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Abstract Background: Nasopharyngeal cancer is a tumor that occurs in the mucous epithelium of

the nasopharynx. Due to its rapid growth and early metastatic nature, the successful treatment of

nasopharyngeal cancer is highly challenging.

Objective: Here, we intended to assess the in vitro anticancer property of brassinin against the

nasopharyngeal cancer C666-1 cells.

Methodology: The in vitro free radical scavenging property of the brassinin was assessed by var-

ious free radical scavenging activities such as FRAP, DPPH, chemiluminescence (CL), and ORAC

assays. The cytotoxic level of the brassinin (1–50 mM) against the nasopharyngeal cancer C666-1

cells and normal Vero cells were assessed by the MTT cytotoxicity assay. The levels of TBARS,

GSH, and the SOD activity was assessed using kits. The level of ROS generation, MMP, and apop-

tosis were investigated by the respective fluorescent staining techniques. The flow cytometry analysis

was done to scrutinize the cell cycle arrest. The Bax/Bcl-2 level and caspase activities were examined

using respective kits.

Results: The brassinin treatment effectively scavenged the free radicals, which are assessed by the

FRAP, DPPH, chemiluminescence (CL), and ORAC assays. The proliferation of brassinin treated

C666-1 cells were decreased remarkably, while the same concentration of brassinin did not dis-

turbed the Vero cell viability. The 30 mM of brassinin effectively increased the ROS production,

depleted the MMP, and stimulated the apoptosis in the C666-1 cells. The brassinin increased the
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TBARS and depleted the GSH and SOD in the C666-1 cells. The flow cytometry analysis revealed

that the brassinin administration improved the G0/G1 ratio and decreased the proportion of cells

with ‘S’ and ‘G2/M’ phase. The Bax, caspase-3 and �9 were elevated and Bcl-2 level was decreased

in the brassinin administered C666-1 cells.

Conclusion: Our findings discovered that the brassinin has the capacity to prevent the prolifer-

ation and stimulate the apoptotic cell death C666-1 cells via blocking cell cycle and increasing

oxidative stress and apoptotic markers. Hence, it can be a talented therapeutic agent to treat the

nasopharyngeal cancer in the future.

Crown Copyright � 2022 Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Fig. 1 Chemical structure of brassinin.
1. Introduction

Nasopharyngeal cancer is a most aggressive tumor that arises in a

mucous epithelial layer of nasopharynx. Due to the rapid growth

and early metastatic nature of the nasopharyngeal cancer, its very chal-

lenging to the successful treatment (Sun and Wang, 2019). Nasopha-

ryngeal cancer has a higher tendency to invade and metastasize to

lymph nodes and distant organs at an early stage (Wang et al. 2014).

At present, the post-operative radiotherapy has gained greater achieve-

ments in the management of nasopharyngeal cancer. Though, the sur-

vival rate of nasopharyngeal cancer patients within 5 years followed by

the surgery is 50–70% only (Jin et al., 2014; Safavi et al., 2015). The

previous etiological studies have highlighted that the development of

nasopharyngeal cancer is a multifaceted process, in that environmental

carcinogens, lifestyle history, and Epstein-Barr-Virus performs a criti-

cal functions in the initiation of nasopharyngeal cancer (Chua et al.,

2016). In most incidences of nasopharyngeal cancer represents as pro-

gressed loco-regional disease (Brennan, 2006). The chances of survival

of children with loco-regional disease varied from 80 to 90% and treat-

ment failures are developed because of the distant relapses (Mertens

et al., 2005). Additionally, chances of survival of children with meta-

static nasopharyngeal cancer during diagnosis are <10%. However,

the concurrent chemo-radiotherapies has been believed as a customary

treatments for nasopharyngeal cancer (Buehrlen et al., 2012; Casanova

et al., 2012). In despite of several improvements in the treatment of

nasopharyngeal cancer with chemo and radiotherapies, there are sev-

eral adverse effects were experienced in those therapies such as fatal

toxicity and less effectiveness of recurrent disease (Chan et al., 2015;

Luo et al. 2014). Hence, the need for the exploration of new antitumor

drugs with less toxicity and improved effectiveness is in great demand.

The tumor cells often evade the normal cellular growth pathways

regulation due to the activation of oncogenes, violation of cell cycle

checkpoints and genetic instability. The inhibition of apoptotic path-

ways is also believed as a key factor of tumorigenesis. Apoptosis is a

highly regulated cell death event with precise genetic and biochemical

pathways that performs a crucial functions in the homeostasis of nor-

mal cells (Singh et al., 2019). It participates in the removal of unneces-

sary cells to preserve the balance between death/survival of normal

cells (Ashkenazi et al., 2017). Certainly, the anti-apoptotic proteins

are highly expressed in several cancer types (Liu et al., 2016). The ele-

vated expression of anti-apoptotic genes reduces the proapoptotic

response and leads to the resistance of tumor cells to the treatments

(Tian et al., 2020). To inhibit the tumorigenesis, apoptosis helps to

eliminate the potentially harmful DNA-damaged or altered cells under

several stressful conditions like stimulation of DNA damage check-

point pathway and precancerous lesions (Shakeri et al., 2017). There-

fore, the apoptotic mechanism assist to protect the genomic integrity

while deregulation of apoptotic signaling not only enhance the cancer

progression but also increase the tumor cell resistance to the therapies.

Accordingly, the escape of apoptosis is a major phenomenon of

tumorigenesis (Ouyang et al., 2018).
Brassinin (Fig. 1) is a well known phytoalexin, which extensively

found in the cruciferous plants and vegetables e.g., Raphanus raphanis-

trum with several biological properties. A previous reports suggested

that the brassinin triggered DNA fragmentation in human colon can-

cer and stimulated mitochondria-mediated apoptosis in prostate can-

cer (Chripkova et al., 2014; Kim et al., 2015). A latest literature

highlighted that the brassinin inhibited the proliferation of human liver

cancer cells (Hong et al., 2021). Izutani et al. (2012) reported that the

brassinin induced the cell cycle arrest in the colon cancer cells. Brassi-

nin repressed the invasion of lung cancer cells (Yang et al., 2019) and

also demonstrated the potent anti-atherosclerotic activity (Han et al.,

2017). However, the in vitro anticancer property of brassinin against

the nasopharyngeal cancer was not studied yet. Hence, here we

planned to assess the growth inhibition, cell cycle arrest, and apoptosis

inducing potential of brassinin on the nasopharyngeal cancer C666-1

cells.

2. Materials and methods

2.1. Chemicals

Brassinin, 3-(4,5-dimethylthiazoyl-2-yl)-2,5-diphenyltetrazo
lium bromide (MTT), dimethyl sulfoxide (DMSO), and other

chemicals were purchased from the Sigma-Aldrich, USA.
The assay kits for biochemical assessments were acquired from
ThermoFisher Scientific, USA.

http://creativecommons.org/licenses/by/4.0/
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2.2. In vitro free radicals scavenging assays

2.2.1. Ferric reducing antioxidant power (FRAP) activity

The FRAP activity of the brassinin was examined by the

method previously defined by the Benzie and Strain, (1996).
The different concentrations of brassinin (1, 5, 10, 20, 30, 40,
& 50 mM) were added with FRAP reagent (1 ml) along with
the 300 mM of acetate buffer, 10 mM of TPTZ solution,

and 20 mM of ferric chloride reagents. The 200 ml of the reac-
tion solution was taken and loaded onto the 96-wellplate and
stand for 10 min at 30 �C. Followed by the incubation, the

developed final product were assessed using microplate reader
at 593 nm wavelength. The final outcomes of FRAP activity of
brassinin was represented as Trolox equivalent (mM).

2.2.2. DPPH radical scavenging activity

The DPPH scavenging effect of the brassinin was assessed by
the approach of Brand-Williams et al. (1995). The DPPH

(150 ml) was dissolved in ethanol (0.25 mM) and the mixed
to the different concentrations of the brassinin (1–50 mM)
and stand for 30 min at 37 �C. After that, the absorbance of

final reaction suspension were measured at 515 nm. The final
outcomes of the DPPH scavenging property of brassinin was
represented as Trolox equivalent (mM).

2.2.3. Chemiluminescence (CL) assay

The superoxide scavenging property of the brassinin was
examined by the technique of Shimada et al. (1992). The reac-

tion solution was prepared by adding together of 10 ml of CL
reagent, diverse concentrations of (1–50 mM) of brassinin, and
80 ll of xanthine oxidase. The control suspension was made
using HEPES buffer. Afterward, the solution was placed onto

the luminometer after the 200 ml of hypoxanthine substrate
(0.72 mM). The CL activity was assessed for 10 min at the
intervals of 10 s in luminometer. The assay was repeated in

triplicates and final outcome was represented relative lumines-
cence. The superoxide radical scavenging capacity of brassinin
was represented as Trolox equivalent (mM).

2.2.4. Assessment of oxygen radical antioxidant capacity
(ORAC)

The ORAC level of the brassinin was assessed by determining

the peroxyl radical scavenging ability by using kit according to
the guidelines described by the manufacturer (ThermoFisher
Scientific, USA).

2.2.5. Collection of C666-1 cells

The nasopharyngeal cancer C666-1 cells and normal Vero cells
were collected from the ATCC, USA. The purchased cells were

then grown on the DMEM medium enriched with 10% of FBS
at 37 �C in an humidified CO2 (5%) chamber. After the reach-
ing of 80% of confluency, C666-1 cells were trypsinized and

employed for the further examinations.

2.3. MTT assay

The viability of control and treated nasopharyngeal cancer

C666-1 cells and normal Vero cells were examined by the
MTT assay. For this, the both cells were grown onto the 96-
wellplate loaded with DMEM medium at 5 � 103 cells/well
density and incubated for 24 h. After that, C666-1 and Vero
cells were administered with the various dosages (1–50 lM)
of brassinin and maintained for 24 h at 37 �C. After that,

MTT (20 ll) along with DMEM (100 ml) were added to all
wells and further incubated for 4 h. The 100 ll of DMSO were
added to dissolve the developed formazan stones. Finally, the

absorbance of the control and treated cells were assessed at
570 nm by using microplate reader.

2.4. Measurement of oxidative stress and antioxidant markers

The level of TBARS, glutathione (GSH) level, and superoxide
dismutase (SOD) activity in the control and brassinin (30 lM)

administered C666-1 cells were assessed using respective assay
kits using the protocols described by the manufacturer
(Thermo Fisher, USA).

2.5. Measurement of ROS generation

The effect of brassinin treatment on the intracellular produc-
tion of ROS in the C666-1 cells were examined by DCFH-

DA staining technique. The cells were grown onto the 24-
wellplate and sustained for 24 h. After that, cells were treated
with 30 lM of brassinin and 2 lg of DOX for 24 h. The level of

ROS generation in the brassinin treated C666-1 cells were
assessed by staining with the 10 ll of DCFH-DA. The fluores-
cent intensity was examined under the fluorescent microscope
to determine the ROS production level.

2.6. Mitochondrial membrane potential (MMP)

The MMP level was investigated by using Rh-123 staining

assay. Briefly, the C666-1 cells were loaded onto the 24-
wellplate with DMEM medium and treated with the 30 mM
of brassinin and 2 lg of DOX for 24 h at 37 �C. Afterwards,

the 10 lg/ml of Rh-123 were mixed to all wells and stand for
30 min. Lastly, the level of MMP was investigated using fluo-
rescent microscope.

2.7. Dual staining

The level of apoptosis in control and brassinin administered
C666-1 cells were assessed by using dual (AO/EB) staining

technique. The C666-1 cells were loaded onto the 24-
wellplate at 5 � 105 cell population/well in a DMEM and trea-
ted with the 30 lM of brassinin and 2 lg of DOX for 24 h at

37 �C. After that, the 100 lg/ml of AO/EB stain at 1:1 ratio
was mixed to the each well for 5 min at 37 �C. Lastly, fluores-
cence intensity was assessed using fluorescent microscope to

detect the apoptosis.

2.8. Propidium iodide (PI) staining

The level of apoptosis in the control and brassnin administered
C666-1 cells were assessed by PI staining. The cells were loaded
onto the 24-wellplate and maintained for 24 h. Afterward, cells
were treated with 30 lM of brassinin and 2 lg of DOX at

37 �C for 24 h. Then the 5 ml of PI stain was used to stain
the cells for 20 min and finally the fluorescence intensity was
determined using fluorescent microscope.
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2.9. Cell cycle analysis

The C666-1 cells at 5 � 106 cell density were collected and pro-
cessed with 70% of ethanol and incubated for 12 h. Then, cells
were cleansed and added to the 300 ml of staining solution,

which contains 100 ml of PI, 0.5 mg/ml of RNase solution,
and 0.08 mg/ml of proteinase inhibitors for 30 min. The flow
cytometer was used to measure the PI fluorescence related with
DNA. The nuclei percentages in every phase i.e., G1, S, G2/M

of the cell cycle were determined by MultiCycle software
(Phoenix Flow Systems, USA). The percentage of sub-
diploid cells (apoptotic cells) were assessed by WinMDI 2.9

software installed on the flow cytometer.

2.10. Measurement of Bax/Bcl-2 level and caspase levels

The Bax and Bcl-2 contents and the activities of caspase-3 and
�9 in the control and brassinin treated C666-1 cells were
assessed with the help of commercial ELISA assay kits as

per the protocols of the manufacturer (Thermofisher, USA).

2.11. Statistical analysis

The final results were assessed by using GraphPad Prism soft-

ware. The outcomes were scrutinized by the one-way ANOVA
and Tukey’s post hoc test. The outcomes were deliberated as a
mean ± SD of three separate assays and ‘p’ value<0.05 were

set as a significant.
Fig. 2 Effect of brassinin on the in vitro free radical scavenging prop

50 mM) exhibited the effective in vitro free radicals scavenging pro

Superoxide scavenging activity, (D): Peroxide scavenging activity. Outc

The final data were assessed by the one-way ANOVA and Tukey’s po

that data were significantly vary at p < 0.05 from control.
3. Results

3.1. Effect of brassinin on the in vitro free radical scavenging
property

The in vitro antioxidant property of the brassinin was scruti-

nized by several free radical scavenging assays and the findings
were represented in the Fig. 2. The treatment with the different
doses of brassinin remarkably scavenged the free radicals. The

1–50 mM of brassinin significantly (p < 0.05) decreased the
several free radicals like DPPH, superoxide, and peroxyl radi-
cals and also demonstrated the ferric reducing properties at the
dose dependent manner. The increased dosage of brassinin sig-

nificantly (p < 0.05) scavenged the levels of DPPH, superox-
ide, and peroxyl radicals and exhibited the ferric reducing
power that proves in vitro free radical scavenging ability of

the brassinin (Fig. 2). These outcome confirms the free radical
scavenging property of brassinin.

3.2. Effect of brassinin on the viabilities of C666-1 and Vero cells

The cytotoxicity of brassinin against the nasopharyngeal can-
cer C666-1 and normal Vero cells were assessed and outcomes

were represented in the Fig. 3. Our findings demonstrated that
the brassinin treatment at various concentrations (1–50 mM)
significantly (p < 0.05) diminished the proliferation of C666-
1 cells. Conversely, the same concentrations of brassinin did

not disturbed the Vero cell viability. The mild reduction in
erty. The brassinin administration at different concentration (1–

perty. (A): FRAP activity, (B): DPPH scavenging activity, (C):

omes were deliberated as a mean ± SD of three individual assays.

st hoc study using GraphPad Prism software. Note: ‘*’ represents



Fig. 3 Effect of brassinin on the viabilities of C666-1 and Vero

cells. Outcomes were deliberated as a mean ± SD of three

individual assays. The final data were assessed by the one-way

ANOVA and Tukey’s post hoc study using GraphPad Prism

software. Note: ‘*’ represents that data were significantly vary at

p < 0.05 from control.
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the viability of Vero cells were noted at the high concentration

of brassinin. This findings witnesses the cytotoxicity of brassi-
nin against the C666-1 cells (Fig. 3). The IC50 level of brassi-
nin for the C666-1 cells were noted at 30 mM, which is selected

for the additional in vitro studies.

3.3. Effect of brassinin on the antioxidants and TBARS level in
the C666-1 cells

The effect of brassinin treatment on the level of TBARS and
antioxidants in the nasopharyngeal cancer C666-1 cells were
assessed and outcomes were demonstrated in the Fig. 4. The

level of TBARS were significantly (p < 0.05) improved in
the 30 mM of brassinin treated cells. The activity of SOD
and GSH level was effectively decreased by the 30 mM of bras-

sinin. These data revealed that the administration of brassinin
significantly (p < 0.05) decrease the antioxidants and improve
the oxidative stress in the C666-1 cells (Fig. 4). The standard

drug DOX administration also remarkably elevated the
TBARS level and decreased the GSH and SOD.

3.4. Effect of brassinin on the ROS production, MMP level, and
apoptosis in the C666-1 cells

Fig. 5(a) demonstrates the influence of brassinin treatment on
the level of intracellular ROS generation in the C666-1 cells.
The 30 mM of brassinin administered C666-1 cells demon-
strated the increased green fluorescence than the control. The
increased green fluorescence witnessed the improved intracellu-

lar production of ROS in the brassinin treated C666-1 cells.
The standard drug DOX also demonstrated the augmented
green fluorescence, which confirms the higher ROS production

(Fig. 5a).
Fig. 5(b) exhibits the MMP level of control and treated

C666-1 cells. The increased MMP level was noted in the con-

trol cells that is identified by the intense green fluorescence.
However, the 30 mM of brassinin administered C666-1 cells
displayed the depleted MMP level that is evidenced by the
decreased green fluorescence (Fig. 5b). The DOX also

decreased the number of Rh-123 stained cells, which confirms
the depleted MMP status.

Fig. 5(c) represents the influence of brassinin treatment on

the apoptotic cell death events in the C666-1 cells. The 30 mM
of brassinin administered cells exhibited the augmented apop-
tosis, which is witnessed by the intense yellow and orange flu-

orescence than the control, which evidences the increased
number of early and late apoptotic cell deaths. The standard
drug DOX treated C666-1 cells also exhibited the higher

intense yellow/orange fluorescence, which evidences the
increased apoptotic cell death (Fig. 5c).

Fig. 5(d) represents the apoptotic cell morphology in the
control and treated cells. The increased red fluorescence was

noted in the 30 mM of brassinin administered C666-1 cells.
The number of apoptotic cells were increased in the brassinin
administered C666-1 cells, which is evidenced by the higher

red fluorescence (Fig. 5d). The DOX also increased the apop-
totic cell death in C666-1 cells, which is detected by the intense
red fluorescence.
3.5. Effect of brassinin on the cell cycle arrest in the C666-1 cells

The distribution of cell cycle phases in both control and

administered cells were examined by the flow cytometry and
outcome was displayed in the Fig. 6. The 30 mM of brassinin
treated C666-1 cells were exhibited the higher proportion of
the cells with sub ‘G0/G10 and ‘G10 growth phase than the con-

trol. Furthermore, the proportion of the cells with ‘S’ phase
and ‘G2/M’ phase were reduced in the 30 mM of brassinin
administered C666-1 cells, which confirms that the brassinin

administration blocked the cell cycle in the C666-1 cells
(Fig. 6). The standard drug DOX also increased the cells with
sub G0/G1 and G1 phase and diminished the cells with ‘S’

phase and ‘G2/M’ phase.

3.6. Effect of brassinin on the apoptotic biomarkers in the C666-
1 cells

The effect of brassinin administration on the activities of
caspase-3, �9 and Bax/Bcl-2 levels were examined and data
were portrayed in the Fig. 7. The 30 mM of brassinin adminis-

tered C666-1 cells exhibited the significantly (p < 0.05)
increased activities of caspase-3 and �9, and Bax level. The
brassinin administration also decreased the Bcl-2 level in the

C666-1 cells. The DOX also increased the activities of
caspase-3, �9, and Bax level and diminished the Bcl-2 level
(Fig. 7).



Fig. 4 Effect of brassinin on the antioxidants and TBARS level in the C666-1 cells. Outcomes were deliberated as a mean ± SD of three

individual assays. The final data were assessed by the one-way ANOVA and Tukey’s post hoc study using GraphPad Prism software.

Note: ‘*’ represents significant at p < 0.05 between brassinin treatment and ‘#’ represents significant at p < 0.01 between control and

DOX treatment.
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4. Discussion

Nasopharyngeal cancer is a tumor arising from the epithelium
of the nasopharynx (Chen et al., 2019). During early stages,
nasopharyngeal cancer is likely to be undiagnosed due to its

asymptomatic nature or only represents the insignificant clini-
cal symptoms (Voon et al., 2015). The local recurrence of the
disease were reported in nearly 5–10% of all nasopharyngeal

cancer patients and 15–45% of those with stage IV followed
by the treatment. In most cases of nasopharyngeal cancer
experiences the distant metastases. Furthermore, the successful

management of patients with developed stage of nasopharyn-
geal cancer, including metastasis, recurrent, and therapy-
resistant still remains as a major challenge (Karam et al.,

2016). The outcomes of patients with primary nasopharyngeal
cancer has remarkably increased due to the developments in
the chemo and radiotherapy (Blanchard et al., 2015; Yang
et al., 2015). Though, the survival of the nasopharyngeal can-

cer patients with metastasis or recurrence is relatively poor
with the mean survival rate is nearly 20 months (Miao et al.,
2021). Hence, the need for the exploration of new anti-

nasopharyngeal cancer drugs with more effectiveness and less
toxicity was highly demanded. The investigation of cytotoxic
levels of the sample drugs are crucial step in order to develop

the novel anticancer candidates (Semlali et al., 2021). Here, our
outcomes proved that the brassinin treatment demonstrated
effective cytotoxicity to the nasopharyngeal cancer C666-1
cells. But, it did not disturbed the proliferation of normal Vero
cells. This finding confirmed the cytotoxic nature of brassinin
to the C666-1 cells.

Apoptosis is a multifaceted event, which involves several
pathways and leads to the chromatin and nuclear membrane
fragmentation. Although, when the apoptotic mechanisms
tend to be deregulated, several pathological manifestations

were arises to promote tumorigenesis (Koff et al., 2015).
Apoptosis is one of the active cell death mechanisms, which
preforms a pivotal roles in the maintenance of normal tissue

homeostasis (Shrivastava et al., 2020). The deregulation apop-
totic pathways is one of the major phenomenon of tumorigen-
esis (Neophytou et al., 2021). The tumor cells use several

molecular mechanisms to inhibit the apoptosis. The tumor
cells can attain resistance to the apoptosis via triggering of
increased Bcl-2 expression or by the prevention or inhibition

of Bax expression (Dabrowska et al., 2016). The induction of
apoptosis is believed to be the critical strategy to prevent
and treat the cancers. Additionally, the stimulation of apop-
totic cell death in tumor cells are seems to be a most imperative

activity for antitumor candidates. The several studies were
directed to examine whether the cytotoxicity of chemothera-
peutic drugs are connected with the apoptotic events (Qi

et al., 2015; Zhang et al., 2014). The most conformist
chemotherapeutic candidates like cisplatin, shows a anticancer
effects via promoting the apoptosis (Matsuura et al., 2017).

Here, our findings demonstrates that the brassinin treatment



Fig. 5 Effect of brassinin on the ROS production, MMP level, and apoptotic cell death in the C666-1 cells. The 30 mM of brassinin treated

C666-1 cells represented the augmented green fluorescence than the control that confirms the increased ROS generation in the brassinin

administered C666-1 cells (A). The 30 mM of brassinin treatment effectively depleted the MMP status in the C666-1 cells (B). The images of

dual staining demonstrated the augmented orange and yellow in the 30 mM of brassinin treated C666-1 cells than control due to the

increased apoptotic cells (C). The images of PI staining also demonstrated the augmented red fluorescence in the 30 mM of brassinin

administered C666-1 cells that evidences the increased apoptosis (D).

Fig. 6 Effect of brassinin on the cell cycle arrest in the C666-1

cells. Outcomes were deliberated as a mean ± SD of three

individual assays. The final data were assessed by the one-way

ANOVA and Tukey’s post hoc study using GraphPad Prism

software. Note: ‘*’ represents significant at p < 0.05 between

brassinin treatment and ‘#’ represents significant at p < 0.01

between control and DOX treatment.
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effectively stimulated the apoptosis in the C666-1 cells, which

is confirmed by the AO/EB and PI staining techniques.
In tumor cells, mitochondria usually overproduce the ROS.

The increased level of ROS trigger DNA-damage and cell
death (Kocyigit and Guler, 2017). The improved production
of ROS and depletion of MMP was reported to be an imper-
ative factor of stimulating apoptosis in tumor cells (He et al.,

2019). It was reported that the natural products have received
greater attention as good source of chemo-therapeutic drugs
for cancer treatment.

Several previous literatures reported that the natural com-
pounds has stimulated the apoptosis in tumor cell via increas-
ing the ROS production (Tripathi et al., 2020; Zhang et al.,
2016). Our results evidenced that the brassinin appreciably

increased the ROS accumulation and depleted the MMP level
in the C666-1 cells.

The cell death mechanisms is generally connected with the

proliferating cells. This infers the presence of molecules in late
S and G1 phase, whose functions enables the execution of
apoptotic mechanisms (Li et al., 2020). The G1, G2, and M

checkpoints are the most crucial phases that make sure cells
can develop to each step during the cell cycle without the faults
(Rattanapornsompong et al., 2021). The flaws in those check-

points can stimulate the apoptosis and remove the malignant
cells (Luo et al., 2021). The arresting of cell cycle is an imper-



Fig. 7 Effect of brassinin on the apoptotic biomarker levels in the C666-1 cells. Outcomes were deliberated as a mean ± SD of three

individual assays. The final data were assessed by the one-way ANOVA and Tukey’s post hoc study using GraphPad Prism software.

Note: ‘*’ represents significant at p < 0.05 between brassinin treatment and ‘#’ represents significant at p < 0.01 between control and

DOX treatment.
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ative task that affects the cell growth. In majority of cancers,

cell cycle is often dysregulated. The controlling of cell cycle
progression is believed as an effective strategy to prevent the
cancer growth (Hoffmann et al., 2021). The cell cycle is a mul-

tifaceted process, and changes in its regulation may leads to
the abnormal cell metabolism and proliferation. Several previ-
ous literatures found that the numerous natural compounds
effectively inhibits the tumor cell viability via improving the

cell cycle arrest (Wang et al., 2017; Zhang et al., 2018). In this
study, we performed the flow cytometry study to explore
whether brassinin could disturb the cell cycle mechanisms of

C666-1 cells. Here, our findings revealed that the brassinin
could regulate the cell cycle pattern in the C666-1 cells. Brassi-
nin remarkably increased the G0/G1 ratio, whereas reduced

the proportion of cells with ‘S’ and ‘G2/M’ phase. This out-
comes witnessed that the cell cycle in the C666-1 cells by bras-
sinin treatment may one of the mechanisms of attenuation of

proliferative ability of nasopharyngeal cells. Our present find-
ings were consistent with the previous literatures (Liu et al.,
2019).

The Bcl-2 family proteins are the well established group of

proteins, which is actively participates in the mitochondria-
mediated apoptotic pathway (Nocquet et al., 2020). The bal-
ance between Bax and Bcl-2 genes regulates the normal sur-

vival/death events in cells. The Bcl-2 is tightly connected
with the chemo-resistance of tumor cells, as it is one of the

imperative regulators of apoptosis. Furthermore, tumor cells
can escape apoptosis by several mechanisms to gain immortal-
ization. The escape of apoptosis is a imperative cause of the

chemo-resistance in tumor cells (Hassan et al., 2014; Su
et al., 2014). Certainly, a depletion in the Bax/Bcl-2 ratio is
believed as a critical biomarker of apoptosis (Kapoor et al.,
2020; Pucci et al., 2019). Here, we observed that the Bax level

was improved, while the Bcl-2 level was reduced in the brassi-
nin administered C666-1 cells.

Caspase-3 is a critical player, which is essential to the reg-

ulation of cell apoptosis (Julien and Wells, 2017). Caspase-3
and �9 stimulates the apoptosis in tumor cells, which is trig-
gered by the pro-apoptotic genes (Crowley and Waterhouse,

2016; Li et al., 2019). Caspases-3 is an ‘‘effector” caspase
that can cleave the cellular products during the later phases
of apoptosis (Carneiro and El-Deiry, 2020). Caspase-9 can

cleave the caspase-3, which ultimately causes the DNA cleav-
age and degradation of cytoskeleton and nuclear proteins
(Brown-Suedell A, Bouchier-Hayes, 2020). In this study,
our findings evidenced that the brassinin treatment remark-

ably improved the caspase-3 and �9 activities in the C666-
1 cells. Overall, the current findings revealed that the brassi-
nin induced oxidantive stress and apoptosis in the C666-1

cells (Fig. 8).



Fig. 8 Schematic representation of probable molecular mecha-

nisms of brassinin on the C666-1 cells.

Brassinin inhibits proliferation and induces cell cycle 9
5. Conclusion

In summery, this work discovered that brassinin has the capacity to

remarkably prevent the proliferation and stimulate apoptosis in

nasopharyngeal cancer C666-1 cells via blocking cell cycle and increas-

ing oxidative stress and apoptotic markers. The brassinin treatment

exhibited a cytotoxicity to the C666-1 cells. The brassinin effectively

arrested the cell cycle, improved the oxidative stress and apoptosis in

the C666-1 cells. Hence, our findings suggest the brassinin as a hopeful

therapeutic agent to treat the nasopharyngeal cancer in the future.

However, the further confirmative studies still required in the future

to understand the clear molecular mechanisms of anticancer property

of the brassinin against the nasopharyngeal cancer.
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