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A B S T R A C T   

MXene (Ti3C2Tx) is a promising electrode material for supercapacitors. However, the current MXene material 
preparation process often requires hydrofluoric acid, and the etched MXene is easily oxidized and stacked, which 
is not conducive to the transfer of electrons and ions. In this study, we proposed a high concentration of sodium 
hydroxide solution mixed with sodium hypochlorite solution as an etchant for the preparation of fluorine-free 
MXene (Ti3C2Tx). Based on the alkali-assisted hydrothermal method, Ti3AlC2 was used as the raw material, 
and 10 % NaClO aqueous solution was added as the oxidant during the etching process to accelerate the etching 
and in-situ generate TiO2 with excellent conductivity. When the oxidation time is 12 h and the amount of NaClO 
is 0.2 mL, the TiO2 particles in-situ generated by the oxidation of Ti element in MXene are evenly distributed on 
the surface and interlayer of the material, which effectively curbs the stacking problem between the Ti3C2Tx 
layers and improves the specific surface area of the material. The prepared MXene/TiO2 electrode in 1 M H2SO4 
electrolyte, − 0.5–0.2 V voltage window, the highest mass specific capacity can reach 321F/g, and after 10,000 
charge–discharge cycles, the capacitance retention rate can still reach 86.4 %, which is higher than the capac-
itance retention rate of Ti3C2Tx material (81.7 %).   

1. Introduction 

With the aggravation of various environmental problems such as the 
depletion of fossil energy, the public’s voice for new energy is becoming 
stronger. In the context of vigorously developing green energy, energy 
storage devices have become a hot research topic, among which 
supercapacitors (SCs) and lithium-ion batteries (LiBs) are two typical 
representatives (Yang et al., 2023; Fei et al., 2023; Wodyk et al., 2023; 
Abdalla et al., 2023). Compared with LiBs, SCs have the characteristics 
of high-power density, fast charge and discharge speed (Sun and Bi, 
2012; Grygorchak et al., 2019), and long service life (An et al., 2023, 
2023; Cao et al., 2023; An et al., 2020). Supercapacitors are usually 
divided into two types: electric double-layer capacitors (EDLCs) (Seo 
et al., 2023; Tovar-Martinez et al., 2023; Hung et al., 2022; Sun et al., 
2022) and pseudocapacitors (Mahala et al., 2023; Lichchhavi et al., 
2023; Ahn et al., 2023; Chen et al., 2023; Qu et al., 2022). Among them, 
the energy density of pseudocapacitors based on surface Faraday storage 
is much higher than that of double-layer capacitors that store electrical 
energy by electrostatic accumulation of charges along the electrode 
interface (Liu et al., 2022; Zhao et al., 2022; Sun et al., 2023; Zhao et al., 

2023). The development of pseudocapacitive materials with high 
capacitance can improve the energy density of supercapacitors. Pseu-
docapacitive materials include MXene (Ye et al., 2023; Zheng et al., 
2022; Das and Majumdar, 2022; Panda et al., 2022), TiO2 (Lakra et al., 
2023; Simon et al., 2023; Waris et al., 2023; Zhang et al., 2017); RuO2 
(Thangappan et al., 2018; Grover et al., 2023; Manuraj et al., 2020; 
Karimi et al., 2022), MnO2 (Han et al., 2020; Xiao et al., 2020; Bagal 
et al., 2021; Chowdhury et al., 2023), and so on. 

MXene is a new type of two-dimensional transition metal carbide/ 
carbonitride. It is favored by many researchers because of its excellent 
electrical conductivity, rich surface functional groups, good mechanical 
properties and unique hydrophilicity. Ti3C2Tx(MXene) is synthesized by 
etching the Al element in Ti3AlC2 with HF (Naguib et al., 2011). In this 
process, the presence of fluoride leads to the production of byproducts 
with certain risks, including toxic gases, intercalated water and filtered 
wastewater. So researchers have used NH4HF2 (Halim et al., 2014), 
dilute HCl and LiF instead of HF to improve the synthesis condition 
(Natu et al., 2020). Moreover, fluorine-free Ti3C2Tx is prepared by 
alkali-assisted hydrothermal method with high concentration NaOH 
solution, which has 314F/ g via gravimetric capacitance (Li et al., 2018). 
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However, there are few active sites on the surface of MXene, and the 
layered single-layer or few-layer nanosheets are prone to agglomeration, 
resulting in a decrease in specific surface area and a decrease in elec-
trical properties. 

Metal oxide is considered as efficient electrodes for supercapacitors 
due to their excellent electrochemical properties (Lv et al., 2023). To 
improve the capacitance, power density, cycle efficiency and cycle life of 
supercapacitors, researchers have done a lot of work (Khajonrit et al., 
2022; Zhang et al., 2022; Chen, 2021; Liu et al., 2022; Zhang et al., 2021; 
Zeng et al., 2022). However, various parameters need to be considered 
to improve the performance, such as the specific surface area of the 
electrode material, the selection of high-performance materials, prepa-
ration/synthesis technology and the active life of the material. TiO2 has 
received extensive attention in supercapacitor energy storage systems 
due to its advantages of easy availability, low-cost, high-energy density, 
non-toxicity, and chemical stability. Even after 50,000 cycles at a very 
high energy density, the TiO2-based electrode can still maintain 95 % 
cycle efficiency (Gao et al., 2015; Li et al., 2021). He et al. developed 
TiO2 nanotube arrays (NTA) as a current collector for supercapacitors 
(He et al., 2021). Among them, MnO2-modified TiO2 NTA as the cathode 
showed an extremely high capacitance value (1051F/cm3), while the 
volume capacitance of Fe2O3 with TiO2 NTA as the anode reached 
608.2F/cm3, and the asymmetric supercapacitor based on the electrode 
retained about 91.7 % of the capacitance after 5000 cycles. The hy-
drothermal method is an effective method to synthesize metal oxide 
nanoparticles for supercapacitors (Wu et al., 2014). 

To make TiO2-based binary and ternary composites become high- 
performance supercapacitor electrode materials, many researchers 
have tried to use them as electrode materials. In this study, Ti3AlC2 was 
used as the raw material, and 10 % NaClO aqueous solution was added 
as the oxidant during the etching process to accelerate the etching and 
in-situ generate fluorine-free Ti3C2Tx/TiO2 composite based on the 
alkali-assisted hydrothermal method. The structure and electrochemical 
properties of fluorine-free Ti3C2Tx/TiO2 composite were studied in 
detail. 

2. Experimental procedure 

2.1. Synthesis of MXene/TiO2 materials 

The key parameters of the preparation process of MXene/TiO2 
composite, reaction time and the amount of NaClO, were optimized in 
Fig. S1. The optimal MXene/TiO2 was studied in paper. The preparation 
method of a fluorine-free MXene/TiO2 material was alkali-assisted hy-
drothermal method, using 10 % NaClO solution and Ti3AlC2 powder as 
raw materials. The preparation process by adjusting the reaction time 
and the amount of NaClO added was shown in Fig. 1. The optimal so-
lution is: 200 mg Ti3AlC2 powder was weighed. 27.5 g NaOH was 
weighed, and 25 mL NaOH solution was taken after NaOH was fully 

dissolved with 50 mL deionized water. 0.02 mL of 10 % NaClO aqueous 
solution was taken by pipette, and the above drugs were added to the 
high-pressure reactor, sealed after N2, and heated for 12 h in the electric 
blast drying box at 270 ◦C. After the reaction, the bottom precipitate was 
washed out and stood for 30 min. The upper suspension after standing 
was poured and water was added for ultrasound (power: 100 %, time: 
30 min). At the end of ultrasound, the solution was centrifuged (time: 5 
min). After centrifugation, the pH value of the supernatant was detected, 
washed, and centrifuged until the pH value of the upper suspension was 
6.5, and the bottom precipitate was washed with 95 % ethanol solution. 
The bottom precipitate was washed out and poured into a conical flask, 
and a well-balanced 24 mL DMSO solution was poured into a fume hood, 
and placed on a magnetic heating stirrer to stir for intercalation and 
delamination (time: 24 h); after the intercalation, the upper layer of 
DMSO was poured and immersed in deionized water for 12 h. The 
soaked solution was subjected to ultrasonic treatment for 1 h. The ul-
trasonic suspension was centrifuged (speed: 4000 rpm, time: 10 min), 
and the upper solution after centrifugation was observed. If it showed 
dark green, the ultrasound was stopped, otherwise the above ultrasound 
and centrifugation were repeated. The bottom precipitate was washed 
out with 95 % ethanol, and the obtained sample was dried in a vacuum 
oven at 50 ◦C for more than 48 h to obtain the target product Ti3C2Tx/ 
TiO2. 

2.2. Characterization method 

The surface morphology of the material was scanned by the focused 
electron beam in the scanning electron microscope (SEM). During the 
sample preparation, a small amount of powder was placed on the 
conductive adhesive using a toothpick, and dried by a blower after 
leveling and spreading. The SEM was performed on the GeminiSEM500 
electron microscope of ZEISS. The elemental composition and content of 
the material were preliminarily determined by point or surface analysis 
using energy dispersive spectroscopy (EDS), which was used in 
conjunction with SEM. The transmission electron microscope (TEM) was 
performed on JEOL JEM-F200. The specific surface area was determined 
by Micromeritics ASAP 2460. The crystal structure and elemental 
composition of the material were analyzed by Japanese Rigaku Mini-
Flex600 X-ray diffractometer (XRD), and the scanning angle range was 
5◦-90◦. The composition of the material was qualitatively analyzed using 
Thermo Scientific K-Alpha X-ray spectrometer (XPS) for full-spectrum 
scanning (energy 100 eV, step size 1 eV) and narrow-spectrum scan-
ning (energy 50 eV, step size 0.1 eV). The charge correction was per-
formed with C 1 s = 284.80 eV binding energy as the energy standard. 

2.3. Electrochemical test 

The fluorine-free Ti3C2Tx/TiO2 composite material was made into a 
working electrode: 4 mg Ti3C2Tx/TiO2 and 0.7 mg acetylene black were 

Fig. 1. Preparation process of fluorine-free Ti3C2Tx / TiO2 composite.  
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weighed and ground in agate mortar for 5–10 min; the milled mixed 
material was scraped into the sample bottle, and 0.4 mL per-
fluorosulfonic acid solution (Nafion) was added and sonicated for 25–30 
min to make the powder and Nafion solution mixed evenly. A 6 μL 
uniformly dispersed solution was absorbed by a pipette and dropped 
onto the working electrode for testing. The electrode material loading 
was 6 × 10− 5 g. The tester is Shanghai Chenhua’s CHI660E electro-
chemical workstation, using the traditional three-electrode system, the 
electrolyte is 1 M H2SO4, the reference electrode and the counter elec-
trode in the system are calomel electrode and carbon rod respectively. 
Electrochemical performance tests mainly include cyclic voltammetry 
(CV), constant current charge and discharge (GCD), electrochemical 
impedance spectroscopy (EIS) and cycle stability. Cyclic voltammetry 
was performed in the voltage range (− 0.5––0.2 V) at scan rates of 10, 20, 
30, 50, 100, 200 mV/s, respectively. 

The specific capacitance of the material can be calculated by the CV 
curve. The calculation formula is shown in (1): 

Cm =

∫
idV

2vmΔV
(1) 

Among them, Cm is the specific capacitance of the material (F/g), i is 
the discharge current (A), v is the voltage scanning rate (V/s), m is the 
mass of the active material loaded on the electrode (g), and ΔV is the 
discharge voltage (V). 

The specific capacitance of the material can also be calculated by the 
GCD curve. The calculation formula is shown in (2): 

Cm =
iΔt

mΔV
(2) 

Among them, Cm is the specific capacitance of the material (F/g), i is 
the discharge current (A), Δt is the discharge time (s), m is the mass of 
the active material loaded on the electrode (g), and ΔV is the potential 
window (V). 

3. Results and discussion 

3.1. Characterization and analysis of material structure 

Ti3C2Tx/TiO2 composites was prepared by 0.2 mL 10 % NaClO 
aqueous solution were characterized by SEM and TEM. The morphology 
of Ti3C2Tx/TiO2 composites taken from different angles was not difficult 
to find that the high concentration NaOH solution selected in this 
experiment successfully peels the Al atomic layer from the Ti3AlC2 
powder in the high temperature and high-pressure environment, and the 
final Ti3C2Tx material showed good morphology in Fig. 2 (a-c). EDS 

elemental analysis was performed on Ti3C2Tx/TiO2 composites with 
excellent morphology (0.2 mL NaClO aqueous solution). Fig. 2a showed 
that there were many granular materials on the surface and between the 
layers of Ti3C2Tx/TiO2 composites. After etching with NaOH and NaClO 
solution, a large number of TiO2 particles were attached to the surface 
and interlayer of the composite material, which played a role in 
expanding the interlayer spacing, reducing the stacking effect and 
endowing the material with more excellent pseudocapacitance. In 
addition, the expansion of the interlayer spacing increaseed the effective 
contact area between the electrode and the electrolyte, thereby 
improving the electrochemical performance of the composite. The red 
box in the figure was the mapping scanning position, and the Fig. 2 (d-f) 
was the EDS mapping image of the main elements of Ti, C and O. In 
addition, the crystal structure of the prepared samples was analyzed by 
XRD. Fig. 2g was the XRD spectra of Ti3C2Tx, and Ti3C2Tx/TiO2 com-
posites. Compared with the standard comparison card of Ti3C2Tx 
(PDF#52–0875) and the Ti3C2Tx material prepared without adding 
oxidant, the diffraction peaks at 37.8◦, 48.1◦ and 62.1◦ in the spectrum 
of the composite material correspond to the anatase TiO2 (004), (200) 
and (213) crystal planes, respectively. The peak of Ti3C2Tx itself 
weakens and widens. The reason was that the strong oxidant destroys 
the crystal structure of the material during the etching process, reduces 
the crystallinity, and the material was oxidized to TiO2. 

The specific surface area significantly affected the capacitance of the 
material. An increase in specific surface area resulted in a greater 
number of surface-active sites, which promoted the capacitance. BET of 
N2 adsorption–desorption isotherms, and pore size distribution of 
MXene and MXene/TiO2 showed in Fig. 3. The specific surface area of 
MXene was 3.47 m2/g, however, that of MXene/TiO2 was 14.21 m2/g. 
This enhanced specific surface area increased the capacitance by 
increasing the quantity of surface-active sites (Fig. 3a). Furthermore, 
MXene/TiO2 exhibited a micropore structure (Fig. 3b). Hence, the in-
crease in the specific surface area of MXene/TiO2 was attributed to the 
formation of a more intricate pore structure with a high pore volume. 

Ti3C2Tx/TiO2 composites were characterized by XPS. Fig. 4a was the 
spectrum of the composite, where the peaks of C, O and Ti in Ti3C2Tx 
could be found. Through the peak fitting of each element in the com-
posite material, the element distribution in the material can be effec-
tively understood. Fig. 4b was the fitted C peak. The binding energies of 
C-Ti, C-O, C–C and C = O were 280.8 eV, 284.2 eV, 284.8 eV and 288.1 
eV, respectively. Ti 2p spectra of Fig. 4c corresponded to Ti-C (2p3/2), Ti- 
O (2p3/2), Ti-C (2p1/2) and Ti-O (2p1/2) bonds at 455.6 eV, 458.3 eV, 
461 eV and 464.5 eV, respectively. As shown in Fig. 4d, the binding 
energies of O-Ti, O = C and O-C bonds were 529.7 eV, 531.5 eV and 

Fig. 2. (a-c) are the overall SEM and TEM image of fluorine-free Ti3C2Tx doped with 0.2 mL 10 % NaClO at different angles; (d-f) are the element mapping figure of 
Ti, C and O in Ti3C2Tx/TiO2 composites; (g) is the XRD spectrum of the material. 
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532.8 eV, respectively. The results showed that when NaClO was added 
as an oxidant in the alkali-assisted hydrothermal preparation process, 
the etched material contains TiO2. 

The electronic structure of Ti3C2Tx/TiO2 was further studied by DFT 
calculation. Fig. 5a was the density of states (DOS) of TiO2, Ti3C2Tx and 

Ti3C2Tx/TiO2. MXene exhibited typical metal characteristics, and its 
electronic orbit crossed the Fermi level. The synergistic effect of TiO2 
and Ti3C2Tx make the composite have stronger interfacial electron 
interaction than the monomer. By observing the difference charge 
density along the z-axis in Fig. 5b, there was a significant charge 

Fig. 3. BET of N2 adsorption–desorption isotherms (a), and pore size distribution of MXene and MXene/TiO2 (b).  

Fig. 4. (a) XPS diagram of Ti3C2Tx / TiO2 prepared with the fluorine-free alkali-assisted hydrothermal method doping with 0.2 mL NaClO aqueous solution; (b) C 1 s, 
(c) Ti 2p and (d) O 1 s. 
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Fig. 5. (a) DOS of TiO2, MXene and MXene/TiO2; (b) Ddimensions differential charge density of MXene/TiO2 along the z-axis; (c) The charge density difference of 
MXene/TiO2, yellow represents electron aggregation and blue represents electron dispersion. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 6. (a) CV curves of 10 mV, 20 mV, 40 mV, 70 mV, and 100 mV. (b) The constant current charge–discharge curves of the Ti3C2Tx/TiO2 composite electrode with 
0.2 mL NaClO incorporation in 1 M H2SO4 electrolyte and three-electrode system were 1 A/g, 2 A/g, 4 A/g, 7 A/g, 10 A/g, respectively. (c) EIS of Ti3C2Tx/TiO2 and 
Ti3C2Tx with incorporation of 0.2 mL NaClO incorporation, and (d) the cyclic stability curves. 
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redistribution at the heterogeneous interface, which was conducive to 
the transmission of charge at the interface of the composite material. 
Fig. 5c showed the interface potential difference of the composite ma-
terial, it can be found that electrons are aggregated at the yellow and 
dispersed at the blue. The existence of the potential difference was 
conducive to the transmission and movement of electrons, indicating 
that the composite of TiO2 material can effectively improve the elec-
trical properties of Ti3C2Tx. 

3.2. Electrochemical properties 

The electrochemical properties of Ti3C2Tx/TiO2 composites prepared 
by 0.2 mL NaClO aqueous solution were tested in 1 M H2SO4 electrolyte 
using the standard three-electrode system of CHI660E electrochemical 
workstation. Fig. 6a showed the CV curves of the Ti3C2Tx/TiO2 com-
posite electrode with the best reaction time and the best ratio (12 h, 0.2 
mL) at 10 mV, 20 mV, 40 mV, 70 mV, and 100 mV. Several CV curves in 
the figure showed obvious redox peaks, indicating that the material had 
good pseudocapacitance characteristics. With the increase of scanning 
speed, the redox peak did not show a significant shift and deformation, 
indicating that the material had good stability. By observing the con-
stant current charge and discharge curves at current densities of 1 A/g, 2 
A/g, 4 A/g, 7 A/g, and 10 A/g in Fig. 6b, and using Formula (2), the 
highest mass specific capacitance of the prepared Ti3C2Tx/TiO2 com-
posite under constant current charge and discharge conditions was 
calculated to be 321F/g. Electrochemical data of other preparation 
conditions was shown in Fig. S1 in the supporting information. 

The EIS of Ti3C2Tx/TiO2 composites and Ti3C2Tx materials can 
further prove the advantages of composites. Fig. 6c was the impedance 
comparison diagram of the two materials. There was no significant 
difference in the arc diameter between the two materials in the high 
frequency region, indicating that the charge transfer resistance was 
equivalent. The slope of the oblique line in the low frequency region was 
closely related to the ion diffusion rate in the electrolyte. The slope of the 
Ti3C2Tx/TiO2 composite was significantly higher than that of the pure 
Ti3C2Tx material, indicating that the contact area between the material 
and the electrolyte was larger, and the ion diffusion rate was better, 
which was more conducive to improving the conductivity of the mate-
rial. In addition, the cycle stability test of Ti3C2Tx/TiO2 and Ti3C2Tx 
showed that the capacitance retention rate of Ti3C2Tx/TiO2 composites 
was higher than that of Ti3C2Tx after 10,000 cycles. As shown in Fig. 6d, 
the capacitance retention of Ti3C2 material was about 81.7 %, while the 
final capacitance retention of Ti3C2Tx/TiO2 composite was 86.4 %, 
indicating that the TiO2 composite has higher cycle stability. It was 
noted that the Ti3C2Tx/TiO2 composite gradually increased after 6000 
cycles, which was due to the wettability between the electrode material 
and the electrolyte ions. In summary, the electrical properties of 
Ti3C2Tx/TiO2 composites were better than those of pure Ti3C2Tx. 

4. Conclusion 

The fluorine-free Ti3C2Tx/TiO2 composite was prepared in situ at a 
high concentration of NaOH with NaClO. In this composite, the TiO2 
particles prepared in situ were evenly distributed on the surface and 
between the layers of the material, which effectively curbed the stacking 
problem between the Ti3C2Tx sheets and improved the specific surface 
area of the material. The prepared electrode in 1 M H2SO4 sulfuric acid 
electrolyte, − 0.5–0.2 V voltage window, the highest mass specific ca-
pacity can reach 321F/g, and after 10,000 charge–discharge cycles, the 
capacitance retention rate can still reach 86.4 %, which was higher than 
that of Ti3C2Tx material (81.7 %). The reason was that TiO2 with 
excellent pseudocapacitive properties was beneficial to improve the 
specific capacity of the material, and the composite material prepared 
by in-situ preparation method, the combination between Ti3C2Tx and 
TiO2 was closer, ion diffusion and electron conduction were faster. In 
addition, this in-situ alkali-assisted hydrothermal preparation method 

effectively reduced unnecessary loss during the experimental process, 
and did not use a highly toxic and electrochemically inert fluorine- 
containing solution throughout the experimental process, which pro-
vided a new way for the green and efficient preparation of MXene 
composites. 
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