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Abstract Background: Hepatocellular carcinoma (HCC), a malignancy with high mortality and

recurrence rates, has very limited options for treatment strategies. Dehydrocostus lactone (DL) is

the principal quality marker extracted from Aucklandia lappa Decne. and has been demonstrated

to possess excellent anticancer activity. The key purpose of this study was to explore the therapeutic

effects and potential mechanisms of DL on HCC.

Methods: The effect of DL on the cell viability of HCC cell lines (HepG2 and SK-HEP-1) and

normal human hepatocyte cell line (L-O2) was examined by CCK8, colony formation, and

BeyoClickTMEdU-488 assays; Hoechst 33,258 staining and flow cytometry were utilized to deter-

mine the impact of DL on apoptosis; the sensitivity of HCC cells to DL was explored by adding

Z-VAD-fmk. In addition, the expression of apoptosis-related proteins Bax, Bcl-2, and PARP was

detected by western blotting; the expression of p-H2AX was investigated by western blotting and

immunofluorescence staining; cell cycle distribution was observed using flow cytometry; the migra-

tion ability and invasiveness of HCC cells were assessed by wound healing assay and transwell

assay; immunoblotting was applied to visualize the levels of EMT markers in the two HCC cell

lines. Transcriptome sequencing was performed to reveal the underlying mechanisms of DL anti-

tumor; western blotting and qRT-PCR were employed to verify the mRNA and protein abundance
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of p53, p21, and CDK2; HepG2 xenograft in mice was used to test the anti-tumor effects of DL

in vivo.

Results: DL suppressed the proliferation of HCC cell lines (HepG2 and SK-HEP-1) but had lit-

tle effect on a normal human liver cell line (L-O2). In addition, DL also induced apoptotic death of

the HCC cells by activating Bax and downregulating Bcl-2. The antiproliferative effects of DL

could be attributed to increased DNA damage and G1-phase cell cycle arrest. Moreover, DL inhib-

ited HCC cell invasiveness and migration in vitro by decreasing the levels of b-catenin, N-cadherin,

and TCF8/ZEB1, and increasing the E-cadherin level. RNA sequencing indicated that DL exerted

its anti-hepatoma effects partly via regulation of p53-p21-CDK2 signaling. These results were val-

idated by our in vivo experiments, in which DL markedly suppressed the growth of HepG2 xeno-

grafts in a mouse model without any toxic side effects, which corresponded to decreased

expression of Ki67 and MMP9 in the tumor tissues.

Conclusion: DL has significant anti-cancer effects in both in vivo and in vitro HCC models, and

therefore could be further developed as a promising drug for the treatment of HCC.

� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As reported by the World Health Organization, liver cancer ranks fifth

in incidence among all fatal malignancies worldwide today and is the

second leading cause of cancer-related deaths (Bray et al., 2018; Pei

et al., 2023). As the most common subtype of primary liver cancer,

hepatocellular carcinoma (HCC) accounts for about 70–90% of all

hepatic cancer cases (Gao et al., 2020; Li et al., 2022). It is highly

aggressive, poorly cured, and exhibits extremely high recurrence and

mortality rates, resulting in most patients being diagnosed at an

advanced stage with a very short remaining survival time of 6–

20 months (Desai and Prasad, 2021). The presence of various risk fac-

tors in the general population, such as the high rate of hepatitis B/C

virus infection, and the occurrence of chronic liver disease caused by

excessive alcohol and tobacco addiction, pose serious challenges to

the prevention and treatment of HCC (Feng et al., 2019; McGlynn

et al., 2021; Sun et al., 2020). Traditional therapies for HCC including

surgical resection, chemotherapy, and radiotherapy are not suitable for

late-stage patients with metastasis and lymph node involvement as well

as destroying the local organs, leaving a worse prognosis (Demir et al.,

2021; Dobson, 2014). Meanwhile, the resistance and adverse effects of

immunotherapeutic drugs like PD1/PDL1 monoclonal antibodies and

targeted agents as tyrosine kinase receptor agonists cannot be ignored

(Dai et al., 2022; Wang et al., 2023). Hence, it has been imperative to

seek high-efficiency, low-toxicity and multi-targeted anti-HCC phar-

maceuticals (Alibolandi et al., 2016; Ghadiri et al., 2017;

Mottaghitalab et al., 2015).

Aucklandia lappa Decne. is a natural Chinese herbal medicine

extensively used in various ethnic areas, which has a long-term histor-

ical accumulation and unique medical value (Cai et al., 2022). As far as

investigations are concerned, Aucklandia lappa Decne. was originally

recorded in the Shen Nong Ben Cao Jing (Chen et al., 2022), a classical

medical literature of the Chinese nation, and was classified as one of

the top-grade herbs, which was frequently used by the ancient Chinese

people as one of the members of the Chinese medicine prescriptions for

the treatment of many kinds of cancer because of its efficacy in dispers-

ing stagnated hepatoqi and promoting qi circulation to relieve pain

(Song et al., 2022; Zhang et al., 2021). Furthermore, modern pharma-

cological studies have demonstrated that Aucklandia lappa Decne. pro-

vides favorable therapeutic effects and safety for diseases including

ulcerative colitis, breast carcinoma, cervical cancer, and benign pro-

static hyperplasia (Chen et al., 2022; Choi et al., 2021; Hasson et al.,

2018), as well as exhibiting excellent antioxidant, anti-apoptotic,

anti-tumor, and anti-allergic properties (Lim et al., 2020; Seo et al.,

2015; Zhou et al., 2020). More noticeably, Huang et al. had discovered

that Aucklandia lappa Decne. could synergistically enhance the efficacy
of gefitinib in the treatment of non-small cell lung cancer by directly

exerting suppression of the EGFR signaling pathway (Huang et al.,

2017).

As one of the natural sesquiterpene lactones extracted from Auck-

landia lappa Decne., dehydrocostus lactone (DL) is a principal quality

marker prescribed by the Chinese Pharmacopoeia, and has been like-

wise winning widespread attention for its remarkable anti-cancer ben-

efits (Li et al., 2020). Reportedly, not only can DL inhibit the growth

of gastrinoma cancer cells through sub-G1 phase cell cycle block and

mitochondrial membrane potential loss channels (Long et al., 2019),

but also suppress the proliferation of human laryngeal carcinoma via

PI3K/Akt/Bad and ERS signaling pathways (Long et al., 2019). How-

ever, the potential implications and mechanisms of DL on HCC are

still not clearly elucidated.

In this study, we intended to investigate the potential intervention

efficacy and mechanisms of DL against HCC. With the establishment

of in vitro HCC cell models, the impacts of DL on HCC cells prolifer-

ation and metastasis were inspected by means of western blotting, flow

cytometer, immunofluorescence, and RNA sequencing. Furthermore,

as an in vivo validation, the inhibitory effectiveness of DL on tumor

growth was examined using HepG2 xenograft mice. In fact, the present

study could contribute a novel perspective for mechanism excavation

and deeper exploitation for DL.

2. Materials and methods

2.1. Culturing of malignant and normal human liver cell lines

HepG2 and L-O2 (a noncancerous human liver cell line) were
acquired from American Type Culture Collection (VA, USA).
SK-HEP-1 cells were obtained from the Cell Culture Center of

the Institute of Basic Medical Sciences of the Chinese Acad-
emy of Medical Sciences (Beijing, China). We utilized Roswell
Park Memorial Institute (RPMI)-1640, Dulbecco’s modified

Eagle medium (DMEM) and minimum essential medium
(MEM) plus 10% fetal bovine serum (FBS) and 1% peni-
cillin–streptomycin (P-S) solution for maintaining L-O2,

HepG2 and SK-HEP-1 cell lines, respectively, in a 37 �C incu-
bator filled with 5% CO2.

2.2. Reagents and antibodies

Dehydrocostus lactone (DL) (purity, � 98%; molecular
weight, 230.30; formula, C15H18O2) was obtained from

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Chendu Must Bio-Technology Co. Ltd. (see Fig. 1A for its
structure). The DMEM, MEM, and P-S solution were pur-
chased from Gibco (CA, USA), and 0.25% trypsin and FBS

were from Sigma (MO, USA). Matrigel and The Transwell
chambers and matrigel were procured from Corning (NY,
USA). The E.Z.N.A.� Total RNA Kit was obtained from

Omega Bio-Tek (GA, USA), and the kits for EdU cell prolif-
eration assay, Annexin V-FITC staining, and cell cycle analysis
were from Biyuntian Biotechnology (Shanghai, China). Z-

VAD-FMK (HY-16658B) and CVT-313 (HY-15339) were
purchased from MedChem Express (NJ, USA). Antibodies
specific for b-actin (4970 T), Bax (41162S), Bcl-2 (15071 T),
PARP (9532 T), c-H2AX (9718 T), E-cadherin (3195 T), N-

cadherin (13116 T), TCF8/ZEB1 (3396 T), b-catenin
(8480 T), p53 (2527 T), p21 (2947 T), p27 (3686 T) and
CDK2 (18048 T), and horseradish peroxidase-conjugated goat

anti-rabbit (7074P2) and anti-mouse (7076P2) IgG were
obtained from Cell Signaling Technology (MA, USA). The
enhanced chemiluminescence kit for developing target bands

in Western blotting was procured from GE Healthcare.

2.3. Cell viability assay

Briefly, 3000 cells were filled into 100 lL cell culture medium in
each well of 96-well plates and allowed to attach for 24 h. After
treatment with DL (at concentrations of 0, 5, 10, 15, 20, and
25 lM) for varying durations (24 h and 48 h), the cells were

subjected to a 2 h incubation in the Cell Counting Kit-8
(CCK-8) reagent. Afterwards, we utilized a microplate reader
to record the 450 nm optical absorbance for each well.

2.4. Colony formation assay

Briefly, cells (3000 cells per well) were inoculated into 6well

plates. The cell culture medium was refreshed 24 h later and
added with 5 lMDL. After culturing the cells for 12 days, they
were rinsed with phosphate-buffered saline (PBS), fixed inside

4% paraformaldehyde for 15 min, and subjected to crystal vio-
let staining for 0.5 h. Colonies larger than 0.5 mm were
counted.

2.5. Cell proliferation analysis using EdU

The cells were plated and cultured for 24 h in 96-well plates,
followed by incubation with DL (0, 5, 10, and 15 lM) for

48 h. After aspirating 50 lL medium from each well, the same
volume of EdU-containing medium (20 lg/mL) was supple-
mented to incubate the cells for two hours under 37 �C. The
EdU-labeled proliferating cells were detected with the Bey-
otime BeyoClickTM EdU Cell Proliferation Kit (Shanghai,
China) following the provider’s instructions, and pho-

tographed and analyzed under a high-content screening
(HCS) analysis system (Operetta CLS, PerkinElmer, USA).

2.6. Hoechst 33,258 staining

Eighty thousand cells were inoculated into each well of 6well
plates, incubated for 24 h, and then subjected to DL treat-
ments (0, 5, 10, and 15 lM). After incubating the cells with
DL for 48 h, the cells were fixed for 10 min inside 4%
paraformaldehyde and stained for 0.5 h by Hoechst 33,258

(10 lg/mL) at ambient temperature without being exposed to
light. An Olympus IX73 fluorescence microscope (Japan)
was utilized for observing and capturing the images.

2.7. Apoptosis and cell cycle assays

Cells were treated with DL as described above. Then the cells

were analyzed for apoptosis with a Beyotime Annexin V-FITC
kit (Shanghai, China) as per the protocol of the kit. For cell
cycle assay, the cells were allowed to grow for 12 h in a med-

ium without serum, incubated for 48 h with 10 lM DL, and
analyzed by a kit for apoptosis and cell cycle assays from Bey-
otime (Shanghai, China) following the manual provided by the
manufacturer.

2.8. Immunohistochemistry (IHC)

Cells maintained in 96-well plates were subjected to a 24 h

treatment with 10 lM DL. After that, the cells were subjected
to fixation with formaldehyde (4%) and then permeabilization
using Triton X-100 (0.1%) for 10 and 20 min, respectively. The

cells were then blocked for 1 h in 5% bovine albumin, incu-
bated using an anti-c-H2AX (Ser 139) antibody overnight at
4 �C, rinsed by PBS, and incubated for one hour using a
DyLight 594-conjugated secondary antibody, followed by

DAPI for 10 min. Images were acquired with High Content
Screening (Operetta CLS, PerkinElmer, USA) using a 63� wa-
ter objective.

2.9. Wound healing assay

The cells were digested and inoculated into 12-well plates, and

when their fusion grew to 90%, the cells were starved with
serum-free medium for 12 h. After starvation for 12 h, scratch
wounds were created on the HCC cell monolayers using 10 lL
pipette tips. After the removal of dislodged cells, a serum-free
medium containing 3 or 6 mM DL was added. The wound
region was determined under a microscope at 0, 12, and 24 h
after the addition of DL to appraise the HCC cells’ migration

ability.

2.10. Matrigel transwell invasion assay

Serum-free medium was utilized for starvation treatment of
cells for 12 h, then digested into a single cell suspension and
adjusted the density of the cells to 1 � 106/mL. We added to

the upper chamber of Matrigel-coated transwell inserts with
200 lL drug supplemented serum-free medium containing
2 � 105 cells, and lower chambers added 750 lL medium with

10% FBS, respectively. The cells were maintained in the tran-
swell set for 24 h and then those moved across the Matrigel
were sequentially fixed for 5 min and 15 min by paraformalde-
hyde and methanol, respectively. Afterwards, these cells were

subjected to crystal violet staining for 10 min, rinsed with
PBS, and counted.



Fig. 1 DL repressed HCC cell proliferation. (A) The structure of DL. (B) Viability of the two HCC cell lines incubated with DL for 24

and 48 h. (C) Representative fluorescence images of HCC cells incubated for 24 h with 5, 10, and 15 lM DL and stained by

BeyoClickTMEdU-488 (20 � water lens, NA 1.0). The right panel indicates the EdU-positive proportion. (D) Representative images of

colonies formed by the HCC cells treated with 5 lM DL for 12 days. (E) Viability of the HCC cells and normal hepatocytes following

incubation for 48 h with DL. *P < 0.05, **P < 0.01, ***P < 0.001.
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2.11. Quantitative real-time PCR (qRT-PCR)

We utilized the E.Z.N.A. �Total RNA Kit and the Prime-
Script RT Reagent Kit for extraction of total RNA from trea-
ted HCC cells and reverse transcription, respectively. All the

experiments were performed as per the instructions of the pro-
vider Quantitative PCR was implemented with TransStart Tip
Green qPCR Kit using 4 mL cDNA as the template. The
sequences of qRT-PCR primers are:

CDK1 forward: 50-
AAACTACAGGTCAAGTGGTAGCC-30,
CDK1 reverse: 50- TCCTGCATAAGCACATCCTGA-30;
CDK2 forward: 50-CCAGGAGTTACTTC
TATGCCTGA-30,
CDK2 reverse: 50-TTCATCCAGGGGAGGTACAAC-30;
p53 forward: 50- GAGGTTGGCTCTGACTGTACC-30,
p53 reverse: 50- TCCGTCCCAGTAGATTACCAC-30;
CDKN1A forward: 50-AAGTCAGTTCCTTGTG
GAGCC-30,
CDKN1A reverse: 50-GGTTCTGACGGACATCCCCA-
30;
EAF2 forward: 50-GGCAGAAGCTAGTCTAATG
GACC-30,
EAF2 reverse: 50-TGTACTGTGTCATGGTAGGATGT-

30.

2.12. Western blotting

Cells with different DL treatments (5, 10, and 15 lM for 24 h)
were homogenized with RIPA buffer, and the total cell lysates
were heated for 10 min at 99 �C for denaturation on an electric

heating block. The samples were subjected to SDS-PAGE for
separation of proteins with different molecular weights and
then the proteins were blotted onto PVDF membranes. Fol-

lowing incubation for 1.5 h in 5% skimmed milk in TBST solu-
tion at ambient temperature, the membranes were incubated
overnight with the primary antibody (1:1000) at 4 �C. The
blots were rinsed by TBST the following day and then
immersed for 4 h in diluted (2000 � ) secondary antibody solu-
tions at 4 �C. After rinsing by TBST 3 times for 10 min each,

the bands were developed using xx and visualized with Odys-
sey FC (LI-COR, Germany).

2.13. In vivo subcutaneous xenograft

Four- to five-week-old male BALB/c nude mice were procured
from Beijing Vital River Laboratory Animal Technology Co.
Ltd., and subcutaneously inoculated with 3 � 106/200 lL
HepG2 cells into the right posterior region. Once the tumors
grew to a volume of 100 mm3, we randomly allocated the mice
into the PBS, low-dose DL (10 mg/kg), high-dose DL (20 mg/

kg), and 5-fluorouracil (5-FU) groups (n = 6 each). DL and
PBS were injected intraperitoneally every day, while 5-FU
was administered on alternate days. The body weight of the

mice was appraised every day. Besides, the length and width
of the subcutaneous tumor was measured by using electronic
vernier calipers, and the volume of tumor was determined with
the equation: tumor volume= (length � width � width)/2.

Following the treatment regimens, the mice were subjected to
euthanization, and the tumor tissues and main organs were
collected and fixed in 4% paraformaldehyde. H&E staining
and immunohistochemical analysis were performed as per

standard protocols. All experiments on mice strictly followed
the Guide for the Care and Use of Laboratory Animals.

2.14. Statistical analysis

Analyses of statistical data were implemented with GraphPad
Prism 8.0. The means ± standard deviations (SD) of data

from two groups were compared with unpaired two-tailed t
test; while the data from � 3 groups were subjected to one-
way analysis of variance. P < 0.05 was deemed to signify sta-

tistical significance.

3. Results

3.1. DL repressed HCC cell proliferation

Given that the unlimited proliferation of cells represents a hall-

mark of cancer progression, a majority of chemodrugs are
designed to inhibit the proliferative capacity of tumor cells
(Cardano et al., 2020). We treated SK-HEP-1 and HepG2 cells

using DL at different concentrations (0–25 mM) for 24 and
48 h. As shown in Fig. 1B, DL significantly suppressed the pro-
liferative capacity of the HCC cells dose- and time-

dependently. Furthermore, the EdU incorporation assay
revealed that DL markedly decreased the proportion of the
EdU-labeled (green fluorescence) proliferating cells (Fig. 1C).

Consistent with these results, DL treatment also significantly
reduced the colony-forming ability of the HCC cells
(Fig. 1D). In contrast, DL had little inhibitory effect on the
normal hepatocyte L-O2 cell line (Fig. 1E), indicating that

DL displayed selective cytotoxicity against the HCC cells.

3.2. DL promoted HCC cell apoptosis

Apoptosis was analyzed via Hoechst staining (Busto et al.,
2015). The two HCC cell lines treated with DL displayed
stronger fluorescence (Fig. 2A), which was indicative of higher

apoptosis rates. Flow cytometry analysis showed that exposure
to 15 lM DL significantly enhanced the percentages of HepG2
and SK-HEP-1 cells that underwent apoptosis to 53.88 ± 9.

58% and 55.6 ± 5.57% respectively (Fig. 2C). In addition,
Z-VAD-fmk, an inhibitor against caspases, reduced the sensi-
tivity of the HCC cells to DL (Fig. 2B), indicating that human
HCC cell apoptosis invoked by DL is triggered by the caspase

signaling cascade. Consistent with this, DL treatment
increased the protein level of Bax, and downregulated that of
Bcl-2 in the HepG2 and SK-HEP-1 cells (Fig. 2D). Further-

more, DL also activated cleaved PARP, which plays a crucial
role in apoptosis (Soldani and Scovassi, 2002). Taken together,
DL attenuated HCC cell growth via triggering apoptosis.

3.3. DL caused DNA damage and G1 cell cycle arrest in human

HCC cells

Based on the pro-apoptotic effects of DL, we hypothesized

that DL may induce DNA damage, which ultimately causes
cell cycle blockage and apoptotic cell death. As expected, cells



Fig. 2 DL invoked human HCC cell apoptosis. (A) Representative images of liver cancer cells incubated for 48 h with 0, 5, 10 and 15 lMDL

and stained by Hoechst 33258. The apoptotic cells displayed blue fluorescence (20 � water lens, NA 1.0). (B) Viability of the two HCC cell

lines incubated for 4 h with or without Z-VAD-fmk (5 lM) before treatment by various concentrations of DL for 24 h. (C) Flow cytometry

plots showing percentage of apoptotic cells after DL treatment at various concentrations (0, 5, 10 and 15 lM) for 48 h. (D) Immunoblots

showing Bcl-2 and Bax protein levels in cells treated for 24 h with DL (at concentrations of 0, 5, 10 and 15 lM). *P < 0.05, **P < 0.01,

***P < 0.001.
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treated with DL showed nuclear accumulation of c-H2AX foci
(Fig. 3A), which is indicative of DNA damage. In addition,
DL significantly increased p-H2AX expression dose-

dependently. (Fig. 3B). It was also exhibited that DL enhanced
the proportion of G1-phase HCC cells, which suggests that it
blocks cell cycle transition at the G1 stage (Fig. 3C).
3.4. DL attenuated the metastatic capacity of the HCC cells

As shown in the wound healing assay images in Fig. 4A, DL
treatment reduced the coverage of the scratched region in the
two HCC cell lines, suggesting that DL significantly reduced

their migration ability. Furthermore, the number of HCC cells



Fig. 3 DL induced damage of DNA and blockage of cell cycle at the G1 stage in human HCC cells. (A) Representative fluorescence images

showing c-H2AX foci in cells incubated with DL (10 lM) for 24 h (40 � water lens, NA 1.0). (B) Immunoblotting showing c-H2AX levels

in HCC cells subjected to 24-h-long DL treatments (at concentrations of 0, 5, 10 and 20 lM). (C) Flow cytometry plots showing the

distribution of human HCC cells at different stages of cell cycle following treatment by 10 lM DL for 48 h. **P < 0.01, ***P < 0.001.
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that invaded through the Matrigel-coated membrane in Tran-
swell assay also decreased when treated with DL (Fig. 4B),

suggesting DL can also inhibit the invasiveness of HCC cells.
The metastasis of malignant tumor cells is driven by the
embryonic epithelial-to-mesenchymal (EMT) program (Cho

et al., 2019). DL upregulated E-cadherin, the epithelial mark-
ers and decreased the expression of mesenchymal markers,
including N-cadherin, b-catenin and TCF8/ZEB1 in the
HCC cells (Fig. 4C), revealing that DL suppressed the EMT
of human liver cancer cells.

3.5. The regulatory role of Dehydrocostus lactone on the p53-

p21-CDK2 signaling pathway

To gain further insights into the molecular mechanisms under-
lying the effects of DL, we analyzed the transcriptomes of the



Fig. 4 DL suppressed the migration ability and invasiveness of HCC cells. (A) Representative pictures obtained from the wound healing

assay showing the migration ability of the two HCC cell lines at 0, 12 and 24 h after treatment with 0, 3 and 6 lM DL

(20 � magnification). (B) Representative images of transwell assay showing the invasion of cells through Matrigel 24 h after treatment

with 0, 3 and 6 lM DL (20 � magnification). (C) Immunoblots showing levels of EMT markers in the two HCC cell lines treated as

indicated. *, ** and *** indicate P values<0.05, 0.01 and 0.001, respectively.

8 Y. Tian et al.
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untreated and DL-treated HCC cells through RNA sequenc-
ing. As depicted in Fig. 5A, differential genes are enriched in
cell cycle and p53 signaling pathway by data analysis. DNA

damage always leads to p53-p21 pathway activation and
blocks cell cycle progression at the G1 phase to allow the cells
to repair the DNA lesions. The activation of p21 by p53 inhi-

bits CDK2(He et al., 2005). In addition, the findings of qRT-
PCR and Western blotting displayed that DL increased the
mRNA and protein abundances of p53, p21 and reduced those

of CDK2 in HepG2 and SK-HEP-1 cells (Fig. 5B, C). Taken
together, the modulation of the p53-p21-CDK2 signaling cas-
cade contributed in part to the anti-cancer effect of DL in
human hepatoma cells. In addition, DL is also able to down-

regulate the mRNA abundance of CDK1 and upregulate that
of EAF2 and the protein level of p27 (Fig. 5B, C).

3.6. Dehydrocostus lactone exerted tumoricidal efficacy in vivo.

To verify the results of in vitro experiments, we generated
HepG2 cells-derived xenografts in BALB/c mice and injected

different doses of DL into the mice for 22 days. As displayed
by Fig. 6B, the average volume of tumors in mice injected with
high-dose DL (20 mg/kg) was markedly lower compared to

that of the PBS control mice. However, the body weight of
the mice was not affected by DL treatment (Fig. 6A), which
was indicative of the overall safety of DL. In addition, tumor
tissues derived from the DL-treated mice exhibited a marked

decrease in the in-situ expression of Ki67 and MMP9 com-
pared to that of the control mice (Fig. 6D), indicating that
DL can inhibit HCC cell proliferation and metastasis in vivo.

Moreover, relative to the control, DL treatment also elevated
the percentages of TUNEL-positive apoptotic cells in the
tumor tissues (Fig. 6D). Finally, histopathological examina-

tion of the liver, heart, lung, kidney, and spleen tissues did
not reveal any signs of toxicity due to DL treatment relative
to the control group (Fig. 6C). Taken together, DL can effec-

tively inhibit HCC growth in vivo with no detectable damage to
major organs such as the heart, liver, spleen, lung and kidney.

4. Discussion

In recent years, the severe situation of HCC with restricted
selective management and continuous attack on humans has
forced the medical community to search for more reliable

and innovative active drug precursors (Abedini et al., 2018;
Domb et al., 2021). Under this circumstance, traditional Chi-
nese medicine as a well-known complementary and alternative

therapeutic strategy is opening up new avenues for HCC rem-
edy. To the best of our knowledge, the extracts of chrysin from
Oroxylum indicum (L.) Vent. (Rong et al., 2022), hypericin

from Hyperlcurn perforatum L. (Choudhary et al., 2022), and
baicalin from Scutellaria baicalensis Georgi have provided a
more cutting-edge and scientific reference for the HCC phar-

macotherapy (Hu et al., 2021). In this study, DL, screened
from an everyday medicinal and edible herb, Aucklandia lappa
Decne., has been reported in previous studies to have excellent
anti-cancer activities. For example, DL could target IKKb to

inhibit NF-jB/COX-2 signaling pathway for ameliorating
glioma(Wang et al., 2021b), as well as suppress Wnt/b-
catenin pathway to antagonize colon carcinoma (Dong et al.,

2015), and also trigger apoptosis in A549 lung cancer cell line
(Hsu et al., 2009). Accordingly, the objective of present study
is to credibly validate the curative efficacy of DL against HCC
in vitro and in vivo, and further deeply elucidate its potential

molecular anti-HCC mechanisms by multiple molecular bio-
logical means.

Most chemotherapeutic drugs inhibit malignant cell prolif-

eration through blocking cell cycle or inducing apoptotic cell
death (Gaglia et al., 2022). We found that DL significantly
decreased the viability and proliferative capacity of the SK-

HEP-1 and HepG2 cells, but had little impact on the non-
malignant LO2 hepatocytes. Thus, DL exhibited selective cyto-
toxicity against HCC cells. Apart from uncontrolled prolifera-
tion, cancer cells are also characterized by their ability to

bypass the apoptotic pathways. Therefore, many drugs have
been developed that induce apoptosis directly or indirectly
by increasing DNA damage (Mohammad et al., 2015; Wong,

2011). For instance, Ma et al. found that diosmetin (DIOS)
promoted apoptosis of hepatoma cells through significantly
suppressing the expression of Bcl-2 while promoting the

expression of Bax, cleaved-caspases 3 and 8, cleaved-PARP,
Bak, p53 and p21 (Ma and Zhang, 2020). Additionally, block-
ing cell cycle and causing DNA damage are also potent strate-

gies for controlling cancer progression (Liu et al., 2023). DNA
damage is characterized by the accumulation of c-H2AX foci
(Siddiqui et al., 2015), and triggers DNA repair, cell cycle
arrest, and eventually cell death (Clay and Fox, 2021). Cate-

chol, a natural plant-derived compound, increased c-H2AX
accumulation in the breast tumor-derived MCF-7 cells, result-
ing in blockage of cell cycle at the G1 stage through inhibition

of cyclin E/Cdk2 mediated by p21. Moreover, p53 activation
directly triggers caspase-dependent apoptosis via increasing
the Bax/Bcl-2 ratio (Vazhappilly et al., 2021). Some metal-

based anti-cancer agents exert their therapeutic effects through
causing damage to DNA, and subsequently blockage of cell
cycle at the G1 stage and apoptotic cell death (Wang et al.,

2021a). In our study, DL enhanced the apoptosis rates of
HCC cells via upregulating the protein levels of PARP and
Bax, while downregulating that of Bcl-2. In addition, the inhi-
bitory effect of DL on hepatoma cell growth was greatly weak-

ened by the caspase inhibitor Z-VAD-fmk, which further
supported the pro-apoptotic action of DL in liver cancer. Fur-
thermore, there were significantly more c-H2AX foci in the

HCC cells after treatment by DL, which coincided with cell
cycle arrest at G1 phase.

During HCC development, the malignant cells generally

metastasize to several essential organs (Becker et al., 2014;
Katyal et al., 2000). Therefore, metastasis suppression repre-
sents a useful therapeutic method for managing advanced
HCC (Wan et al., 2013). During EMT, epithelial cells gradu-

ally lose contact inhibition, and become increasingly motile
and invasive. This process is critical for tumor metastasis (Li
et al., 2021). Yuan et al. showed that apigenin decreased the

expression of the mesenchymal markers Snai1 and NF-jB in
HCC cells, which reversed EMT, increased cell adhesion and
decreased actin polymerization, eventually decreasing the

migration and invasion capacity of the HCC cells (Qin et al.,
2016). In our study as well, DL inhibited invasion and migra-
tion of the HCC cells in vitro by promoting the expression of

E-cadherin, which is an epithelial marker, and repressing the
expression of N-cadherin, TCF8/ZEB1 and b-catenin, which
are mesenchymal markers. Likewise, DL treatment also



Fig. 5 DL can regulate the p53-p21-CDK2 signaling pathway to exert an anti-hepatic carcinoma effect. (A) Cells were subjected to a 24-h

DL treatment at 10 lM and subsequently transcriptome sequencing. Transcriptome data analysis to identify enriched pathways. (B)

Results of qRT-PCR showing p53, p21 and CDK2 mRNA levels in the HCC cells treated with DL (0 and 10 lM) for 24 h. (C)

Immunoblots showing levels of p53, p21 and CDK2 proteins in HCC cells treated for 24 h with DL (0, 5, 10 and 20 lM). *P < 0.05,

**P < 0.01, ***P < 0.001.

10 Y. Tian et al.
decreased the expression of MMP9 in the xenografts in vivo.
Thus, DL exhibits an anti-metastatic potential in HCC cells.

To further explore the molecular mechanisms for the effects
of DL, we analyzed the transcriptomes of the control and DL-

treated cells by RNA sequencing, and predicted the functions
of the DEGs. The genes associated with the p53 pathway
and cell cycle were significantly altered by DL treatment,
and the results of RNA sequencing were validated by qRT-
PCR and western blotting. These genes exert key mediating
roles in DNA damage, apoptosis, and cell cycle (Armata

et al., 2007; Meek, 2009). Dysregulation of CDK activity
bypasses the key cellular checkpoints, resulting in unrestricted



Fig. 6 DL inhibited the growth of HepG2 xenograft in mice. Each mouse was injected with 3 � 106 cells/0.2 mL HepG2 cells. Once tumor

tissues grew to a volume of approximately 50 mm3, the animals were treated with 10 and 20 mg/kg DL, PBS or 5-FU (20 mg/kg). The body

weight (A) and tumor volume (B) of the mice were determined every two days. (C) Representative pictures of H&E-stained liver, heart,

lung, kidney, and spleen tissues (20 �magnification). (D) Representative images of tumor tissues showing TUNEL-positive apoptotic cells

and in-situ expression of Ki67 and MMP9 (20 � magnification).
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cell proliferation and tumor growth. Thus, CDK1 and CDK2
are promising therapeutic targets for cancer (Brown et al.,
2015). CDK1 and CDK2 regulate the progression of cell cycle

from G1 to S phase, through the S phase, and from the G2 to
M phase (Sakurikar and Eastman, 2016). P53 can suppress
tumor development and regulate cell cycle progression, gen-

ome stability, apoptosis and senescence. The direct down-
stream target of p53 is p21/WAF1 (Engeland, 2018), also
known as CDKN1A, which suppresses multiple CDKs and
blocks cell cycle progression. Activation of p21 in tumor cells
suppresses their ability to form colonies (El-Deiry, 2016). The
ATM/ATR-CHK1/CHK2-p53-p21CIP1/WAF1-CDK axis

functions as the G1 checkpoint in response to DNA damage
(Chen and Poon, 2008). p27 induces G1 phase arrest by
inhibiting CDK2/cyclinE (Balasubramanian et al., 1999). The

cisplatin analogue 1R, 2R-diaminocyclohexane(trans-
diacetato) (dichloro) platinumIV (DAP) forms DNA cross-
links, which activates the DNA damage response, resulting



Fig. 7 Schematic presentation of the anti-oncogenic effects of DL. DL induced apoptosis and blockage of cell cycle at the G1 stage in the

HCC cells via upregulating p53/p21 and p27, and downregulating CDK2. Moreover, DL inhibited the metastatic potential of the HCC

cells partly via EMT blockade.
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in G1-phase arrest via CDK suppression through the p53/p21
pathway (He et al., 2006). Yu et al. found that ginsenoside Rb1
(GRb1) repressed the cell cycle in tumor-bearing mice by acti-

vating the p53-p21-CDK2 axis (Yu et al., 2020). In our present
study, DL repressed HCC cell growth through blocking cell
cycle transition and triggering apoptosis via regulating the

p53-p21-CDK2 pathway.
To summarize, DL inhibited HCC cell growth in vitro and

in vivo through blocking cell cycle transition and triggering

apoptosis via the p53-p21-CDK2 signaling channel, and sup-
pressed their metastatic ability by blocking EMT (Fig. 7). Con-
sequently, DL can undoubtedly be a promising pharmaceutical

candidate for HCC prevention and has potential for further
exploitation in the formulation of HCC treatment strategies.
In the future, we will continue to thoroughly dissect the perfor-
mance of DL intervention in diverse HCC model animals and

investigate the perturbation of endogenous metabolic network
caused by DL in the organism, so as to lay a sound foundation
for the drug R&D journey of DL.

5. Conclusions

To sum up, our data revealed that DL suppressed the proliferative and

metastatic capabilities of HepG2 and SK-HEP-1 cells, which are two

HCC cell lines. These effects of DL were achieved through causing

damage to DNA, blockage of cell cycle and apoptotic cell death. Addi-

tionally, DL inhibited hepatoma lesion development in a xenograft
mouse model. Mechanistically, DL activated the p53/p21 pathway

and downregulated epithelial-mesenchymal transition (EMT), which

may be partially responsible for the DNA damage and the anti-

oncogenic effects of DL. Consequently, our results unveil the possible

mechanisms of action for DL, and establish an experimental basis for

the development of its structural analogues for clinical applications.
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