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Abstract Multiple machine learning models were developed in this study to optimize biodiesel pro-

duction from waste cooking oil in a heterogenous catalytic reaction mode. Several input parameters

were considered for the model including reaction temperature, reaction time, catalyst loading,

methanol/oil molar ratio, whereas the percent of biodiesel production yield was the only output.
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Process optimization;

Machine learning

Three ensemble models were utilized in this study: Boosted Linear Regression, Boosted Multi-layer

Perceptron, and Forest of Randomized Tree for optimization of the yield. We then found their opti-

mized configurations for each model, namely hyper-parameters. This critical task is done by run-

ning more than 1000 combinations of hyper-parameters. Finally, The R2-Scores for Boosted

Linear Regression, Boosted Multi-layer Perceptron, and Forest of Randomized Tree, respectively,

were 0.926, 0.998, and 0.992. MAPE criterion revealed that the error rates for boosted linear regres-

sion, boosted multi-layer perceptron, and Forest of Randomized Tree was 5.68 � 10-2, 5.20 � 10-2,

and 9.83 � 10-2, respectively. Furthermore, utilizing the input vector (X1 = 165, X2 = 5.72,

X3 = 5.55, X4 = 13.0), the proposed technique produces an ideal output value of 96.7 % as

the optimum yield in catalytic production of biodiesel from waste cooking oil.

� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recently, development of renewable energy sources as an alternative to

conventional fossil fuels has attracted much attention worldwide in

terms of economic profit as well as environmental protection (Yahya

et al., 2020; Adebayo, 2022; Zhao, 2022; A.B.W, P. Computer

Technology Simulation towards Power Generation Potential from

Coproduced Fluids in South Lokichar Oil Fields., 2020; Shen, 2021;

Mao, 2020; Ekramian and Etemad, 2014). Different techniques and

bio-sources have been explored and studied for efficient development

of biodiesel production as green fuel (Zhang, 2021; Hu, 2022; , xxxx;

Johnson et al., 2022; Ibnou-Laaroussi et al., 2020; Rjoub, 2021;

Wang, 2022; Lin, 2021; (Rikani, 2021)). The main aim of the most

studies in this area is to enhance the biodiesel production yield for a

given biomass source as feedstock (Fu, 2010; Nguyen, 2021). This goal

can be achieved by experimental evaluation of the process, develop-

ment of novel catalysts, and process optimization techniques such as

response surface method (RSM) (Yahya et al., 2020; Jia et al., 2012).

2012.; , xxxx; Chen, 2021; Deng, 2019; Liu, 2021; Yin, 2022; Yin,

2022).

Fatty Acid Methyl Esters which are also known as FAME, are

esters of fatty acids which are mainly known as biodiesel, are obtained

from different sources such as vegetable oils. The FAME is recognized

as the main biodiesel due to its similar structure and properties to the

conventional fossil-based diesel fuel, however FAME is known as

renewable alternative energy source. One of the hurdles toward devel-

opment of biodiesel is limited availability of feedstock for biodiesel

production as well as the price of feedstock (Nair et al., 2020;

Huang, 2022; Adebayo and Rjoub, 2022). Various feedstocks have

been employed for production of biodiesel such as palm oil

(Kansedo et al., 2009), microalgae (Collotta and Basosi, 2019), rice

bran oil (Zaidel, et al., 2019), waste cooking oil (WCO) (Mohadesi,

2019), etc.

Waste cooking oil (WCO) has been studied as one of the abundant

and cheap sources for production of biodiesel. WCO masses contain

fatty acids and triglyceride components which can be converted to bio-

diesel (FAME) using esterification or transesterification reactions in a

batch or continuous reactor with or without catalysts (Yahya et al.,

2020; Bakhshkandi and Ghoranneviss, 2019; Osanloo, 2019;

Watandost et al., 2021; Andalib and Sarkar, 2021). These reactions

are well proceeded in the presence of catalysts that can promote both

the esterification and transesterification reactions (Zhao, 2022; Latif

et al., 2021; Huang, 2021; Zhang et al., 2021). For the production of

FAME from WCO, the process parameters need to be optimized in

order to get the highest production yield with the lowest number of

experiments. The latter can be implemented through process modeling

and simulation, provided that the input and output parameters are well

determined (Andalib and Sarkar, 2022; Ethier, 2021; Latif, 2021;

Nourian, 2021; Sundaravadivelu Devarajan, 2020). The process

parameters for production of FAME using heterogenous catalysts

induce temperature of reaction mixture, time, amount of catalyst,
and methanol to oil ratio. Also, the main output in the optimization

is the production yield which needs to be defined as the objective to

be maximized.

Different techniques have been explored and implemented in order

to optimize the biodiesel production such as CCD and RSM and pro-

vided great capability. Recently, the models based on machine learning

(ML) techniques have attracted much attention in different fields of

science and engineering for process understanding and process opti-

mization as well (Wang, 2021; Panwar, 2021; Ghadiri, 2021;

Pourtousi, 2021; (PUTRA, 2020)). This novel method requires exper-

imental data for process to be used for training the model. Then the

trained and validated model can be used in process prediction and

optimization. The method has been successfully used in simulation

of chemical processes (Shirazian, 2017; Ismail, 2019; Rezakazemi,

2018; Dashti, 2018; Pishnamazi, 2020; Marjani et al., 2020;

Babanezhad, 2020; Babanezhad, 2020; Babanezhad et al., 2020;

Babanezhad, 2020; Babanezhad, 2020; Nabipour, 2020; Tian, 2020).

Machine learning (ML) is a general term for a bunch of AI (Artificial

Intelligence) tools technique that enables computers to learn from data

without being directly programmed. ML is focused on developing

meta-programs that process experimental data and use it to train mod-

els (El Naqa and Murphy, 2015; Goodfellow et al., 2016). To cope with

the non-linear, unpredictable, complex nature of biodiesel systems,

data-driven ML technology provides a possible override to standard

modeling methodologies (Aghbashlo, 2021; Gupta, et al., 2021;

(Yosofvand, 2020)).

In this study, we used three different ensemble methods for simula-

tion and optimization of FAME production using waste cooking oil

(WCO) as feedstock via a heterogenous catalyst. These methods are

a group of learning algorithms that use multiple base learners to make

more robust models. Bagging and boosting are the most common

approaches to make ensembles (Maclin and Opitz, 1997; Zhou,

2019). This study selected Forest of Decision Trees as a bagging

method and Adaboost as a boosting method that combines with

MLP and Linear Regression to make two other distinct models.

Forest of Decision Trees is a set of Decision Trees that are

well-known as a method of knowledge representation, classifiers, and

algorithms for solving diverse issues in optimization and other applica-

tions. The time complexity of trees and tree optimization algorithms

have been thoroughly investigated for both finite and infinite sets of

characteristics (Rokach and Maimon, 2007; Breiman, et al., 2017;

Dr.s.srinivasareddy, d.y.v.n., dr.d.krishna, 2021). Also, Feed-forward

neural networks are well-known and widely used techniques for deal-

ing with nonlinear regression models. MLP models may be thought

of as a parametric group of regression functions (White, 1992).

A few significant methodological characteristics characterize Ada-

Boost. First, unlike previous boosting algorithms, which trained mul-

tiple estimators using random sub-samples of data, AdaBoost trains

multiple estimators with access to all available data points (Ferreira

and Figueiredo, 2012). It improves the model by giving high weight

to samples poorly estimated in former models.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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2. Data Set

For this research, we have collected several experimental data
from resources for development of optimization model of pro-

cess. The data set of this research, which is identical to (Yahya
et al., 2020), that is shown in Table 1. There are four input fea-
tures and only one output and data containing 30 different

sample vectors. As shown, the measured data have been
obtained by variation of important process parameters includ-
ing reaction temperature, reaction time, catalyst loading, and
the ratio of methanol to oil, while the response variable is

the biodiesel production efficiency. The experiments have been
performed in batch operational mode, with the aid of a min-
eral catalyst, known as Montmorillonite K10 which is a hetero-

geneous catalyst for the biodiesel production. More details
about the experimental measurements and description of
parameters can be found elsewhere (Yahya et al., 2020). We

developed the machine learning models for description of the
process and finding the optimum point where the production
yield is the maximum. The used machine learning models in

this study will be explained in the next section.

3. Methodology

3.1. MLP model

The multilayer perceptron (MLP) model is a ML tool that is
inspired by the structure of information processing in the
Table 1 The whole used dataset for simulation of biodiesel produc

RUN X1=

Temperature (0C)

X2=

Reaction time (h)

X3=

Catalyst loading (

1 125 4.5 3

2 175 4.5 3

3 125 7.5 3

4 175 7.5 3

5 125 4.5 5

6 175 4.5 5

7 125 7.5 5

8 175 7.5 5

9 125 4.5 3

10 175 4.5 3

11 125 7.5 3

12 175 7.5 3

13 125 4.5 5

14 175 4.5 5

15 125 7.5 5

16 175 7.5 5

17 100 6 4

18 200 6 4

19 150 3 4

20 150 9 4

21 150 6 2

22 150 6 6

23 150 6 4

24 150 6 4

25 150 6 4

26 150 6 4

27 150 6 4

28 150 6 4

29 150 6 4

30 150 6 4
human brain, and can be used as predictive tools for chemi-
cal/physical processes (Jain et al., 1996). MLP is used to han-
dle a wide range of problems in various industries since it

effectively predicts both discrete and numerical variables
(Soltani Fesaghandis, 2017). The MLP is primarily made up
of neurons, and the layers are formed up of clusters of neu-

rons. In this method, the neurons in the previous layer get
inputs from their counterparts in the next layer. Then process
them with their activation function, and pass results into the

following layer to use (Noriega, 2005).
The process begins with the input layer and progresses until

units in the final layer provide some output type. Hidden layers
are those that exist between the two input/output layers. The

solver function, the activation functions, and the size of hidden
layers are hyper-parameters that must be tuned in this algo-
rithm to obtain the prediction accuracy of processes (Elmaz

et al., 2020). The following is the output formulation for a
Multi-layer Perceptron model with only 1 hidden layer and 1
output:

ey ¼ d2
Xm
i¼1

w
2ð Þ
i d1 Xð Þ

� �
þ b 2ð Þ

 !
X ¼

Xn
j¼1

xjw
1ð Þ
xj

� �
þ b 1ð Þ

where ey is the MLP model’s prediction vector, m stands for
the count of data point in the whole data, n is the size of data
set features, and xj is the jth feature vector w(2) denotes the

weights between the hidden and output layers, whereas w(1)

denotes the weights of inputs linked to the hidden layer. d2
shows the output layer’s activation (Zhou, 2018). Also, in
tion used in this work (Yahya et al., 2020).

weight%)

X4 = Methanol: oil molar ratio Y=

Actual yield (%)

10 62.93

10 66.13

10 65.36

10 66

10 63.72

10 68.92

10 68.81

10 70.25

14 64.34

14 60.25

14 65.2

14 58

14 74.52

14 75.31

14 78.24

14 73.13

12 62.02

12 64.7

12 60.24

12 68.12

12 58.59

12 79.79

8 71.44

16 73.15

12 97.53

12 95.75

12 95.26

12 96.41

12 96.23

12 97.78
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the hidden layer the activation function of neurons is d1. The
bias vectors in the output layer and all hidden layers are
denoted by b(2) and b(1), respectively (Yang, 2008).

To improve the accuracy of predicting, the weights between
each connection in a neural network are changed. The broadly
useful back-propagation and batch gradient descent algo-

rithms are employed in the learning step (Hecht-Nielsen,
1992).

3.2. Linear Regression

The other base learning algorithm in this study is linear regres-
sion, a fundamental regression approach. In a linear regres-

sion, the normality assumption is provided, and it pertains
to the following equation:

y ¼ b0 þ b1xþ e

In the above equation, y represents the output, the indepen-
dent variable of the model is denoted by x. In fact, linear

regression tries to minimize the sum of squares in this model
(Pombeiro, 2017; Kim et al., 2020):Xn

k¼1
yk � y

�� �2 ¼Xn

k¼1
yk � bykð Þ2 þ

Xn

k¼1
byk � y

�
k

� �2
Here, yk denotes the observed value in actual data k, y

�
k is

the average of yk in all n data, and k shows the projected value

of byk for sample k.

3.3. Tree-based Ensembles

Decision Tree (DT) is one of most used learners as weak lear-
ner for ensemble methods. A weak learner means a simple pre-

dictor that is just a bit more accurate than a random predictor.
Tree-based ensemble methods are made up of many weak deci-
sion tree models that develop parallel to one another to mini-
mize the model’s variance and bias at the same time (Breiman,

et al., 2017; Xue, 2020).
Random forest (RF) ensemble is a tree-based method that

employs a voting process to improve the performance of sev-

eral weak tree estimators like other ensemble learning methods
(Jiang, 2009). In order to train a random forest, the original
dataset is used for drawing N bootstrapped sample sets. After-

ward, an unpruned regression tree (classification tree) will be
grown using every single bootstrapped sample. In this step,
instead of utilizing all of the existing predictors, a few and
the predetermined number of j predictors that are randomly

sampled are chosen for playing the role of split candidates.
This two-step procedure will then be repeated until C trees
with the aforementioned properties are developed, and unseen

data can be estimated by aggregating the predictions of these C
trees. RF employs a bagging approach to increase tree diver-
sity by creating trees from various training datasets, thereby

lowering the model’s overall variance (Rodriguez-Galiano,
2015). The following equation expresses an RF regression
predictor:

bfCRF xð Þ ¼ 1

C

XC

i¼1
Ti xð Þ

In the above equation, C stands for the number of trees, x
represents the data vector, and Ti(x) represents a sole regres-
sion tree that is developed on based on bootstrapped samples

and a subset consisting of input variables. RF can natively per-
form estimation of the out-of-bag errors during forest con-
struction by utilizing the samples that are not chosen in the
training of the ith tree during the bagging process. The subset

that does not utilize an external data subset and can compute
an impartial assessment of generalization error is known as
out-of-bag (Breiman, et al., 2017; Zhang, 2022). To allocate

relative significance score for every single input variable, an
input variable is switched by RF while others are kept con-
stant, and the mean reduction in estimation accuracy of the

model is measured (Breiman, et al., 2017).
Extra Trees (Extremely randomized trees) is another

ensemble approach based on trees, similar to the random for-
est. When splitting a tree node, it aggressively randomizes both

the cut point decision and its characteristics. Extra Tree is use-
ful for classification and regression tasks both (Geurts et al.,
2006; Dutta et al., 2021).

Regarding the difference between these two models, they
are similar in that both generate numerous trees and split
nodes using random subsets of features. However, there are

two significant differences: Extra trees do not make bootstrap
observations, and nodes are divided on random rather than
optimal splits.

3.4. Adaboost

The AdaBoost method is one of the essential ensemble meth-
ods. Because of its capabilities, this technique has become pop-

ular. As the name implies, basic models are adaptively boosted
and used to solve complex problems in this technique. There
are two approaches to complex problem solving: simple and

complex models. Because of their simplicity of structure, sim-
ple models have excellent generalization properties. They are
simple to implement in real-time problems, but they cannot

solve complex problems due to high bias due to their structure
(Freund and Schapire, 1997).

The use of complex models, on the other hand, increases

the risk of over-fitting or implementation difficulties due to
the complexity of the models (Buitinck, et al., 1309). Such
problems can be resolved with the AdaBoost method. With
this method, an unreliable base model (weak learner) is used

as the starting point for a more reliable system to handle more
challenging problems (Pedregosa and Scikit-learn, , 2011). This
algorithm can be summarized in these steps:

� Initially
� Initialization:

o Make Decision on the number of estimators: M
o Set uniform example weights.

� For Each i 2 [1,2, . . ., M}:

o Train a weak learner Li with a weighted sample.
o Test Li using whole dataset.
o Set weight for Li learner.

o Set sample weights.

4. Results and discussion

After tuning introduced models’ hyper-parameters, two R2 –

score and MAPE metrics alongside fitting charts were used
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to evaluate the performance of the selected models. These
results are shown in Table 2 and Figs. 1-6. Figs. 1 and 5, which
show the training stage in the boosted MLP models and the

Forest, are the same. This fact shows that both models have
crossed almost all points in the training data. Fig. 3 concludes
that they had more proper training than the boosted linear

regression model. However, when we compare the test figures
specifically with Figs. 2 and 6, the Forest model has many
Fig. 3 Model Predicted and Actual yield in Boosted LR –Train.

Table 2 Final Model Results.

Models R2 MAPE

Boosted MLP 0.998 5.20 � 10-2

Boosted LR 0.926 5.68 � 10-2

Forest of Decision Trees 0.992 9.83 � 10-2

Fig. 1 Model Predicted and Actual yield in Boosted MLP –

Train.

Fig. 2 Model Predicted and Actual yield in Boosted MLP –Test.

Fig. 4 Model Predicted and Actual yield in Boosted LR –Test.

Fig. 5 Model Predicted and Actual yield in Forest of Decision

Trees –Train.



Fig. 6 Model Predicted and Actual yield in Forest of Decision

Trees –Test.

Fig. 7 X1 and X2 projection with prediction surface in final

Boosted GPR model. X3 = 4 and X4 = 12 considered constant.

Optimum value is y = 95.7 for x1 = 153 x2 = 5.57.

Fig. 8 X1 and X3 projection with prediction surface in final

Boosted GPR model. X2 = 6 and X4 = 12 considered constant.

Optimum value is y = 96.66 for x1 = 153 x3 = 4.
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points where the actual values are significantly different that is
not the case in boosted MLP. Therefore, we accept the boosted

MLP model as the most common model in prediction of this
process.

The optimal values of the input parameters at the optimum
point are also listed in Table 3, where the highest value of yield

is attained as 96.7 % which is consistent with the reported
value in literature (Yahya et al., 2020). Furthermore, the 3D
surface plots of predicted yield for the combination of various

inputs are indicated in Figs. 7-12. In these figures, the red
points indicate the optimum values which are specified for each
case. Also, the 2D plots of optimization are illustrated in

Figs. 13-16 to exactly spot the optimum parameter for each
input parameter.

It is indicated that longer reaction time (e.g., 7 h) and
higher reaction temperature (greater than170 �C) would

degrade the biodiesel production yield to lower values which
could be attributed to the rate of reaction and also accumula-
tion of water as by-product of the WCO conversion to FAME.

Indeed, the reaction time and temperature must be kept at an
optimum value in order to obtain the highest yield of biodiesel
production.

5. Conclusion

Multiple machine learning regression models were developed in this

work in order to optimize production of biodiesel from a feedstock.

Waste cooking oil (WCO) was considered as the feedstock for the reac-

tion, and heterogenous catalyst was considered in the process. Four

different input parameters including reaction temperature, reaction
Table 3 Optimal values of the paramours for maximum response.

X1=

Temperature (�C)
X2=

Reaction time (h)

X3=

Catalyst loading (wt%)

X4 = Methanol: oil molar ratio Y=

Actual yield (%)

165 5.72 5.55 13.0 96.7



Fig. 11 X2 and X4 projection with prediction surface in final

Boosted GPR model. X1 = 125 and X3 = 4 considered constant.

Optimum value is y = 87.22 for x2 = 6, x4 = 14.3.

Fig. 12 X3 and X4 projection with prediction surface in final

Boosted GPR model. X1 = 125 and X2 = 4 considered constant.

Optimum value is y = 86.75 for x3 = 5.38, x4 = 14.66.

Fig. 9 X1 and X4 projection with prediction surface in final

Boosted GPR model. X2 = 6 and X3 = 4 considered constant.

Optimum value is y = 96.52 for x1 = 146 x4 = 13.09.

Fig. 10 X2 and X3 projection with prediction surface in final

Boosted GPR model. X1 = 125 and X4 = 12 considered

constant. Optimum value is y = 84.48 for x2 = 5.35, x3 = 3.69.
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time, catalyst loading, and MeOH:oil ratio were considered in the

model, while the only predicted output was the production yield

(%). An attempt was made to find the optimum values of the input

parameters to achieve the highest production yield. In the modeling

of process, three ensemble models were used: boosted linear regression,

boosted multi-layer perceptron, and forest of randomized tree. We

then determined their optimum configurations, or hyper-parameters,

for each model. This crucial search is carried out by executing over
1000 different combinations of hyper-parameters. Finally, R2-Scores

for Boosted Linear Regression, Boosted Multi-layer Perceptron, and

Forest of Randomized Tree were 0.926, 0.998, and 0.992, respectively.

The error rates for boosted linear regression, boosted multi-layer per-

ceptron, and Forest of Randomized Tree were 5.6810-2, 5.2010-2, and

9.8310-2, respectively, according to MAPE. It was indicated that

boosted multi-layer perceptron was the best model among other mod-

els in terms of predictive accuracy.



Fig. 15 Response trend for X3.

Fig. 16 Response trend for X4.Fig. 13 Response trend for X1.

Fig. 14 Response trend for X2.
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