image of the prepared nano-Fe;04@SiO,-
PAMBA-CS-Cu,O is shown in Fig. 7c, and d. The TEM image
shows the presence of three regions with different size and elec-
tron density which dense regions represent to Fe;O4@SiO,
nanoparticles and Cu and a less dense region related to Natu-
ral base of CS (Sabagian et al., 2017).

3.1.3. Magnetic properties

The magnetic properties of Fe;O4, Fe;04@Si0,, Fe;O4@-
SiO,-pAMBA-CS and Fe;0,@SiO,-pAMBA-CS-Cu,O were
investigated using VSM analysis. The magnetization curves

recorded at room temperature are shown in Fig. 8. The satura-
tion magnetization of Fe3;04, Fe;04@SiO,, Fe;04@SiO,-
pAMBA-CS and Fe;04@SiO,-pAMBA-CS-Cu,O are 63.9,
61.49, 57.76 and 50.35 emu.g”', respectively. The catalyst
has a good magnetic property and is easily removed using an
external magnet after the reaction.

3.1.4. Adsorption study

The surface area and pore volume of synthesized catalysis were
estimated from the N, adsorption/desorption isotherms and T-
plot (Fig. 9). The BET surface area and average pore diameter
are 39.54 m’g"" and 7.17 nm for CS@Cu,0, and 33.65 m”g "'
and 17.59 nm for Fe;04@SiO,-pAMBA-CS-Cu,0, respec-
tively. The volume of the single-point adsorption cavity is
0.07 cm®g~" and 0.148 cm’g™" for CS@Cu,O and Fe;0,@-
Si0,-pAMBA-CS-Cu,0, respectively. Also, the single-point
cavity dissipation volume is 0.073 cm3g~! and 0.128 cm3g™!
for CS@Cu,0 and Fe;04@SiO,-pAMBA-CS-Cu,0.

In addition, as determined by ICP, the copper loading of
CS@CuyO and Fe;0,@SiO-pAMBA-CS-Cu,O are 1.41
and 1.25 mmol.g™', respectively.

3.1.5. XPS analysis

To determine the oxidation states of Cu in the prepared
nanocomposite, XPS analysis was performed and the obtained
results are depicted in Fig. S1. The Fine-scan XPS spectrum
(Fig. Sla) demonstrates that Fe;O04@SiO,-pAMBA-CS-
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Fig 7 TEM images of CS@Cu,0 (a, b), Fe;0,@SiO,-pAMBA-CS-Cu,0 (c, d).

Cu,0 contains Fe, Cu, O, Si and C elements. The peaks at
around 104.5 eV in Fig. Sla correspond to SiO, (Jensen
et al., 2013). The high-resolution spectrum of Fe 2p shown in
Fig. S1b exhibited two main peaks of Fe 2p3/2 at around
710.8 and 714.1 eV attributed to Fe?* and Fe’ ", respectively,
demonstrating the existence of Fe;0,4. The peak at 724.6 eV,
corresponding to Fe 2pl/2 is also in accordance with the
reported values for Fe;O4 (Huang et al., 2017). The character-
istic peaks at 932.7 and 943.80 corresponding to Cu 2p3/2 and
Cu2pl/2, respectively, demonstrate the existence of Cu,O
(Vasquez, 1998).

3.1.6. TGA analysis

The thermal behavior of the catalyst was determined by TGA
and DTG (Fig. S2). The TGA thermogram of Fe;O4@SiO,-
PAMBA-CS-Cu,O shows two step weight loss steps over the
temperature range of TG analysis. The first step, including a
low amount of weight loss (5%) at T ~ 120 °C, resulted from
the release of both the physiosorbed and chemisorbed water,
the second stage at about 280 °C to nearly 450 °C is attributed
to the decomposition of the organic moiety in the nanocom-
posite including a weight loss (40%). The amount of organic
compounds bound on the surface of the nanoparticles is pre-
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Z 1,2,3-triazoles. The reaction of benzyl bromide, sodium azide
3? 20 and phenyl acetylene approved as a model reaction for carry-
§ 10 ing out in different conditions. The results are shown in Table 1
=4 (Entries 1-18). This reaction was done by employing various
0 solvents such as EtOH, toluene, EtOH-H,O, chloroform and
0 02 04 0.6 0.8 ! 12 H,0O at 70 °C for 1 h (Entries 1-7). It was found that H,O
Relative Pressure (p/p®) was the most effective solvent for triazole synthesis. Then,
other conditions like temperature, amount of catalyst and
—®—DES —@—ADS . .
presence/absence of the base was examined in the model reac-
120 tion (Entries 9—17). It was found that by increasing the amount
_ of CS@Cu,0O and Fe;04@SiO,-pAMBA-CS-Cu,O from 0.5
& 100 b) to 7 mol%, the yield increased from 74% to 96%, and 69%
33 to 93% respectively (Table 1, Entries 12-16). Further increase
”g 80 in catalyst amount had no profound effect on the yield of the
= desired product. The reaction has not progressed in the
—% 60 absence of catalyst (Entry 18). Accordingly, the best results
2 are obtained when the reaction is performed in water in the
; 40 presence of 7 mol% of the both catalysts at 70 °C (Table 1,
% " Entry 16). Some of the catalyst components such as Fe;Oy,
& Fe;04@Si0;, Fe;04@SiO,-pAMBA-CS, CS, and Cu(OAc),
0 were also examined under optimal conditions. However, in
0 02 0.4 0.6 0.8 1 12 most cases the reaction efficiency was not improved (Table 2).

Relative Pressure (p/p°)
~®—-DES —@—ADS

Fig 9 BET analysis of CS@Cu,O (a), Fe;0,@SiO,-pAMBA-
CS-Cu,0O (b).

Subsequently, the reaction among various benzyl halide
derivatives, acetylene derivatives and NaN; was investigated
and the corresponding triazoles were obtained in good to
excellent yields within relatively short times (Table 3).

The catalytic activity of CS@Cu,O and Fe;0,@Si0;-
PAMBA-CS-Cu,0 were compared with other catalysts in the
Click reaction of phenylacetylene, benzyl bromide and NaNj;
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Table 1 Optimize the reactions condition synthesis of 1-benzyl-4-phenyl-1H-1,2,3-triazole using catalyst™
X . Catalyst N’No
@/\ + R+ NaN; ———— ©/\ \§<N
R
Entry Solvent T(°C) Base Cat. (mol%) Isolated yield (%)™ Isolated yield (%)'!
1 EtOH 70 K,CO; 5 71 69
2 Toluene 70 K,CO; 5 Trace Trace
3 H,O:EtOH (1:1) 70 K,CO; 5 84 79
4 H,O:EtOH (2:1) 70 K,CO; 5 62 52
5 H,O:EtOH (1:2) 70 K,CO;3 5 76 69
6 Chloroform 70 K,CO; 5 Trace Trace
7 H,O 70 K,CO; 5 87 82
8 H,O 70 — 5 88 85
9 H,O 25 — 5 58 55
10 H,O 50 — 5 63 59
11 H,O 70 — 5 88 85
12 H,O 70 — 0.5 74 69
13 H,O 70 — 1 80 72
14 H,O 70 — 2.5 84 78
15 H,O 70 — 5 88 85
16 H,O 70 — 7 96 93
17 H,O 70 — 10 96 93
18 H,O 70 K>CO;, — Trace Trace

% Reaction conditions: benzyl bromide (1 mmol), sodium azide (1.1 mmol), phenylacetylene (1 mmol) and catalyst (7 mol%) in water at 70 °C,
B Catalyst = CS@Cu,0, © Catalyst = Fe;04@SiO,-pAMBA-CS-Cu,0.

Table 2 Screening catalysts for the three-component reaction
of benzyl bromide, sodium azide and phenyl acetylene.

Entry Catalyst Time Isolated yield
1 Fe;04 360 min —

2 Fe;04,@Si0, 360 min —

3 Fe3O4@Si02—CS 360 min —

4 CS 360 min Trace

5 Cu(OAc), 360 min Trace

6 CS@Cu,O 20 min 96

7 Fe;04@Si0,-pAMBA-CS- 20 min 93

Cll20

(Table 4). The use of H,O as green solvent and natural base
catalyst, easy isolation of product from the reaction mixture,
absence of reducing agent and base, operational simplicity,
high yield and reusability of catalyst are the merits of present
method.

Then, we examined the heterogeneous nature of the cata-
lysts. The catalytically active particles were removed from
the reaction by filtration after 5 min using a hot filtration.
The reaction progress did not change after running the hot fil-
tration (Fig. 10a, b).

The reusability of catalysts was investigated in the reaction
of benzyl bromide, phenylacetylene, and NaNj. After comple-

tion of the reaction, the catalyst was recovered by an external
magnet and washed several times with EtOH, and then re-used
after drying it at 60 °C. The results show that the performance
of the catalyst did not decrease significantly after recycling
(Fig. 11a, b).

A mechanism for the catalytic activity in the synthesis of 1-
aryl-1,2,3-triazole derivatives is shown in Scheme 3. Initially,
catalyst and acetylene are joined together and then alkyl azide
is added. Then, an unusual six-membered copper metallacycle
is formed and finally, the catalyst is removed and triazole is
formed (Wang et al., 2016) Scheme 4.

3.3. Selected characterization data

(1-(4-Methylbenzyl)-1H-1,2,3-triazol-4-yl) methanol (3j): IR
(KBr): 653.7, 777.1, 835, 1012.4, 1121.8, 1222, 1330, 1446.3,
1515.7, 2944.7, 3249 4.

"H NMR (400 MHz, CDCls, 25 °C, TMS): 6 = 2.32 (3H,
s), 2.99 (IH, s), 4.72 (2H, s), 5.44 (2H, s), 7.15 (4H, s,), 7.40
(1H, s).

4. Conclusion
Herein, we reported the synthesis of two eco-

friendly heterogeneous catalyst, CS@Cu,O and Fe;04@SiO,-
PAMBA-CS-Cu,0, and their high catalytic performance for
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Table 3 Synthesis of /H-1,2,3-triazoles using catalyst.

27\
H,0,70°C 1
3(a-])
Entry R! R? X Product Time Time Isolated Isolated M.P. (°C) Ref.
@min)™"  (min)®  yield"!  yield™

1 Ph Ph Br 3a 20 20 96 93 129-130 (Khalili and Rezaee, 2019)
2 Ph Ph Cl 3b 20 25 92 89 128-129 (Velpuri and Muralidharan, 2019)
3 Ph 4-Br-Ph Br 3c 20 20 98 95 151-153 (Pasupuleti and Bez, 2019)
4 Ph 4-Me-Ph Br 3d 20 20 91 89 110-112 (Bunev et al., 2016)
5 Ph 4-NO,-Ph  Br 3e 25 30 89 86 155-157 (Lai et al., 2018)
6 Ph 2-Cl-Ph Cl  3f 30 35 88 84 83-86 (Zarchi and Nazem, 2014)
7 CH,OH Ph Br 3¢g 25 30 90 90 74-76 (Khojastehnezhad et al., 2019)
8 CH,OH Ph Cl 3h 30 35 86 85 77-79 (Bahri-Laleh et al., 2018)
9 CH,OH  4-Br-Ph Br 3i 25 25 93 89 110-112 (Safa and Mousazadeh, 2016)
10 CH,OH 4-Me-Ph Br 3 25 25 87 84 91-93 (Dubrovina et al., 2013)
11 CH,OH 4-NO,-Ph Br 3k 30 30 84 79 122-123 (Apperley et al., 2017)
12 CH,OH 2-CI-Ph Cl 31 40 40 86 82 98-100 (Safa and Mousazadeh, 2016)

4 Reaction conditions: benzyl bromide (1 mmol), sodium azide (1.1 mmol), phenylacetylene (1.1 mmol) and catalyst (7 mol%) in water at
70 °C, * Cat. = CS@Cu,0, ° Cat. = Fe;0,@Si0,-pAMBA-CS-Cu,0.

Table 4 Comparison of efficiency of various catalysts for triazole synthesis (based on model reaction).

Entry Catalyst Catalyst loading Time T (°C) Solvent Yield Refs.
1 bis-(MIM)(CuBr,) 5 mol% 1 h, 40 min 80 H,O/EtOH 91 (Dige et al., 2017)
2 Cu(I)-AMPS 1 mol% l1h 25 H,O 82 (Babhsis et al., 2019)
3 Mag-Cu 2 mol% 6h 55 H,O/tBuOH 93 (Banan et al., 2017)
4 AA-Clin@Cu 0.06 g 24 h 25 H,O 94 (Gholinejad et al., 2019)
5 Fe;04@LDH @cysteine—Cu(I) 0.02 g 25 min 75 Choline azide 90 (Pazoki et al., 2020)
6 Fe;0,@Si0,-PIA-Cu 0.01 g 12 h 70 H,O 95 (Zirak and Garegeshlagi, 2018)
7 CS@Cu,O 7 mol% 20 min 70 H,0 96 This work
8 Fe;0,@Si0,-pAMBA-CS-Cu,O 7 mol% 20 min 70 H,0 93 This work
L3 CS@Cu,0 b)  Fe,0,@Si0,-pAMBA-CS-Cu,0
100 . 100
= 80
[=
80 9]
iz 60
60 S 40
8 2 ¢
40 / @) )
3 0 0 20 40 60
<
g0
£ 0 10 20 30 40 50 60
5 . .
% Time (min) . . Time (min) .
S —@— Before filtration After filtration —@— Before filtration After fitration

Fig 10 Hot filtration test of CS@Cu,0 (a), Fe;04@SiO,-pAMBA-CS-Cu,0 (b).



CS@Cu,0 and magnetic Fe;04@SiO,-pAMBA-CS-Cu,0 as heterogeneous catalysts 13

o o

Isolated yield
o

Isolated yield

o

100 100
80 8
60 > 6
40 4
20 2
0
1 2 3 4 5

RUN RUN
a) b)

Fig 11  Recyclability of CS@Cu,0 (a), Fe30,@SiO,-pAMBA-CS-Cu,0 (b).

N% = 1 - - -1
)\>N / Fe;0,@Si0,-pAMBA-CS-Cu,0
=

N
N ST g
R1%QCS
e cs
R! g
x/\Rz
RI—= CS
Il
@ ]
_—N NaN,
NZN \/R2 /\
Na/\R2
Scheme 3  Suggested mechanism for model reaction.
the synthesis of 1,2,3-triazole derivatives via a one-pot Huisgen This approach for triazoles synthesis is distinguished by the
1,3-dipolar cycloaddition reaction in H,O at 70 °C. The exis- exploitation and valorisation of CS biomass waste for the
tence of natural reducing agents such as the ascorbic acid in preparation of a green and recyclable catalyst, its high atom
the CS structure allows it to act as a reducing agent and con- economy, low catalyst loading, simple operations under mild

vert Cu(OAc), to Cu,O.
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Cu(OAc),

Scheme 4 Proposed mechanism for the generation of Cu (I).

conditions, good product yields, the ease of catalyst-product
separation, alongside absence of any reducing agent and base.
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