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Abstract Laportea bulbifera (Sieb. et. Zucc.) Wedd has long been utilized in Traditional Chinese

Medicines (TCM) for the treatment of rheumatoid arthritis. However, the study of systematic

anti-inflammatory chemical constituents in L. bulbifera has never been reported. Thus, bioassay-

guided isolation for its roots part led to 46 compounds, including 38 phenolic derivatives. Their

structures were determined on the basis of 1H and 13C NMR and MS spectra. All compounds were

isolated from L. bulbifera for the first time except for 13 compounds. Most of the compounds

showed good COX-2 inhibitory activity (IC50: 0.13–3.94 lM) and DPPH radical-scavenging activity

(IC50: 1.57–9.55 lM). Four compounds (4, 17, 35, and 43) with different skeletons showed prefer-

ential COX-2 over COX-1 inhibition with selective indices ranging from 12 to 171. High content

active compounds are important for elucidating the basis of the active substance of TCM. Com-

pound 4 (COX-2, IC50 0.24 lM), a high content compound, represented one of the best selective

COX-2 inhibitors. Another high content active compound (35) with a different skeleton might have
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different mechanism. Further study for the inhibition kinetics against COX-2 indicated compounds

4 and 35 were noncompetitive and competitive COX-2 inhibitors, respectively. Moreover, molecular

docking and molecular dynamics simulation data further indicated that compound 4 could bind in

the cavity of COX-2 and interacted with key residues VAL-538, PHE-142, and GLY-225 of COX-2

through hydrogen bonds. The results indicated that L. bulbifera roots could be applied as antiox-

idant and anti-inflammatory agents due to their potent selective COX-2 inhibitory and antioxidant

activity of phenolic compounds.

� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Inflammation is an innate immune response that protects against chem-

ical irritants and foreign antigens, and many diseases can induce inflam-

matory responses in the human body (Cheung et al., 2002; Jang et al.,

2017; Kim et al., 2014). Excessive responses can lead to multiple inflam-

matory diseases, such as rheumatoid arthritis, systemic lupus erythe-

matosus, and chronic granulomatous disease (Qin et al., 2020). There

are multiple mediators of inflammation, and the arachidonic acid cas-

cade in the cyclooxygenase (COX) pathway is one of the important pro-

cesses. Cyclooxygenase enzymes (COXs) present in two isoforms

(constitutive (COX-1) and inducible form (COX-2)) (Puig et al.,

2000). COX-2 is a significant target for the discovery of many novel

nonsteroidal anti-inflammatory drugs (NSAIDs) (Qin et al., 2020). In

contrast, the inhibition for COX-1 could cause adverse gastrointestinal

and renal effects (Sağlık, et al., 2021). Therefore, the studies for selective
COX-2 inhibitors are important for new drug development. To date,

several drugs targeting COX-2 are very popular on the market, such

as nimesulide, meloxicam, and celecoxib.

The generation of oxygen free radicals is involved in the occurrence

and development of inflammatory-related diseases, such as arthritic

disorders and systemic inflammatory response syndrome (Closa and

Folch-Puy, 2004; Comhair and Erzurum, 2002). Free radicals are both

a cause and a result of inflammation (Chatterjee et al., 2016). Com-

pounds with free radical scavenging activity could to some extent exhi-

bit good anti-inflammatory activity.

Laportea bulbifera (Sieb. et. Zucc.) Wedd, named as Hong Hema,

Hong Huoma, Rui Dagun or Wadou, is a perennial herb in the Urti-

caceae family. It is a folk medicine of Miao and Buyi ethnic minorities

in Guizhou Province of China. This plant has long been utilized in tra-

ditional Chinese medicines for the treatment of rheumatoid arthritis

and some other inflammatory diseases, such as skin itch and sports

injury (Editorial Committee of Chinese Flora, 1995; Song et al.,

2005). Its extract is usually made in ointments or capsules, such as

Runzao Antipruritic Capsules (State Drug Administration, 2002a),

Liuwei Shangfuning Ointments (State Drug Administration, 2002a),

and Fufang Shangning Ointments (State Drug Administration,

2002b). In particular, Runzao Antipruritic Capsules are very popular

on the market in China, and thus were included in the Report on

the Scientific and Technological Competitiveness of Large Varieties

of Traditional Chinese Medicine (TCM) (Yang et al., 2019). Moreover,

its young leaves are edible, and the stem fibers are tough enough to be

used in textiles (Editorial Committee of Chinese Flora, 1995). Modern

pharmacological studies on this plant indicated that the crude extract

exhibited many bioactivities, such as anti-inflammatory (Lu et al.,

2012; Chen et al., 2019), immunosuppressive (Xiang et al., 2009), anal-

gesic activities (Su et al., 2009), and anti-rheumatoid arthritis (Luo

et al., 2011). Previous phytochemical investigation on L. bulbifera indi-

cated the presence of flavonoids (Zhang et al., 2018; Yang et al., 2003),

coumarins (Hou et al., 2010), steroids (Zhu et al., 2011), and phenolic

acid (Zhu et al., 2011).

Although several scientific studies have indicated that crude extracts

of L. bulbifera exhibit anti-inflammatory activities in vitro and in vivo

(Wang et al., 2013; Chen et al., 2019), the study of the systematic chem-

ical constituents on the anti-inflammatory effects has never been inves-
tigated. To investigate the potential anti-inflammatory compounds in

L. bulbifera, bioactivity-guided identification of its COX-2 inhibitory

and antioxidant compounds was performed. Consequently, bioassay-

guided isolation of the ethyl acetate extract led to the isolation and iden-

tification of 46 compounds. Most of them exhibited good COX-2 inhi-

bitory and DPPH radical-scavenging activity. Four compounds (4, 17,

35, and 43) with different skeletons showed preferential COX-2 over

COX-1 inhibition with selective indices (SIs) ranging from 12 to 171.

High content active compounds are important for the elucidating the

basis of the active substance of TCM. Compound 4 (COX-2, IC50

0.24 lM), a high content compound, represented one of the best selec-

tive COX-2 inhibitors. Another high content active compound (35)

with a different skeleton might have different mechanism. Therefore,

these two COX-2 selective inhibitors were selected to study their

COX-2 inhibitory mechanism, including their enzyme kinetics, molecu-

lar docking, and molecular dynamics.
2. Materials and methods

2.1. General information

Optical rotations were determined on a JASCOP-1020
polarimeter. 1H NMR and 13C NMR spectra were recorded
on Bruker Avance NEO 600 spectrometer using TMS as an

internal standard. ESI-MS analysis were carried out on Agilent
1100 instrument. Column chromatography was performed on
silica gel (300–400 mesh; Qingdao Marine Chemical Co. Ltd.,
China), Sephadex LH-20 (40–70 mm, Amersham Pharmacia

Biotech AB, Uppsala, Sweden), and RP-C18 gel (40–63 mm,
Merck, Darmstadt, Germany). Semi-preparative HPLC was
performed on an instrument consisting of a Hanbon NP7005c

controller, a Hanbon NP7005 pump, and a Hanbon NU3000c
UV detector with a YMC-Triart-C18 column (250 � 10.0 mm,
5 lm). Fractions were monitored by TLC (GF 254, Qingdao

Marine Chemical Co., Ltd.), and spots were visualized by heat-
ing silica gel plates immersed in 5 % H2SO4 in ethanol.

2.2. Plant material

The root parts of Laportea bulbifera (Sieb. et. Zucc.) Wedd
were collected from Libo, Guizhou Province of China, in
October of 2019. The identification of the plant was confirmed

by Mr. Jun Zhang. A voucher specimen (H20191015) has been
preserved in the key laboratory of chemistry for natural prod-
ucts of Guizhou Province and Chinese Academy of Sciences.

2.3. Extraction, isolation and identification of compounds

The air-dried powdered roots of L. bulbifera (49 kg) were

extracted with 95 % ethanol (EtOH) under reflux for three

http://creativecommons.org/licenses/by-nc-nd/4.0/
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times (each time for 3 h). The combined EtOH extracts were
concentrated under vacuum to give a crude residue (2.0 kg),
which was suspended in water. The water layer was succes-

sively partitioned with ethyl acetate (EtOAc) for three times.
The EtOAc part (600 g) was separated by a silica gel column
chromatography (CC) with CH2Cl2/MeOH (99:1, 95:5, 9:1,

8:2, 7:3, 6:4, 1:1, 4:6, 3:7, 2:8, 1:9, v/v) to afford eight fractions
(Fr. 1–Fr. 8) after combing a lot of subfractions.

A RP-C18 column was used for fraction 3 (150 g), washed

with gradient MeOH/H2O (50:50, 55:45, 65:35, 75:25, 85:15,
95:5, 100:0, v/v), to give twenty-five subfractions (Fr. 3A-Fr.
3Y). Subsequently, a silica gel column was used for fraction
3B (2.0 g), washed with gradient CH2Cl2/acetone (15:1, 10:1,

7:3, v/v) to afford two components (Fr. 3B1 and Fr. 3B2).
Fraction 3B1 was subjected to the semi-preparative HPLC
eluted with 28 % MeOH/H2O (2.0 mL/min) to get two com-

pounds (1, 100 mg, tR = 13.3 min; 5, 80 mg, tR = 22.0 min).
Fraction 3B2 was subjected to the semi-preparative HPLC
eluted with 24 % MeOH/H2O (2.0 mL/min) to get two com-

pounds (2, 83 mg, tR = 11.0 min; 6, 17 mg, tR = 19.4 min).
Fraction 3 K was separated over Sephadex LH-20 (MeOH)
and then chromatographed over a silica gel column eluted with

gradient petroleum ether/acetone (20:1, 15:1, 9:1, 7:3, 1:1, v/v)
to give five compounds (25, 15 mg; 26, 7 mg; 31, 6 mg; 27,
30 mg; 34, 8 mg). Fraction 3Q was applied to Sephadex LH-
20 (MeOH) and chromatographed over silica gel column

washed with gradient petroleum ether/EtOAc (40:1, 30:1,
20:1, 9:1, 7:3, 6:1, 1:1, v/v) to give six compounds (36, 5 mg;
37, 11 mg; 38, 14 mg; 43, 32 mg; 44, 23 mg; 46, 6 mg). Fraction

3Y was applied to a silica gel column eluted with gradient pet-
roleum ether/CH2Cl2 (15:1, 10:1, 9:1, 8:2, 7:3, 1:9, v/v) to give
five compounds (39, 26 mg; 40, 8 mg; 41, 13 mg; 42, 28 mg; 45,

6 mg).
A RP-C18 column was used for fraction 6 (79 g), washed

with gradient MeOH/H2O (10:90, 20:80, 30:70, 40:60, 50:50,

70:30, 90:10, 100:0, v/v), to obtain ten subfractions (Fr. 6A-
Fr. 6 J). Fraction 6A (5 g) was applied to a silica gel column
eluted with CH2Cl2/MeOH (9:1) to get compound 4

(800 mg). Fraction 6B (4 g) was separated over Sephadex

LH-20 (MeOH) to give six fractions (Fr. 6B1-Fr. 6B6).
Fraction 6B1 (60 mg) was subjected to the semi-preparative
HPLC eluted with 8 % MeOH/H2O (2.0 mL/min) to get two

compounds (3, 15 mg, tR = 26.4 min; 7, 10 mg, tR = 52.6 min).
Fraction 6B2 (700 mg) was chromatographed over a silica gel
column (CH2Cl2/acetone, 25:1, 20:1, 15:1, 9:1, v/v) and then

subjected to the semi-preparative HPLC eluted with 29 %
MeOH/H2O (2.0 mL/min) to get compound 10 (13 mg,
tR = 37.9 min). Fr. 6B3 (60 mg) was separated over Sephadex
LH-20 (MeOH) to give 20 (45 mg). Fr. 6B3 (80 mg) was sub-

jected to the semipreparative HPLC eluted with 50 % MeOH/
H2O (2.0 mL/min) to get 8 (10 mg, tR = 27.5 min) and 9

(12 mg, tR = 45.0 min). Fr. 6B5 (10 g) was chromatographed

over silica gel eluted with CH2Cl2/EtOAc (15:1, 9:1, 7:3, 1:1,
v/v) to obtain three fractions (Fr. 6B5A-6B5C). Fr. 6B5C
(500 mg) were separated over Sephadex LH-20 (MeOH) to

give 32 (25 mg), 33 (13 mg), and 11 (13 mg). Fr. 6C (3.2 g)
was separated over Sephadex LH-20 (MeOH) to give seven
fractions (Fr. 6C1-Fr. 6C7). Fr. 6C3 (400 mg) was chro-

matographed over a silica gel column eluted with gradient
CH2Cl2/MeOH (30:1, 20:1, 10:1, 9:1, 8:2, 1:1, v/v) to obtain
four fractions (Fr. 6C3A-Fr. 6C3F). Fr. 6C3A (45 mg) was
subjected to the semi-preparative HPLC eluted with 22 %
MeOH/H2O (2.0 mL/min) to get two compounds (28, 14 mg,
tR = 18.9 min; 12, 9 mg, tR = 25.8 min). Fr. 6C3D was sub-
jected to the semi-preparative HPLC eluted with 18 % MeOH/

H2O (2.0 mL/min) to get three compounds (13, 14 mg,
tR = 18.9 min; 29, 9 mg, tR = 25.8 min; 21, 17 mg,
tR = 40.3 min).

Fraction 7 (50 g) was applied to a RP-C18 chromatography
column (CC) eluted with a MeOH/H2O gradient (10:90, 20:80,
30:70, 40:60, v/v) to yield five subfractions (7A–7E). Fraction

7A (5 g) was subjected on a silica gel column, eluted with CH2-
Cl2/MeOH (8:2, v/v) to give five subfractions (Fr. 7A1-Fr.
7A5). Subsequently, Fr. 7A1 (800 mg) was separated on
Sephadex LH-20 column (MeOH) to get compound 22

(15 mg) and a major component, which was further purified
by semi-preparative HPLC separation to get 14 (21 mg,
tR = 15.6 min), 15 (9.6 mg, tR = 20.4 min), 23 (14.7 mg,

tR = 23.6 min), 30 (18.9 mg, tR = 25.7 min), and 16

(13.9 mg, tR = 35.6 min). Fraction 7B (2.5 g) was applied to
a silica gel column and then purified on Sephadex LH-20

(MeOH) to yield two compounds (35, 750 mg; 17, 80 mg).
Fraction 7D (3 g) was purified on a silica gel column eluted
with gradient CH2Cl2/acetone (15:1, 9:1, 7:3, 1:1, 1:9, v/v) to

get three compounds (18, 12 mg; 19, 17 mg; 24, 20 mg).
1H (400 MHz) and 13C (100 MHz) NMR spectra of all iso-

lates were acquired on a Bruker 400 MHz instrument. Com-
pounds 1–46 were identified by comparison of the NMR

data with those in the literatures.
2.4. In vitro COX-2 and COX-1 inhibitory assay

The inhibitory activities of the EtOAc and water parts, and all
the isolated compounds toward COX-2 were evaluated using
the COX-2 Inhibitor Screening Kit (Beyotime, Shanghai,

China) (Chen et al., 2019; Jiao et al., 2019; Li et al., 2019).
Stock solutions of test samples (the EtOAc and water parts,
and all the isolated compounds) were prepared and diluted

in DMSO. Celecoxib was used as positive control. According
to the manufacturer’s protocols, a recombinant human
COX-2 enzyme in 96-well plates was incubated with the test
samples at varying concentrations for 10 min at 37 ℃. After

incubation, the COX-2 probe and substrate were added to
each well and incubated for another 15 min at 37 ℃ in the
dark. The intensity of the fluorescence was measured using a

microplate reader (BioTek) with an excitation wavelength of
560 nm and an emission wavelength of 590 nm.

Inhibition of COX-1 was assessed using a COX fluorescent

inhibitor screening assay kit from Cayman Chemical. Stock
solutions of test samples were prepared and diluted in DMSO
(Mohan et al., 2021; Sağlık, et al., 2021). The inhibition of
COX-1 by compounds 4, 17, 35 and 43 was analyzed. All reac-

tions were performed in a final volume of 100 ll in 96-well
white opaque plate with flat bottom (Cayman) according to
the manufacturer’s protocol. Briefly, 80 ll of reaction mix were

added into each well (including 76 ll COX assay buffer; 1 ll
COX probe; 2 ll diluted COX cofactor; 1 ll COX-1). Then,
a multi-channel pipette was applied to add 10 ll of diluted

arachidonic acid solution into each well to initiate all the reac-
tions at the same time. Fluorescence values with an excitation
wavelength of 535 nm and an emission wavelength of 587 nm

were tested, using a microplate reader (BioTek) kinetically at
25 ℃ for 10 min.
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The inhibitory ratio of COX-1 and COX-2 was calcu-
lated by the comparison of the sample treated incubations
to control incubations. The IC50 values for COX-1 an

COX-2 were calculated from the concentration–inhibition
response curve.

2.5. Inhibitory kinetic analysis

Kinetic parameter and mechanism analyses of compounds 4

and 35 toward COX-2 were investigated by using

Lineweaver-Burk analyses (Liu et al., 2019). The experi-
ments were implemented at different concentrations of
arachidonic acid in the absence and presence of compounds

4 (0.06–1.5 lM) and 35 (0.75–3.0 lM), and the data were
fitted into Michaelis-Menten plots (Zhao et al., 2021). More-
over, their inhibition type was determined by Lineweaver-
Burk analysis (Lin et al., 2019). The kinetic parameters

(constant Ki) of compounds 4 and 35 were calculated
according to the slope plots and inhibition kinetics model
(He et al., 2020).

2.6. Molecular docking

The docking study was performed as described previously (Qin

et al., 2020). Molecular docking analysis of COX-2 with com-
pounds 1–46 was performed using AutoDock tools (version
1.1.2). The 3-dimensional structures of compounds were pre-
pared using Chem 3D. The coordinates for COX-2 (PDB entry

code: 5IKQ) enzyme was obtained from the Protein Data
Bank (Qin et al., 2020). Water molecules were removed and
polar hydrogens were added for the accurate calculation of

partial charges. The grid box size was set at 122, 120, and
114 Å (x, y, and z) with center x = 30.4, y = 48.8, and
z = 19.5 for the protein. For further docking, the edited

COX-2 and ligand files were transcribed into PDBQT format
files. All the parameters were the default. The best docked
complex for COX-2 with compounds were selected on the basis

of binding free energy value.

2.7. Molecular dynamic simulation

Molecular dynamics (MD) simulation was performed using

the GROMACS package for the inhibitor-enzyme interaction
mechanism. Compound 4 and 5IKQ were prepared separately
according to the coordinates of the docked complex. The pro-

tein topology was optimized based on the amber99sb force
field (Hornak et al., 2006; Sun et al., 2021). The partial charge
of compound 4 was obtained by using the antechamber mod-

ule of AmberTool. The topology parameters could be gener-
ated by the antechamber and ACPYPE programs. A
rectangular box with a TIP3P water model was added around

the complex with a solvation thickness of at least 1.2 nm. Na
ions were added to ensure the neutrality. The production run
was performed following proper minimization to fully relax
the prepared system. A total 10 ns molecular dynamic trajec-

tory was sampled under isothermal-sobaric condition at
300 K. All the simulations were executed under periodic
boundary conditions (PBCs). The enzyme inhibitor interaction

at the atomic level was retrieved from the MD trajectory with
analytic tools integrated in GROMACS.
2.8. DPPH radical-scavenging assay

A 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging
assay (Xu et al., 2021) was used to test the antioxidative activ-
ity. Five groups, a blank (MeOH), sample (mixed compound

and DPPH solution), background (pure compound solution),
negative (pure DPPH solution), and positive [mixed vitamin
C (VC) and DPPH solution] controls could be applied for
the test. Three tested groups, DPPH (0.15 mM), compounds

(1–100 mM), and VC (1–100 mM), were dissolved in MeOH.
Each 160 ml aliquot of MeOH was placed in the negative con-
trol and blank groups, while each 160 ml aliquot of the test

compounds or VC was placed in the sample and background
groups. MeOH (each 40 ml) was added to the blank and back-
ground groups, while 40 ml of DPPH was added to the nega-

tive, positive, and sample controls. Then, the absorbance of
all tested samples was measured at 517 nm with a microplate
reader (Multiskan Spectrum, Thermo Scientific Varioskan

LUX) after 30 min of incubation at room temperature. The
DPPH radical-scavenging rate was calculated as described in
the literature (Xu et al., 2021). The IC50 values of the com-
pounds and VC were calculated by SPSS (Statistical Package

for the Social Sciences) software from the radical-scavenging
rates at the final concentrations of 10, 5, 2.5, 1.25, 0.625,
0.3125 and 0.155 lg/mL.

2.9. Methods for HPLC

HPLC analysis was performed on a Agilent 1260 instrument

using a X-bridge C18 column (5 lm, 4.5 � 250 mm) at 25 ℃
and a flow rate of 0.9 mL/min. The mobile phase components
were solvent A (0.1 % phosphoric acid in H2O, v/v) and sol-
vent B (acetonitrile) using the following gradient: 0–20 min

(5–5 % B), 20–45 min (5–10 % B), 45–75 min (10–30 % B),
75–85 min (30–90 % B), 85–95 min (90–90 % B), 95–
105 min (90–5 % B), with an injection volume of 10 ll. The
ethyl acetate part and each isolate were applied to HPLC with
the same condition.

2.10. Statistical Analysis.

All results of bioactivity test were expressed as the
mean ± standard deviation (SD) (n = 3). Statistical compar-

isons were determined by Student t test. A P-value of < 0.05
was considered significant. A P-value of < 0.01 was consid-
ered highly statistically significant.

3. Results and discussion

3.1. Structure identification of isolated compounds

Using various chromatographic methods, 46 compounds were
isolated from the active ethyl acetate (EtOAc) extract of L.

bulbifera roots. Their structures were elucidated by their spec-
troscopic data analysis and comparisons with compounds
previously reported in the literatures (Fig. 1). These 46 com-

pounds were identified as (+)-catechin (1) (Hou et al.,
2000), (-)-gallocatechin (2) (Foo et al., 2000), (-)-
epigallocatechin 3-O-gallate (3) (Lee et al., 2000), (-)-

epicatechin-3-O-gallate (4) (Lin et al., 2011), (+)-



Fig. 1 Chemical structures of isolated compounds.
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epicatechin (5) (Wei et al., 2013), (-)-epigallocatechin (6) (Foo
et al., 2000), (-)-gallocatechin 3-O-gallate (7) (Choi et al.,
2015), (+)-5,5-dimethyl-5,6a,7,12a-tetrahydroisochromeno[4,
3-b]chromene-2,3,4,8,10-pentaol (8) (Hakamata et al., 2006),
(-)-5,5-dimethyl-5,6a,7,12a-tetrahydroisochromeno[4,3-b]chro
mene-2,3,4,8,10-pentaol (9) (Hakamata et al., 2006),



Fig. 2 Effects of extraction and isolates for antioxidant and COX-2 inhibitory activity. (A). COX-2 inhibitory rate for the extraction and

isolates; (B). DPPH radical-scavenging inhibitory rate for the extraction and isolates.
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quercetin-3-O-rhamnoside (10) (Fossen et al., 1999), isorham-
netin (11) (Su et al., 2008), hyperoside (12) (Isaza et al.,

2001), astragalin (13) (Xian et al., 2007), rutin (14) (Han
et al., 2012), kaempferide (15) (Zhang et al., 2015), -
myricetin-3-O-a-L-rhamnopyranoside (16) (Souza et al.,

2007), quercetin (17) (Guo et al., 2008), 40-methoxyflavonol
(18) (Babu et al., 2013), fisetin (19) (Mujwah et al., 2010),
nobiletin (20) (Yue et al., 2013), luteoloside (21) (Ma et al.,

2007), luteolin (22) (Chen et al., 2008), apigenin (23) (Tian
et al., 2005), (+)-dihydromyricetin (24) (Jin et al., 2009),
naringenin trimethyl ether (25) (Seidel et al., 2000), (+)-40,5,
7-trimethoxydihydroflavonol (26) (Zhang et al., 2012), 5-hyd

roxy-7,40-dimethoxyflavone (27) (Righi et al., 2012), daidzin
(28) (Kim et al., 2009), genistin (29) (Lee et al., 2002a), phlo-
ridzin (30) (Wang et al., 2008), flavokawain A (31) (Seidel

et al., 2000), 7-methoxycoumarin (32) (Adekenov et al.,
2017), scoparone (33) (Lee et al., 2002b), (+)-vibruresinol
(34) (In et al., 2015), piceid (35) (Jeong et al., 2010), 2-

hydroxy-3-(o-hydroxyphenyl) propanoic acid (36) (Wang
et al., 1999), p-hydroxybenzoic acid (37) (Zou et al., 2006),
vanillic acid (38) (Geng et al., 2017), (+)-cabralealactone

(39) (Phongmaykin et al., 2008), b-sitosterol (40)
(Chundattu et al., 2016), 7-keto-b-sitosterol (41) (Yu et al.,
2007), methyl linoleate (42) (Huh et al., 2010), linoleic acid

(43) (Marwah et al., 2007), methyl nonadecanoate (44)
(Capon et al., 1998), methyl (9E,11E)-8-oxooctadeca-9,11-
dienoate (45) (Thomas and Pryor, 1980), and squalene (46)

(Chang et al., 2000). All compounds were isolated from L.
bulbifera for the first time except for 13 compounds (1, 2,
5, 6, 20, 22, 33, 38, 40, 41, 42, 43, and 45). Compounds 1–

38 are phenolic compounds. Relevant NMR data of all iso-
lates are given in the Supplementary Information. The struc-
tures of all compounds are presented in Fig. 1.

3.2. COX-2 inhibitory effects of the extracts and isolates

The preliminary screening of COX-2 inhibitory activity
implied that the EtOAc extract showed good COX-2 inhibi-

tory activity with an inhibitory rate of 60.7% at a concentra-
tion of 100 mg/ml (Fig. 2A and Table 1). All compounds (1–
46) isolated from the active EtOAc part were tested for

COX-2 inhibitory activity at a concentration of 10 lM
(Fig. 2B). 23 Compounds (1–9, 11, 12, 14–17, 19, 21, 22, 24,
34, 35, 38, and 43) showed good inhibitory rates, higher than



Table 1 COX-2 Inhibitory and antioxidant activities of compounds 1–46 and crude extracts.

Compounds COX-2 DPPH

Inhibitory rate (%) a IC50 (lM) Inhibitory rate (%) a IC50 (lM)

1 96.34 ± 0.34**b 1.40 ± 0.05 96.18 ± 0.86** 2.10 ± 0.06

2 59.29 ± 0.58* 2.08 ± 0.06 94.75 ± 1.02** 2.61 ± 0.11

3 73.78 ± 1.20* 0.46 ± 0.03 96.32 ± 0.99** 1.80 ± 0.16

4 97.33 ± 0.47** 0.24 ± 0.06 95.26 ± 0.85** 1.68 ± 0.05

5 97.58 ± 0.53** 0.56 ± 0.04 94.09 ± 0.81** 2.04 ± 0.12

6 77.06 ± 1.11* 1.97 ± 0.61 96.49 ± 1.09** 1.73 ± 0.09

7 78.51 ± 0.97* 0.70 ± 0.01 95.72 ± 0.74** 1.80 ± 0.27

8 59.16 ± 0.84* 0.97 ± 0.38 82.69 ± 0.99** 3.21 ± 0.13

9 74.36 ± 0.83** 1.73 ± 0.33 80.42 ± 0.62** 2.63 ± 0.24

10 12.09 ± 1.97 – 95.58 ± 0.63** 1.57 ± 0.08

11 94.83 ± 1.92** 3.94 ± 1.14 97.60 ± 0.44** 1.66 ± 0.14

12 96.38 ± 1.34** 0.23 ± 0.01 95.82 ± 0.96** 1.72 ± 0.19

13 6.25 ± 1.45 – 16.77 ± 0.82 –

14 92.87 ± 2.36** 0.22 ± 0.06 94.05 ± 0.66** 1.78 ± 0.30

15 99.57 ± 0.36** 1.29 ± 0.02 93.45 ± 0.37** 1.74 ± 0.22

16 87.89 ± 2.40** 0.35 ± 0.07 94.66 ± 0.51** 1.63 ± 0.16

17 97.79 ± 0.76** 0.13 ± 0.02 96.81 ± 0.92** 2.22 ± 0.14

18 31.87 ± 12.20 – 71.57 ± 0.83* 9.51 ± 0.27

19 96.64 ± 2.51** 0.13 ± 0.01 98.12 ± 0.79** 1.67 ± 0.35

20 12.89 ± 1.13 – 14.74 ± 0.57 –

21 97.58 ± 1.19** 0.36 ± 0.07 93.98 ± 0.63** 1.85 ± 0.38

22 100.00 ± 0.78** 0.17 ± 0.03 92.87 ± 0.69** 3.01 ± 0.11

23 4.79 ± 2.31 – 25.56 ± 0.64 –

24 66.21 ± 1.34* 1.60 ± 0.37 94.73 ± 0.90** 1.69 ± 0.25

25 4.15 ± 0.59 – 29.67 ± 0.85 –

26 5.58 ± 0.56 – 10.31 ± 1.02 –

27 6.28 ± 0.52 – 31.22 ± 0.49 –

28 4.82 ± 1.23 – 27.79 ± 0.87 –

29 5.77 ± 0.79 – 71.99 ± 1.14* 6.23 ± 0.69

30 7.19 ± 0.95 – 29.01 ± 0.95 –

31 12.99 ± 0.78 – 17.17 ± 0.84 –

32 2.96 ± 2.01 – 27.61 ± 0.93 –

33 10.13 ± 2.10 – 27.82 ± 0.65 –

34 99.42 ± 0.49** 0.31 ± 0.02 77.94 ± 0.76* 5.89 ± 0.53

35 89.55 ± 1.49** 1.74 ± 0.03 50.93 ± 0.42* 9.55 ± 0.84

36 6.20 ± 0.51 – 5.90 ± 0.62 –

37 15.99 ± 0.65 – 14.88 ± 0.64 –

38 71.11 ± 0.91** 2.36 ± 0.12 35.34 ± 0.36 –

39 8.32 ± 0.85 – 8.89 ± 0.51 –

40 13.65 ± 0.89 – 3.68 ± 0.31 –

41 26.97 ± 0.85 – 16.75 ± 0.61 –

42 12.22 ± 0.55 – 15.90 ± 0.74 –

43 73.60 ± 0.61* 3.25 ± 0.85 11.63 ± 0.49 –

44 10.38 ± 1.03 – 5.67 ± 0.65 –

45 13.09 ± 0.86 – 6.21 ± 0.76 –

46 14.88 ± 1.03 – 9.04 ± 0.57 –

W c 36.92 ± 0.56 – 55.37 ± 0.29* –

EtOAc c 60.67 ± 0.35* – 92.68 ± 0.25** –

Celecoxib d 67.77 ± 0.12** 0.02 ± 0.001 – –

Vitamin C d – – 63.18 ± 0.11** 1.35 ± 0.005

b The results are presented as the mean ± SD of three independent experiments: *P < 0.05, **p < 0.01 vs the blank control.
a All compounds were screened at the concentration of 10 lM.
c W: Water part; EtOAc, ethyl acetate part; The tested concentration was 100 lg/mL.
d Celecoxib is used as the positive control for COX-2 inhibitory assay. Vitamin C is used as the positive control for DPPH inhibitory assay.
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50%, at this concentration. Then, these active compounds
were tested for their IC50, 13 of which showed strong inhibi-

tory activity with IC50 values lower than 1 lM (Table 1). In
special, compounds 4, 12, 14, 17, 19, and 22 exhibited optimal
COX-2 inhibitory potency (IC50 values ranging from 0.13 to

0.24 lM).



Table 2 In Vitro Inhibition of COX-1 and COX-2 by Compounds 4, 17, 35, and 43.

Comp. COX-1 IC50 (lM)a COX-2 IC50 (lM) Selectivity Indexb

4 8.77 ± 0.13 0.24 ± 0.06 37

17 22.22 ± 1.20 0.13 ± 0.02 171

35 21.62 ± 0.65 1.74 ± 0.03 12

43 >100 3.25 ± 0.85 >31

Celecoxib 21.52 ± 1.16 0.02 ± 0.001 1076

a Results are expressed as the mean of three independent experiments;
b Selectivity index = IC50(COX-1)/IC50(COX-2).
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3.3. COX-1 inhibitory effects of compounds with different
skeletons

The inhibition of COX-1 led to peptic lesions in the gas-
trointestinal mucosa (Puig et al., 2000). Searching for the

selective COX-2 inhibitors could decrease side effects over
current novel nonsteroidal anti-inflammatory drugs. Similar
skeleton compounds always have similar inhibitory mecha-

nism. Therefore, four most active compounds in their differ-
ent structural skeletons (4, 17, 35, and 43) were selected as
representative compounds to test for the COX-1 inhibitory

activities. The results indicated that those four compounds
showed good COX-2 selectivity index ranging from 12 to
171 (Table 2).

3.4. Inhibition kinetics of two representative compounds against

COX-2

High content active compounds are important for the elucidat-

ing the basis of the active substance of Traditional Chinese
Medicine. Compound 4 (COX-2, IC50 0.24 lM), a high con-
tent compound, represented one of the best COX-2 inhibitors

among the isolates. Another high content active compound
(35) with a different skeleton might have different mechanism.
Fig. 3 (A–B) Compounds 4 and 35 displayed concentration-depend

plots of compounds 4 and 35 against COX-2. (E-F) Lineweaver-Burk
Therefore, those two compounds were selected for the the inhi-
bition kinetics against COX-2. This experiment was deter-

mined by using Lineweaver-Burk plots to determine their
inhibition type (Wang et al., 2018), and the results are shown
in Figure 3 and Table 3. As shown in Figure 3, these two com-

pounds (4 and 35) revealed COX-2 inhibitory activity in a
dose-dependent manner, with IC50 values of 0.24 ± 0.06 and
1.74 ± 0.03 lM, respectively. As shown in Figure 3E, a series

of lines of compound 4 intersected at a point on the negative
X-axis in the Lineweaver-Burk plots, which indicated that
the inhibition type of 4 was noncompetitive (He et al., 2020).
As shown in Fig. 3F, compound 35 was assigned as a compet-

itive inhibitor since its Lineweaver-Burk plot showed that a
series of lines intersected at the Y axis. Thus, compound 4, a
noncompetitive inhibitor, had an inhibition constant Ki value

of 0.142 lM by Lineweaver-Burk and slope plots, and com-
pound 35, a competitive inhibitor, revealed a Ki value of
3.175 lM (Table 3). The Ki values of the two compounds were

in good agreement with their COX-2 inhibitory activity
(Table 3).

3.5. Molecular docking

Molecular docking was used to predict binding sites between
the active compounds and COX-2 (Wang et al., 2010; Zhao
ent inhibitory activities against COX-2. (C–D) Michealis-Menten

plots of compounds 4 and 35 against COX-2.



Table 3 Kinetic parameters of compounds 4 and 35 against COX-2.

Compounds Inhibition type Vmax (nM/s/lg) Km (lM) Ki (lM)

4 Noncompetitive 57.25 9.73 0.142

35 Competitive 94.94 42.70 3.175

Vmax is the maximum rate at saturation of the substrate concentration. The unit for Vmax (nM/s/lg) means per lg protein in per second

catalyzed substrate (nmol).

Ligand
Protein Hydrophobic Interaction

Hydrogen Bond

Ligand
Protein Hydrophobic Interaction

Hydrogen Bond

(A)

(B)

HIS-90
PRO-514

ASP-515

GLN-350

GLN-192

ASP-347

HIS-351

VAL-538

GLY-225

PHE-142

ASN-375

GLN-374

Fig. 4 Binding pose of compounds 4 and 35 with COX-2. (A) The docking study between compound 4 and COX-2; (B) The docking

study between compound 35 and COX-2.
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et al., 2012). Those two compounds (4 and 35) used for the
inhibition kinetics were also applied for in silico analysis with

a human COX-2 protein model (PDB code: 5IKQ). As shown
in Fig. 4A, compound 4 was packed well in the pocket formed
by five amino acid residues of the protein, PHE-142, GLY-225,

GLN-374, ASN-375, and VAL-538. In Fig. 4B, compound 35

also docked well with the protein, in which five hydrogen
bonds were observed between this compound with ASP-347,
GLN-192, HIS-90, PRO-514, and ASP-515 of the protein.

As shown in Table 4, both compounds had lower bingd energy
ranging from �7.5 to �7.8 kcal/mol, confirming their good
docking results. Moreover, as shown in Fig. S96 (Supporting

Information), arachidonic acid and compound 35 were packed
in the same binding site with COX-2, different from that of 4.



Table 4 Interaction information of compounds 4 and 35 with COX-2.

Comp. Interaction amino acids Hydrogen bonds Binding Energy

(kcal/mol)

4 PHE-142, GLY-225, GLN-374, ASN-375, VAL-538 PHE-142, GLY-225, GLN-374, ASN-375,

VAL-538

�7.8

35 PRO-514, ASP-515, GLN-192, HIS-351, ASP-347, GLN-

350, HIS-90

PRO-514, ASP-515, GLN-192, ASP-347,

HIS-90

�7.5
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That means those two compounds might have different bind-
ing mechanism.

In addition, in order to discuss the relationship between the
binding energies and the COX-2 inhibitory activities for all iso-
lates, molecular docking was applied. All the docking results

and binding affinity have been summarized in Fig. 5 and
Table S1 (Supporting Information). Lower binding energy
for docking, higher inhibitory activity for compounds

(Rostamian et al., 2020; Rasouli et al., 2020). As shown in Fig-
ure 5, 13 compounds (3–5, 7–8, 12, 14, 16, 17, 19, 21, 22, and
34) in green (COX-2: IC50 lower 1 lM) had lowest binding
energy (Binding affinity < -7 kcal/mol). As for the moderate

COX-2 inhibitory active compounds in blue, the binding ener-
gies were ranged from �6 kcal/mol to �7 kcal/mol. 23 Com-
pounds in organge in Fig. 5, had higher binding energies

than �6 kcal/mol. Obviously, the docking energies are closely
related to the COX-2 inhibitory activities.

3.6. Molecular dynamics simulation

Molecular dynamics (MD) has become an important tool to
resolve interactions involving enzyme-ligand complexes (Sun

et al. 2021). Compound 4 (COX-2, IC50 0.24 lM), a high
content compound, represented one of the best COX-2 inhi-
bitors. Thus, this compound was selected for the dynamic
interaction with COX-2. As shown in Fig. 6A, a stable com-

plex of compound 4 and COX-2 could form, with the energy
of the model system stabilized at approximately �6.7 � 105

kJ/mol. The stability of the simulated complex (compound

4 and COX-2) was screened via root mean square deviation
Fig. 5 Binding affinity of compounds 1–46. Significant: compounds

compounds with IC50 ranging from 1 lM to 10 lM for COX-2 inhibit

COX-2 inhibitory activity.
(RMSD). The data indicated that the RMSD remained under
2.5 Å during 10 ns of MD simulation, implying a stable sim-

ulation run of the tested system (Fig. 6B). The regions with
higher flexibility were verified by root mean square fluctua-
tion (RMSF) for the 5IKQ residues (Fig. 6C). Hydrogen

bonds between compound 4 and COX-2 were observed in
Figure 4, and 9 key amino acid residues, including GLY-
225, ASN-375, HIS-226, PHE-142, ASN-537, ARG-376,

VAL-538, GLN-374, and GLY-553, were selected to emerge
in this MD stimulation (Fig. 6E-F). Moreover, three amino
acid residues (VAL-538, PHE-142, and GLY-225) kept close
contact with COX-2 through hydrogen bond interactions due

to the the calculated distances converging under 3.5 Å during
the simulation process, as shown in Fig. 6G. Obviously, this
interactions were stable and reliable. These results clarify the

role of residues VAL-538, PHE-142, and GLY-225 in the
inhibition of compound 4 against COX-2.

3.7. Antioxidant activity

The antioxidant activities of the EtOAc parts and compounds
were evaluated using a DPPH radical-scavenging assay, as

shown in Fig. 2B and Table 1 (Xu et al., 2021). The active
EtOAc part was used for the further phytochemical study. In
the DPPH assay, all isolates (1–46) were screened for the
antioxidant activity at a concentration of 10 lM, as shown

in Fig. 2B. Among them, 24 compounds (1–12, 14–19, 21,
22, 24, 29, 34, and 35) revealed great scavenging ability higher
than 50%, and had the IC50 values lower than 10 lM
(Table 1).
with IC50 lower 1 lM for COX-2 inhibitory activity. Moderate:

ory activity. Inactive: compounds with IC50 higher than 10 lM for



Fig. 6 (A) The potential energy of compound 4 with COX-2 in 10 ns of MD simulation. (B) RMSD of compound 4 with COX-2 in 10 ns

of MD simulation. (C) RMSF of compound 4 with COX-2 in 10 ns of MD simulation. (D) The numbers of hydrogen bond in 10 ns of MD

simulation. (E) The distances compound 4 with GLY-225, ASN-375, HIS-226, PHE-142, and ASN-537 of COX-2. (F) The distances of

compound 4 with ARG-376, VAL-538, GLN-374, and GLY-553 of COX-2. (G) 3D structure of the complex of compound 4 bounded

COX-2 and their interaction form in the final frame of 10 ns MD simulation.
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3.8. Structure-activity relationships

In the COX-2 inhibitory assay, 23 active compounds could be

divided into six structural groups: flavanols (1–9), flavonoids
(11, 12, 14–17, 19, 21, 22, and 24), lignan (34), stilbene (35),
simple phenol derivatives (38), and a fatty acid (43). All the fla-

vanols (1–9) showed good inhibitory activity, and flavanol
derivatives with a galloyl group (3, 4, and 7) exhibited better
activity than other compounds without this group (1, 2, and
6). For the flavonoid derivatives (10–23), the number of pheno-

lic hydroxyl groups and their position played important roles
in the COX-2 inhibitory activity. Although compounds 16

and 17 had the highest numbers of phenolic hydroxyl groups

(five phenolic hydroxyl groups), compound 17 exhibited the
best COX-2 inhibitory activity (IC50: 0.13 ± 0.02). The differ-
ence between these two compounds was only the position of a

phenolic hydroxyl group, and therefore, a phenolic group at C-
3 (17) could improve its activity. The same phenomenon could
be observed for the compounds with four phenolic hydroxyl
groups (10, 11, 12, 14, 19, and 22), in which compound 19 with

a phenolic group at C-3 was also a best COX-2 inhibitor (IC50:
0.13 ± 0.01). Compounds with different skeletons having one
or two phenolic groups (34, 35, and 38) also revealed good

COX-2 inhibitory activity. Four fatty acid derivatives (42–
45) were screened for the COX-2 inhibitory activity, and only
compound 43 was active. Obviously, an acid group was impor-
tant for improving its inhibitory activity among the fatty acid
derivatives.

In the DPPH radical-scavenging assay, 24 compounds (1–
12, 14–19, 21, 22, 24, 29, 34, and 35) with phenolic groups

revealed significant activity with IC50 values lower than
10 lM. Thus, the antioxidant activity is closely related to the
number of phenolic hydroxyl groups. These active compounds

include six structural types of compounds: flavanols (1–9), fla-
vonoids (10–12, 14–19, 21, and 22), flavanone (24), isoflavone
(29), lignin (34), and stilbene (35). All flavanols (1–9) exhibited

good antioxidant activity with IC50 values ranging from 1.68
to 3.21 lM, in which compound 4 with seven phenolic groups
showed the best activity. Moreover, all the flavonoids expect
for compounds 13, 20, and 23 with 0 to 3 phenolic groups

exhibited good antioxidant activity, which supported the con-
clusion that the numbers and positions of the phenolic groups
were responsible for their activity.

3.9. HPLC analysis

We conducted HPLC analyses of the active EtOAc extract and

all the pure isolates (Yuan et al., 2013). The peaks of the
EtOAc extract were assigned based on their retention times
and UV spectra by comparison of the isolates with the EtOAc

extract under the same chromatography conditions (Fig. 7).
All the major and minor peaks of the EtOAc part were



Fig. 7 HPLC spectra of EA extraction (210 nm) and peak identification of all isolates.
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assigned, and overlapping compounds were also present in this

spectrum. This study, to some extent, elucidated the basis of
active substances for this plant.

4. Conclusion

In summary, bioactivity-guided isolation of the roots of Laportea bulb-

ifera led to the isolation and identification of 46 compounds using

NMR and MS techniques, among which 38 isolates were phenolic

derivatives. All isolates were reported for the first time from this plant

except for 13 compounds. Most of the compounds showed good COX-

2 inhibitory activity (IC50: 0.13–3.94 lM) and DPPH radical-

scavenging activity (IC50: 1.57–9.55 lM). Moreover, four compounds

(4, 17, 35, and 43) with different skeletons showed preferential COX-

2 over COX-1 inhibition with selective indices ranging from 12 to

171. Two high content compounds (4 and 35) with different skeletons

were assigned as noncompetitive and competitive COX-2 inhibitors,

respectively. Furthermore, molecular docking and molecular dynamics

simulation for compound 4 clarify the role of residues VAL-538, PHE-

142, and GLY-225 in the inhibition of compound 4 against COX-2.

The chemical fingerprint and structure activity relationship were also

investigated. Previous studies implied that crude extracts of L. bulb-

ifera exhibit anti-inflammatory activities in vitro and in vivo (Wang

et al., 2013). However, this study found a great deal of phenolic com-

pounds with good COX-2 inhibitory and antioxidant activity. The

results indicated that L. bulbifera roots could be applied as antioxidant

and anti-inflammatory agents.
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