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Abstract The passive and dissolution behavior of Al was studied in 0.25 M gluconic acid solution

(HG) under the conditions of continuous illumination (300–400 nm) and non-illumination at 25 �C.
Measurements were conducted based on cyclic polarization technique, complemented with SEM

examinations. Addition of HG induced localized attack, rather than anodizing, via the formation

of Al–gluconate soluble complex species. Complexation with gluconate (G�) anion was elucidated

using elemental analysis, IR-spectroscopy and UV–vis spectra. The infrared spectral data is in

agreement with coordination through carboxylate-to-metal, with G� acting as a monodentate

ligand. A little ennoblement in the pitting potential (Epit) was observed for the illuminated electrode

(little influence on pit nucleation). On the other hand, the anodic currents at potentials exceeding

the pitting potential are greatly reduced upon illumination (significant influence on pit growth

and propagation). These findings indicated that the incident photons of the UV light enhanced

the resistance of the passive film towards localized attack. These explained in terms of a photo-

induced modification of the passive film formed on the anode surface, which render it more resistant

to the onset of attack. The repassivation potential (Erp), however, was found to be independent of
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the energy of the incident UV light. SEM images revealed that the severity of localized attack was

suppressed upon illumination.

ª 2010 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Two types of anodic oxide films can be formed in anodization
processes on an aluminum sample: barrier and porous
(Bocchetta et al., 2002). The type of oxide film is primarily

determined by the type of electrolyte. The compact, barrier
oxide films on aluminum are formed by anodization, mostly
under constant-current (galvanostatic) conditions, in electro-

lytes which possess significant buffering capacity and do not
dissolve oxide at all, e.g., neutral boric acid, ammonium
borate, ammonium tartrate, citric acid, tartaric acid, malic

acid, succinic acid, etc. (Diglee et al., 1969).
Barrier aluminum oxide films exhibit many interesting

properties which are of interest for researchers in various scien-
tific and technological areas: physics, chemistry, electronics,

etc. (Wernick et al., 1987; Jackson and Cambell, 1976; Ikon-
opisov, 1975; Tajima, 1977; van Geel et al., 1957; Tajima
et al., 1977a,b; Shimizu and Tajima, 1980a,b; Belca et al.,

2000; Ikonopisov et al., 1978; Stojadinovic et al., 2006). Porous
oxide films are commonly formed by anodization of aluminum
samples in acidic aqueous electrolytes, e.g., oxalic acid, sulfuric

acid, phosphoric acid, etc. Such films consist of two regions: an
outer region of thick porous-type aluminum oxide and a thin,
compact inner region lying adjacent to the metal (Abdel Rehim
et al., 2002; Kim et al., 1996; Nagayama et al., 1972; Pakes

et al., 2003; Suay et al., 2003; Garcia-Vergara et al., 2008).
Indeed, gluconate is a large hydrocarbon oxyanion and Al

would be expected to anodize in the presence of this kind of

ion. Anodization without pitting occurs in many acid and salt
solutions. Recently, our previous studies (Amin et al., 2010a,b)
revealed that Al and Al–Cu alloys suffered from severe local-

ized attack in gluconic acid solutions. The aim of the present
work is to study the coordination chemistry of the aggressive
gluconate anion (G�) regarding its interaction with Al(III)

and the subsequent formation of Al–G� soluble complex spe-
cies. For this purpose, elemental analysis, IR-spectroscopy and
UV–vis spectra were used. It was also the purpose of the pres-
ent work to study the photo-inhibition of localized corrosion

of Al in HG solutions and the factors affecting the degree of
photo-inhibition based on cyclic polarization technique. Mor-
phology of pitting as a function of the energy of the incident

photons is also studied.

2. Experimental

The working electrode employed in the present work was made
of Al, provided from the Egyptian Aluminum Company, with

composition presented elsewhere (Amin et al., 2010a). The
investigated Al electrode was cut as cylindrical rods, welded
with Cu-wire for electrical connection and mounted into glass

tubes of appropriate diameter using Araldite to offer an active
flat disc shaped surface of 0.75 cm2 geometric area for the
working electrode, to contact the test solution. The surface
pre-treatment of the electrode was carried out by grinding with

different grades of emery papers down to 1200 grit. The elec-
trode was then rinsed with acetone, distilled water and finally
dipped in the electrolytic cell. All solutions were freshly pre-
pared from analytical grade chemical reagents using doubly

distilled water and were used without further purification.
Gluconic acid solution (0.25 M) was freshly prepared from

analytical grade chemical reagents using doubly distilled water

and was used without further purification. For each run, a
freshly prepared solution as well as a cleaned set of electrodes
was used. Each runwas carried out in aerated stagnant solutions
at the required temperature (±1 �C), using water thermostat.

Cyclic polarization measurements were carried out by
sweeping linearly the potential from the starting potential into
the positive direction at a scan rate of 0.2 mV s�1 till the end

potential, and then reversed with the same scan rate till the
starting potential to form one complete cycle. These experi-
ments were performed in a three electrode PTFE cell equipped

with a quartz window to allow irradiation of the test electrode.
A saturated calomel electrode (SCE) was used as the reference
electrode and a platinum wire, coiled inside the PTFE cell, was

used as the auxiliary electrode.
The working electrode was irradiated at wavelengths be-

tween 300 and 400 nm using a 150 W UV-enhanced Xe lamp
(Oriel model 6254) and a 1/8 monochromator (Oriel model

77250). The incident power density at 300 nm was 400 mW
cm�2, giving a photon flux of 6.0 · 1014 cm�2. The photon flux
was maintained at approximately this value at each wavelength

by adjusting the light intensity at the surface using neutral den-
sity filter. Electrochemical experiments were carried out under
the conditions of non-illumination and continuous illumination

of the working electrode in HG solutions at 25 �C.
Electrochemical measurements were performed using Auto-

lab frequency response analyzer (FRA) coupled to an Autolab

Potentiostat/Galvanostat (PGSTAT30) with FRA2 module
connected to a personal computer. The stabilization period
prior to collecting data was 12 h. The open circuit potential
of the working electrode was measured as a function of time

during this stabilization time. This time was quite sufficient
to reach a quasi-stationary value for the open circuit potential.
Diffusion of Cl� into the cell was avoided as previously men-

tioned in our previous study (Amin et al., 2010a,b).
For morphology of pitting, Al was exposed to pitting attack

at a fixed anodic potential beyond Epit, namely 0.20 V(SCE).

The Al sample was held at this potential for 5.0 min, and finally
washed thoroughly and submitted to 20 min of ultrasonic clean-
ing in order to remove loosely adsorbed ions. Same experiment
was repeated under the conditions of continuous illumination at

300 nmof the incidentUV light.Micro-structural features of the
pitted surface were analyzed by SEM examinations using Ana-
lytical Scanning Electron Microscope JEOL JSM 6390 LA.

3. Results and discussion

3.1. Localized attack and the formation of soluble Al–G�

complex species

It is clear that on positive going scan, the cathodic current
density, which corresponds to hydrogen evolution reaction
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decreases gradually and reaches a zero value at the corrosion po-

tential (Ecorr). The anodic response does not involve active/pas-
sive transition and a passive region results due to the formation
of a protective barrier oxide film. It is obvious that the electrode
retains its passivity up to the pitting potential (Epit) when the cur-

rent rise starts, denoting pit initiation (see region I) and contin-
ues even after the potential scan reversal (see region II), because
the pitting attack is enhanced after the pit initiation (autocata-

lytic character of pitting). A current hysteresis loop, characteris-
tic of pitting corrosion phenomena, appears. This loop allows
the repassivation potential (Erp) to be determined (Szklarska-

Smialowska, 1986). Repassivation potential corresponds to
the potential value below which no pitting occurs and above
which pit nucleation begins (Szklarska-Smialowska, 1986).

The locationofErpwith respect toEcorr iswell-defined in the log j
vs E plot (see the inset of Fig. 1). In the present work, Erp is de-
fined as the potential on the reverse scan at which the anodic cur-
rent becomes zero (i.e., the current changes polarity). It seems

that Al finds it difficult to repassivate in this system since the
repassivation potential (Erp) locates outside the passive region,
resulting in a large hysteresis loop. This means that Al suffers

from severe pitting during the reverse scan.
When the repassivation potential is reached, the anodic cur-

rent density decreases very sharply and rapidly (see region III).

The existence of a hysteresis loop in a cyclic potentiodynamic
polarization curve indicates a delay in repassivation of an
existing pit when the potential is scanned toward negative
direction. The larger the hysteresis loop, the more difficult it

becomes to repassivate the pit (Szklarska-Smialowska, 1986).
It is well-known that an oxide or hydroxide surface (M–

OH) can become charged by reacting with H+ or OH� ions

due to surface amphoteric reactions, Eqs. (1) and (2). At low
pH, hydroxide surface adsorbs protons to produce positively
charged surfaces (M–OH2

+). At high pH they lose protons

to produce negatively charged surfaces (M–O�).

M–OHþHþ ¼M–OH2
þ ð1Þ

M–OHþOH� ¼M–O– þH2O ð2Þ
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Figure 1 Cyclic polarization curve recorded for Al in
The number of these sites and the surface charge of the oxide

are determined by the pH of the solution. Surface charge influ-
ences adsorption of ions from solution and other interfacial
phenomena (Brown, 1999). The pH of the potential of zero

charge (PZC) for aluminum oxides/hydroxides is between 6
and 9, and in acidic solution, the accumulation of Al–OH2

+

species accounts for the surface charge (Hohl and Stumm,
1976; Wood et al., 1990). In acidic solution, therefore the pos-

itively charged surface sites will electrostatically attract G� an-
ions. Thus, G� anions are expected to electrostatically adsorb
to rupture the passive oxide film and initiate pitting. Therefore

on a passivated electrode, Al dissolution may take place via
chemical dissolution of the oxide film stimulated by G� anions
via the formation of Al–G� soluble complex species (see later).

Gluconate (G�) is quite a large anion and logically is not
expected to occupy anion vacancies, like Cl�, to initiate pitting
corrosion according to the point defect model (PDM). Indeed,

we have chosen the localized acidification model to explain
why G� anions induce pitting corrosion to Al (Galvele,
1976a,b; Keitelman et al., 1984). This model assumes that
the aggressive anion produces soluble products when it be-

comes in contact with the metal and that the metal, while cor-
roding in aqueous solutions, reacts with water, producing
localized acidification. Based on this model, the adsorption

of G� anions may lead to local dissolution, as shown in the fol-
lowing equations:

A1þG� ¼ A1ðGÞads� ð3Þ
A1ðGÞads� þ nH2O ¼ AlðH2OÞn3þ þG� þ 3e� ð4Þ

where Eq. (4) is the dissolution step and Al(H2O)n
3+ repre-

sents the solvated Al3+ ion. If the rate of oxide film formation
is faster than the rates of Eqs. (3) and (4), film healing (passiv-
ation) predominates. The converse causes local dissolution

(pitting) to dominate. In all probability, if G� anions adsorb
strongly on A1 surfaces to promote dissolution, as implied
by Eqs. (3) and (4), then these species may be expected to re-

main bound to the solvated ion to form, as will be shown, a
soluble complex species, A1(G)3(aq) (Eq. (5)).
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0.25 M HG at a scan rate of 0.2 mV s�1 at 25 �C.
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A1ðGÞads� þ 2G� ¼ A1ðGÞ3ðaqÞ þ 3e� ð5Þ

The onset of passivity breakdown and initiation of pitting cor-
rosion at Epit is now seen to arise as a simple consequence of
the dissolution reactions (Eqs. (3) and (4)) and subsequent for-

mation of soluble complex species (Eq. (5)) dominating over
the film forming reactions (passivation) at the base of the flaw,
resulting in pit formation.

The chemical reaction between the aqueous solution of glu-
conic acid and Al produced soluble species which upon evap-
oration gave uncolored solid product. This product is
thought to be formed as a result of complexation of Al(III)

with free G� (a good chelating agent), see later. It has been
shown that conductivity measurements play an important role
in detecting the place of the counter ion with respect to the

coordination sphere, i.e., inside or outside (Deacon and Phil-
lips, 1980). This method aids in testing the degree of ionization
of the complexes against the free ligands. The higher molar

conductance value refers to the presence of the counter ion
outside the coordination sphere and vice versa (Deacon and
Phillips, 1980).

Results of the present work showed that the conductivity sig-

nificantly increased from 0.6 · 10�3 X�1 cm�1 for bare 0.25 M
HG solution to 25 · 10�3 X�1 cm�1 after the complexation pro-
cess between Al(III) and G� anion has occurred. These findings

suggest that the formed complex can be considered as an electro-
lyte (i.e., a salt solution). Results of the elemental analysis were
found to be in good agreement with the proposed formula of

the soluble Al–G� complex species, namely Al(G)3Æ10H2O:
Al(G)3Æ10H2O; Mw = 792 g mol�1: (calc.: C = 9.09%, H =
1.52%; found: C = 8.98%, H = 1.48%).

The main infrared data are summarized in Table 1 and the
IR spectra are shown in Fig. 2. The carboxylate group is able
to coordinate to metal ions by three different modes: (i) the
carboxylate group coordinated to metal ion in a monodentate
Table 1 Main infrared data for (A) HG and (B)

Al(G)3Æ10H2O (values in cm�1).

(A) (B) Assignments

3423 vs,br 3390 s,br m(OH); H2O

mOH; –OH

2947 sh 3032 sh mas(CH) + ms(CH)

2870 ms 2767 sh

2870 w

2856 w

1735 s – m(C‚O); COOH

1657 vs

– 1612 vs mas(OCO)

1412 w 1504 w d(CH2)

– 1462 ms ms(OCO)

1231 m 1271 s qw(CH2)

1151 w 1063 w mas(CC)
1104 938 mw ms(CC)
1088 m 806 ms d(CC)
1046 m

– 728 vw d(OCO)

647 w 606 s,br qr(H2O)

690 w d(CCO)

518 w qw(OCO)

434 w

– 473 w m(M–O)

442 vw
manner when the difference between the wave numbers of the

asymmetric and symmetric carboxylate stretching bands
(Dm = masCOO� � msCOO�) is larger than that observed for
ionic compounds. (ii) when Dm is considerably smaller than
that for ionic compounds, the carboxylate group coordinated

with metal ions as a bidentate feature. In case of the value of
Dm same as observed in ionic compounds this means that the
carboxylate group acts as bridged. Based on these facts it is

possible to distinguish the coordination mode of the COO�

group (Refat et al., 2006).
Gluconic acid exhibits a strong absorption band around

1735 cm�1 due to the m(C‚O) of carboxylic group this band
is absent in case of aluminum compound. Concerning the alu-
minum gluconate compound formed, the difference between

the asymmetrical and symmetrical vibrations (mas � ms =
150 cm�1) existed in Table 1 is larger than the data recorded
for HG. This assumption strongly suggests that COO� group
is acting as a monodentate ligand (type I).

The Al(G)3Æ10H2O complex exhibits a strong absorption
band around 295 nm. The obtained spectrum is shown in
Fig. 3. The molar absorptivity (emax) of the aluminum gluco-

nate compound is 9430 l mol�1 cm�1. This value is almost
three times than that of gluconic acid (3220 l mol�1 cm�1) at
a concentration 10�4 mol l�1, in agreement with the fact that

three gluconate moieties are coordinated to aluminum nucleus.
Figure 2 Infrared spectra of (A) HG and (B) Al(G)3Æ10H2O

complex.
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Figure 5 Cyclic polarization curve recorded for Al in 0.25 M HG

continuous illumination (300 nm) and non-illumination.
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Based on the above interpretation aluminum gluconate can be

designed as shown in Fig. 4.

3.2. Photo-inhibition of localized attack

3.2.1. Cyclic polarization measurements
Fig. 5 shows cyclic potentiodynamic polarization curves re-

corded for Al in 0.25 M HG at 25 �C under the conditions
of continuous illumination at 300 nm and non-illumination.
A total of four plots are shown (two representative plots for

the non-illumination conditions and two for the illumination
conditions) to illustrate the degree of reproducibility from
experiment to experiment. It seems that the reproducibility

of the polarization curves is good.
It is evident that illumination leads to a considerable reduc-

tion in the anodic current at applied potentials exceeding
0.0 V(SCE). The pitting potential depended slightly on illumi-

nation, while the repassivation (protection) potential was
found to be completely independent on illumination. An ano-
dic displacement in the pitting potential of 70 ± 20 mV was

observed on continuous illumination. This displacement DEpit

ðDEpit ¼ E
ðlightÞ
pit � E

ðdarkÞ
pit Þ was evaluated from a total of 20

experiments, 10 carried out in the dark and 10 performed un-

der continuous illumination conditions. The data presented
show that the resistance of Al to localized attack in HG solu-
tions can be enhanced on illuminating the immersed electrodes
with UV light. Although illumination has only a small effect

on the potential at which passivity breakdown is first observed,
illumination decreases considerably the rate at which further
sites become activated. This means that illumination under

these conditions has a little influence on pit initiation and a sig-
nificant effect on pit propagation.

In order to correlate this current–potential behavior with

the nature of the surface attack, a number of experiments were
carried out in which the electrode was polarized up to a prede-
termined potential, then removed from the solution and the

surface viewed under a high resolution optical microscope.
These experiments were carried out for both illuminated and
non-illuminated specimens. Localized attack was observed
0.0 0.5 1.0

E
pit

Continuous
illumination
(300 nm)

)

at a scan rate of 0.2 mV s�1 at 25 �C under the conditions of
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following the initial current increase. On continued polariza-

tion, a greater number of initiation sites could be seen and
eventually the attack spread over the surface. But, the rate at
which this attack spreads to damage the surface was reduced
on illumination.

The polarization behavior was found to vary only slightly
with photon energy. In Fig. 6, the polarization plots, recorded
for Al in 0.25 M HG solution, are shown as a function of

wavelength. Here, it is seen that increasing the wavelength to
400 nm, decreases only marginally the resistance to anodic dis-
solution afforded by illumination (i.e., little influence on pit

nucleation and marked suppression on its propagation and
growth).

It can be seen from the data presented that illumination of the

surface during the polarization measurements is sufficient to in-
duce changes in the passive film that render it more resistant to
attack. This, coupled with the fact that illumination seemed to
have little effect on the rate of pit nucleation, suggests that the

observed enhanced resistance to the localized attack is associ-
ated with somemodification of the passive film that exists under
these conditions (passivation-induced photo effect).
Figure 7 SEM micrographs recorded for Al in 0.25 M HG solution

illumination (image a) and continuous illumination at 300 nm of the inc

specified potential.
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Figure 6 Cyclic polarization curve recorded for Al in 0.25 M HG

continuous illumination (300–400 nm) and non-illumination.
It is well-known that the composition and development of

passive layers on metals and alloys is dependent on parameters
such as the applied potential, pH, time of formation, sample
composition, etc. It is also known that the pitting susceptibility
of the metals and alloys depends on the nature of the passive

film. In addition, variations in the manner in which the film
is grown affect the passivity breakdown process and initiation
of pitting attack. Thus, it is possible that the observed photo-

induced passivation effect may be connected with alterations in
the composition of the passive film where these alterations or
modifications are facilitated or accelerated by illuminating

the electrode.
Following Breslin and Macdonald (1998), on illuminating

semiconductor oxide films with sufficiently energetic photons,

electrons are promoted from the valence to the conduction
band generating electron–hole pairs or electron-ionized center
pairs. These electron–hole pairs become separated with the
holes and electrons moving in opposite directions. This separa-

tion of charge gives rise to a counter field, so that the electric
field strength within the passive layer is quenched. This situa-
tion persists only while the electrode is illuminated, but this
under galvanostatic regime at 0.20 V under the conditions of non-

ident UV light (image b). The electrode was held for 5.0 min at the

0.0 0.5 1.0

Continuous
illumination
(400 nm)

Continuous
illumination
(350 nm)

Continuous
illumination
(300 nm)

non-illumination

)

at a scan rate of 0.2 mV s�1 at 25 �C under the conditions of
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process is predicted (Macdonald, 1992) to modify the vacancy

structure, which is much slower to relax. Since this modifica-
tion of the vacancy structure depends on the quenching of
the electric field strength (Macdonald, 1992), it is justified to
postulate that the fundamental origin is quenching of the elec-

tric field strength. The effects of a decrease in the electric field
strength on the susceptibility of the passive film to undergo
localized attack can be seen from equations presented in the

work of Breslin and Macdonald (1998).

3.2.2. Morphology of pitting as a function of energy of photons
Fig. 7 presents SEM micrographs recorded for non-illumi-
nated (image a) and illuminated (300 nm) (image b) Al elec-
trode immersed in 0.25 M HG solution at 25 �C. It is quite

clear that the surface morphology varies upon illumination.
Severe pitting attack is observed in the absence of light (see im-
age a). On the other hand, the corroded areas obviously dimin-

ished upon illumination.

4. Conclusions

The anodic and corrosion behavior of Al were studied in glu-
conic acid (HG) solutions under different experimental condi-
tions based on cyclic polarization measurements. It is found

that Al suffers from pitting corrosion in HG solutions. Pitting
corrosion occurs as a result of adsorption of gluconate anions
(G�) on the passive surface and their reaction with Al3+ in the

oxide lattice to form soluble Al–G� complex species ejected
into the solution by diffusion. Complexation of Al(III) with
the aggressive G� anion was elucidated using elemental analy-

sis, IR-spectroscopy and UV–vis spectra. The infrared spectral
data are in agreement with coordination through carboxylate-
to-metal, with G� acting as a monodentate ligand.

The influence of UV light (300–450 nm) on the passive and
dissolution behavior of Al in 0.25 M HG solution was also
studied. On illuminating the immersed electrode a slight enno-
blement in the pitting potential was observed. A significant de-

crease in the anodic current at potentials exceeding the pitting
potential was also observed. These findings were explained in
terms of a photo-induced quenching of the electric field

strength and a consequent modification of the vacancy struc-
ture within the passive films, which accounts for the observed
photo-inhibition of passivity breakdown. SEM examinations

of the pitted surface revealed that pitting attack is suppressed
on illumination.
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