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A B S T R A C T   

The worldwide prevalence of cancer and its increasing frequency make it a key research area in drug discovery 
programs. The current research paper describes the development of QSAR models based on the in vitro against 
topoisomerase II, which identified the structural origin of anticancer activity for derivatives of triazole moieties 
linked to mansonone E. The models PLS regression QSARs validated by LOO showed an R2 of 0.92, 0.89 and 0.99 
and a Q2 of 0.75, 0.62 and 0.88 for CoMFA, CoMSIA and HQSAR respectively. External validation criteria were 
used to validate the reliability of the models. These results show the impact of electrostatic and steric fields and 
of the hydrogen bond donor on the activity of the compounds studied. Based on these results, seven novel in-
hibitors with high activity were designed, which successfully passed Lipinski’s rule of five for oral bioavailability. 
The evaluations of ADME/Tox parameters and synthetic accessibility for chemical synthesis showed acceptable 
results. Ligand interactions in binding site protein were assessed using molecular docking. The results show the 
correct conformational pose of the designed compounds especially the compound T1 where it forms hydrogen 
and hydrophobic interactions with the main binding site residues. The stability of the complexes was confirmed 
by the MD study and the calculation of the free binding energy. The T1 synthesis reaction was carried out ac-
cording to the 1,3 cycloaddition reaction. The study of the local and global reactivity and the energy of activation 
of this reaction have shown the predicted of the regioselectivity of compound T1. Also we have described the 
state of transition of two isomers T1,4 and T1.5. Finally, this study would be interesting to help identify and 
optimize avenues for early discovery of anticancer drugs.   

1. Introduction 

Despite the interesting scientific progress has been made against the 
development of cancer in the last year, cancer remains a leading cause of 
death this century. For this reason, the search for anti-cancer drugs re-
mains one of the main goals of medicinal chemistry. The development of 
a new anticancer drug must take into consideration certain criteria such 
as clinical use, a better balance between toxic and pharmacological ef-
fects and the ability to overcome the problem of primary or acquired 
tumor resistance. Among cancer chemotherapeutic agents targeting 
DNA and enzymes involved in DNA metabolism, we find DNA top-
oisomerases. Topoisomerases are nuclear enzymes that cause the 

splitting and resoldering of DNA strands by controlling the topological 
state of DNA during the different phases of DNA functions (replication, 
transcription, repair, and recombination(Holden et al., 1990; LaVoie 
et al., 1999). Unwinding of DNA in the replication phase can lead to the 
formation of supercoils, hence topoisomerases can prevent the buildup 
of internal tensions in DNA nucleic acids. According to the mechanism of 
DNA cleavage in mammals, topoisomerases can be classified into two 
type topoisomerases type I and type II. Topoisomerase I acts by breaking 
a phosphodiester bond of one of the two strands of DNA, then binds to 
the 3′-phosphoryl end of DNA in order to untangle the DNA double helix 
and allow its replication(Pommier, 2009; Wang, 2002). Topoisomerase 
II modifies the topology of DNA by the same mechanism, but the 
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transient cut takes place in two DNA strands. In cancerous cells the 
concentration of topoisomerase is raised to that of healthy cells (Preet 
et al., 2012). Research has reported topo II levels to be elevated in 
several breast and ovarian cancer cell lines while topo I levels are higher 
in colon cancer cell lines(Denny, 2003; Giovanella et al., 1989). Top-
oisomerases II exert their activity through a catalytic cycle of the ATPase 
domain (Chen et al., 2018; Roca and Wang, 1994). However, without 
topoisomerase enzyme there is no normal DNA replication, topoisom-
erase inhibitors are also cytotoxic can be used as anticancer agents to 
block the proliferation of malignant cells. The mechanism by which 
these catalytic inhibitors operate is succinctly examined in the context of 
the enzyme’s catalytic cycle involved in DNA topoisomerization. Recent 
investigations, encompassing both structural and mechanistic studies, 
have unveiled the enzyme’s dynamic behavior during the catalytic 
progression of this reaction, as documented in references(Hasinoff et al., 
1997), (Kim and Wang, 1989), 

Many naturally occurring anticancer drugs have been shown to be 
topoisomerase II inhibitors such as doxorubicin, their structure shows in 
Fig. 1. 

Several other SAR studies have also been employed for this purpose 
on other derivatives. A theoretical investigation in the field of drug 
design for topoisomerase IIα inhibitors was conducted by Sarfaraz Alam 
and Feroz Khan. Firstly, they developed and validated QSAR models 
using the multiple linear regression method, utilizing xanthone de-
rivatives. Subsequently, through a molecular docking study and pre-
diction of pharmacokinetic parameters, they identified ligand–protein 
interactions and estimated ADMET parameters for the studied de-
rivatives(Alam and Khan, 2014). D. M. Khaled and colleagues used 
computational chemistry approaches to establish linear models 
explaining the activity of compounds based on thiouracil derivatives, 
employing quantum chemical and physicochemical descriptors(Khaled 
et al., 2022). Olawole Y. Adeniran and collaborators conducted linear 
regression modeling using the 3D QSAR method to design inhibitors of 
topoisomerase IIα(Adeniran et al., 2021). 

Kairui Feng and colleagues utilized combined studies of 3D-QSAR 
guided by a pharmacophore, molecular docking, and molecular dy-
namics for evodiamine analogs as inhibitors of DNA topoisomerase I 
(Feng et al., 2017). 

Recently, several works have been carried out on the development of 
anticancer inhibition based on mansonone (Liu et al., 2009; Wu et al., 
2011). In addition, mansonones E have shown antitumor(Liu et al., 
2009; Wang et al., 2004), antibacterial(Shin et al., 2004), antiMRSA(Suh 

et al., 2006), antiproliferative activities(Liu et al., 2009) and notably 
topoisomerase (Topo) inhibitory activity (Shin et al., 2004; Wu et al., 
2011). The quinon moiety contained in mansonone has been identified 
by the National Cancer Institute as a pharmacophoric component of 
potent antitumor compounds (Driscoll et al., 1974). Several studies have 
shown that pyranic rings fused to naphthoquinone derivatives exhibit 
more effective anticancer activity(Kongkathip et al., 2003; Shukla et al., 
2012; Wu et al., 2011). On the other hand, the triazole is widely 
explored in nucleoside anticancer agents, kinase inhibitors, tubulin 
modulators, aromatase and sulfatase inhibitors, and antitumor agents. 

In this context, our study is based on analogues composed of man-
sonone E linked triazole fractions to analyze their biological activity 
against topoisomerase IIα on the cancer cell line human promyelocytic 
leukemia cell (HL-60). In recent years, Computer Aided Drug Discovery 
(CADD) approaches have been actively exploited to increase knowledge 
on the role of Topo II in cancer and to develop new strategies for its 
inhibition which has saved time and cost and designed a promoter drugs. 
These approaches are based on molecular structure such as QSAR 
modeling (quantitative-structure–activity relationship), molecular 
docking, and Molecular dynamic simulations(Kakkar et al., 2014; Tabti 
et al., 2022a). QSAR is a drug design approach based on exploiting the 
relationship between biological activity and the strictures of bioactive 
compounds(TABTI, 2020). In the present research work, three different 
QSAR techniques were used which included Comparative Molecular 
Field Analysis (CoMFA), Comparative Molecular Similarity Index 
Analysis (CoMSIA) and Molecular Hologram QSAR (HQSAR)(Tabti 
et al., 2022b). In CoMFA analysis, the biological activity was explained 
by steric and electrostatic parameters, while in CoMSIA analysis, the 
biological activity was explained by electrostatic steric, hydrophobic, 
hydrogen bond donor (H-Bond D), hydrogen bond acceptor (H-bond A), 
steric field and electrostatic parameters(OUABANE et al., 2023). In the 
case of HQSAR, the biological activity was explained by properties of 
atoms, stereochemistry and structural fractures of each group and atom 
of the molecules (Zhang et al., 2017). The information generated by 
these models makes it possible to design new, more powerful molecules. 
To fully understand the behavior of the predicted compounds in the 
active site of the protein, a molecular docking analysis was conducted, 
this study also allows to identify the key residues that govern the activity 
against topoisomerase IIα. Generally, molecular docking analyzes in-
teractions between protein ligands, but under static conditions(Abdes-
sadak et al., 2022). The results of molecular docking have been 
reinforced by a study of molecular dynamics and the calculation of free 
binding energy(En-Nahli et al., 2022). The best predicted T1 compound 
was subjected to a 1,3 cycloaddition reactivity study,to understand the 
reactivity of 1,3-dipolar cycloadditions and provide insights into their 
reaction mechanisms. These studies aim to predict the reaction out-
comes, optimize reaction conditions, and design new compounds with 
enhanced reactivity and selectivity. 

2. Research methods 

2.1. Data set and training/test separation 

A database of Twenty-two mansonone E-linked triazole derivatives 
and their biological activity against topoisomerase II (expressed as IC50 
values) was brought from the literature(Huang et al., 2013). IC50 values 
of dataset span the entire activity range from 1.49 µM to 98 µM were 
converted to pIC50 (pIC50 = -log (IC50 [10-6])) and were used as 
dependent variables in the QSAR analysis(El Masaoudy et al., 2023). 
The compound dataset was randomly divided into a training set (77 %, 
17 compounds) which was used to build the QSAR models and a test set 
(23 %, 5 compounds) which was used to assess the predictive ability of 
the models. The structures and their biological activity are shown in 
Table 1. 

Fig. 1. Structure 2D of doxorubicin as control compound used in QSAR study.  
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2.2. Structural optimisation and alignment of the dataset 

All chemical structures of molecules in the dataset were constructed 
and drawn in SYBYL X2.0 software (Tripos, Inc., St. Louis, MO, USA). 
The Tripos force field was included to minimize the structural energy of 
molecules while accounting for Gasteiger-Huckel atomic partial charges. 
Then, a convergence threshold of the Powell gradient algorithm was set 
at 0.05 kcal/mol. To ensure the conformational stability of the mole-
cules, the number of iterations has been increased to 10,000 iterations. 
On another side, the molecular alignment of the dataset is a crucial 
phase for QSAR modeling, and the best alignment is reflected on the 
statistical results of the generated 3D QSAR models (Lu et al., 2010; 
Pandey and Saxena, 2006). In this present work, the distill rigid method 
has been adapted thanks to its better results for the generation of the 3D- 
QSAR model(El Mchichi et al., 2022). The most active molecule N17 was 

taken as a template, the results are shown in Fig. 2. 

2.2.1. 3D QSAR models 
In our research, the 3D-QSAR approach includes Comparative Mo-

lecular Field Analysis (CoMFA), Comparative Molecular Similarity Index 
Analysis (CoMSIA). Generally the CoMFA hypothesis is based on when 
compounds of similar structures interact with the receptor site in the 
same way. Then, the molecular fields surrounding them must be similar. 
At the molecular level, compounds and receptors interact mainly 
through non-covalent bonds (van der Waals interactions and electro-
static interactions), therefore the steric and electrostatic interaction 
fields of the CoMFA model were calculated respectively by the Lennard/ 
Jones potential and Coulomb potential on a 3D cubic lattice with a grid 
spacing of 2 Å in the three directions of space (x, y and z). Calculated 
energy values were truncated at 30.0 kcal/mol. In fact, most interactions 

Table 1 
Molecular structure of mansonone E-linked triazole derivatives dataset and their corresponding biological activity values pIC50.  

Compounds pIC50 (Exp) HQSAR CoMFA CoMSIA Affinity Kcal/mol 

pIC50 (calc) Residus pIC50 (calc) Residus pIC50 (calc) Residus 

R1 R2 

1 4-F-Ph Cl  4.973  4.943  0.03  4.973  0.000  4.968  0.005  − 10.4 
2 4-Cl-Ph Cl  4.914  4.943  − 0.029  4.914  0.067  4.82  0.094  − 10.5 
3 Ph Cl  4.735  4.573  0.162  4.735  − 0.109  4.7  0.035  − 9.9 
4 4-CH3-Ph Cl  4.703  4.85  − 0.147  4.703  − 0.013  4.87  − 0.167  − 10.6 
5 4-CH2CH3-Ph Cl  5.538  5.411  0.127  5.538  0.067  5.457  0.081  − 10.2 
6 − 4-(CH2)2CH3-Ph Cl  5.623  5.65  − 0.027  5.623  0.011  5.589  0.034  − 10.2 
7 − 4-(CH2)3CH3-Ph Cl  5.15  5.66  − 0.51  5.593  0.000  5.593  0.000  − 9.9 
8* − 4-(CH2)4CH3-Ph Cl  5.593  5.694  − 0.101  5.451  0.000  6.145  − 0.694  − 9.6 
9* 4-OCH3-Ph Cl  5.451  5.019  0.432  5.150  − 0.137  5.289  − 0.139  − 9.6 
10 Cl  4.301  4.314  − 0.013  4.301  − 0.016  4.374  − 0.073  − 10.1 

11 Cl  5.569  5.617  − 0.048  5.569  − 0.018  5.625  − 0.056  − 10.7 

12 − 4-F-Ph Br  4.91  4.85  0.06  4.910  − 0.038  4.912  − 0.002  − 10.6 
13 − 4-Cl-Ph Br  4.813  4.85  − 0.037  4.813  − 0.033  4.833  − 0.020  − 10.6 
14 Ph Br  4.533  4.573  − 0.04  4.533  0.078  4.463  0.070  − 10.1 
15* 4-CH3-Ph Br  4.533  4.85  − 0.317  4.988  − 0.279  5.037  − 0.049  − 10.1 
16 4-CH2CH3-Ph Br  5.306  5.411  − 0.105  5.306  − 0.007  5.226  0.080  − 10.4 
17 − 4-(CH2)2CH3-Ph Br  5.827  5.65  0.177  5.827  − 0.064  5.896  − 0.069  − 9.6 
18 − 4-(CH2)3CH3-Ph Br  5.593  5.66  − 0.067  5.593  0.014  5.615  − 0.022  − 9.9 
19* − 4-(CH2)4CH3-Ph Br  5.630  5.694  − 0.064  5.631  0.003  5.939  − 0.308  − 9.6 
20 4-OCH3-Ph Br  4.987  5.019  − 0.032  4.987  0.002  5.026  − 0.039  − 9.8 
21* Br  4.643  4.314  0.329  4.644  0.045  4.432  0.212  − 9.7 

22 Br  5.676  5.617  0.059  5.676  0.000  5.629  0.047  − 10.5  
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between ligand and receptor are more complex, and therefore the steric 
field and the electrostatic field are not sufficient enough to build a 
present model. To rectify this lack the CoMSIA method has been 
included (Abdizadeh et al., 2017). Besides the calculation of static and 
electric fields, the CoMSIA approach also counts additional fields such as 
hydrophobicity, hydrogen bond donor and hydrogen bond acceptor 
fields. The calculation of the CoMSIA descriptors is done in the same 
network box. 3D-QSAR models allow visualization of molecular prop-
erties that inform biological activity in the form of contour maps, and 
therefore, these contours allow us to explain and identify regions that 
govern the activity of these compounds. However, among the limitations 
of the 3D QSAR contour map is that it is equipotential and does not allow 

to identify in exact the degree of influence of each atom of a molecular 
structure on the improvement of the biological activity. That’s why we 
added the QSAR hologram method. 

2.2.2. Hologram QSAR models 
Given that the molecular fragments of compounds strongly 

contribute on the biological activity, thus to understand the influence of 
various molecular fragments on the activity, an HQSAR study was car-
ried out on different possible combinations of parameters of distinction 
of fragments as well as the fragment generation parameters using 
SYBYL-X 2.0 software(Tabti et al., 2022b). Discrimination parameters 
including atomic number (A), bond type (B), atomic connection (C), 

Fig. 2. (a) Molecular alignment by rigid distill of the dataset, (A) most active N17 as template, (B) Common core of the data set compounds and (c) dataset alignment 
employed by distill rigid for 3D-QSAR modeling. 

Fig. 3. The human DNA topoisomerase IIα (PDB 1ZXM) co-crystal structure asteroid plots, The inner shell residues were those that had direct contact with the ligand 
molecule, whereas the outer shell residues were those that had indirect interactions with the ligand. The number of contacts residues formed with the ligand was 
represented by the size of the circular nodes. 
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hydrogen (H), chirality (Ch) and donor–acceptor (DA)(Amin et al., 
2017). The lengths of the chosen holograms were set by default in the 
SYBYL-X 2.0 program to the values 53, 59, 61, 71, 83, 97, 151, 199, 257, 
307, 353 and 401 bins. HQSAR models can be visualized as color-coded 
structure diagrams where each color code reflects its fragment’s 
contribution to biological activity. Generally, the white-colored frag-
ment indicates the intermediate contribution of a fragment while the 
green-colored and red-colored fragment suggests the positive and 
negative contribution respectively of this fragment on the biological 
activity. 

2.3. Regression analysis and validation of QSAR models 

The PLS regression, executed using SYBYLY-X2.0 software, was 
employed to quantify the linear relationship between biological activity 
(pIC50) and molecular descriptors. To determine the optimal number of 
components and the cross-validation coefficient Q2, as well as to sta-
tistically evaluate the established models (Vong et al., 1988), cross- 
validation was performed using the Leave-One-Out (LOO) method. 
However, to assess the statistical confidence of the generated models, a 
non-validation was carried out by calculating the coefficient of deter-
mination R2 and the standard error of estimation (SEE). It is important 
to note that a reliable evaluation of 3D-QSAR and HQSAR models 

Table 2 
Statistical results of CoMSIA models with different combinations of molecular fields.  

Models Non-validation  Leave-one-out  Field contribution (%) 

R2 SEE F Q2 NOC Ster Elec Hyd H-bond D H-bond A 

CoMFA  0.988  0.063   143.043  0.702 5  67.6 32.4    
H  0.968  0.106   49.890  0.595 6  – – – – – 
SE  0.979  0.085   77.794  0.804 5  54.2 0.458 – – – 
SH  0.972  0.099   57.749  0.596 6  32.4 – 67.6 – – 
SA  0.949  0.132   31.233  0.797 6  58.6 – – – 41.4 
EH  0.983  0.077   94.922  0.743 6  – 29.3 70.7 –  
HA  0.966  0.109   47.258  0.785 5  –  69.7 – 30.3 
SEH  0.981  0.080   88.247  0.725 5  30.4 23.9 45.6 –  
SEA  0.979  0.086   75.893  0.820 5  50.0 25.2  – 24.7 
SHA  0.967  0.107   48.898  0.749 5  29.5  46.9 – 23.6 
EHA  0.985  0.073   106.654  0.797 6  – 19.6 59.7 – 20.7 
SEHA  0.982  0.079   91.870  0.778 6  28.9 17.5 36.0  176  

Fig. 4. The Williams plots of the model CoMFA and CoMSIA.  

Fig. 5. Statistical parameters comparison (a) for the different HQSAR model distinctions and (b) for different size fragment of best Model (M32).  
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through internal cross-validation alone is insufficient. Therefore, 
external validation is required, such as employing the Golbraikh- 
Tropsha criteria and Roy’s metrics(Tabti et al., 2023d). Certain condi-
tions need to be satisfied for the successful execution of this external 
validation, including(Tabti et al., 2023a): 

Q2 > 0.5, R2 > 0.6, (R2 – R2
0)/R2 < 1, 0.85 ≤ K ≤ 1.15 (Golbraikh- 

Tropsha criteria); 

r2 
m < 0.2, r2 

m > 0.5 (Roy’s metrics). 
On another side, The evaluation of the robustness of a QSAR model is 

based on carrying out a Y randomization test(Khan et al., 2019). In this 
test, a new model is generated by randomly shuffling the vector of the 
dependent variable. This procedure is repeated several times. The 
resulting QSAR model is only considered valid if the new QSPR models 
generated by randomization have low R2 and Q2 values. 

Table 3 
Y Randomization test for the validation of QSAR models.  

Iteration CoMFA CoMSIA HQSAR 

R2 Q2 R2 Q2 R2 Q2 

Origen model  0.988  0.702  0.979  0.82  0.962  0.919 
Random model 1  0.2374  0.0083  0.2056  0.0158  0.0167  0.0363 
Random model 2  0.127  0.0001  0.3696  0.3098  0.0158  0.0385 
Random model 3  0.0651  0.0039  0.0399  0.0268  0.227  0.0393 
Random model 4  0.0012  0.0368  0.0219  0.111  0.2673  0.0688 
Random model 5  0.0276  0.0678  0.2222  0.0022  0.0309  0.0302 
Random model 6  0.0045  0.0407  0.2036  0.0053  0.0006  0.0195 
Random model 7  0.2719  0.0045  0.0045  0.0016  0.0029  0.0259 
Random model 8  0.0306  0.0895  0.0493  0.0497  0.0327  0.0035 
Random model 9  0.027  0.0764  0.2469  0.0354  0.0193  0.0007 
Random model 10  0.1722  0.3379  0.0896  0.1293  0.0364  0.0661 
Average randomized Rr2  0.0965  0.0666  0.1453  0.0687  0.0649  0.0329 
CRp2 = R*

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
qrt(R2 − Rr2)

√ 0.9391  0.8108  0.9161  0.7814  0.8678  0.8737 

CRp2 should be greater 0.5(Ojha and Roy, 2011). 

Table 4 
Statistical results Golbraikh-Tropsha and Roy’s criteria.  

Models Tropsha and Golbraikh’s criteria  Roy’s criteria 

R02 R’02 R2
test k (R2 + R2

0
R2  

k’ (R2 + R′2
0)

R2   

R’m2 Rm
2 Rm ΔRm2 ΔR02 

CoMFA  0.915  0.998  0.895 0.988  − 0.023 1.006  − 0.115   0.607  0.766  0.687  − 0.159  − 0.083 
CoMSIA  0.903  0.955  0.765 1.021  − 0.181 0.974  − 0.248   0.431  0.481  0.456  − 0.049  − 0.052 
HQSAR  0.994  0.982  0.970 1.008  − 0.025 0.991  − 0.012   0.865  0.818  0.841  0.047  0.013 
Criterion  >0.5  >0.5  >0.5 0.85 < k  

< 1.15  
< 0.1 0.85 < ḱ  

< 1.15  
< 0.1   >0.5  >0.5  >0.2  < 0.2  < 0.2  

Fig. 6. Plot of correlation and residual of experimental pIC50 values vs those calculated by (a) HQSAR, (b) CoMFA, and (c) CoMSIA models.  
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2.4. The applicability domain (AD) 

To choose an appropriate QSAR model for new compounds, it is 
essential to delineate its applicability domain of application AD((Trop-
sha et al., 2003). Model predictions should only be considered reliable 
for compounds included in this AD. Two simple approaches to define 
this scope are range extrapolation, based on the calculation of Euclidean 
distances and leverage (hi) for each chemical compound. Model pre-
dictions should only be considered reliable for compounds included in 
this scope. Among the simple approaches to define this field of appli-
cation is the calculation of Euclidean distances and leverage (hi) for each 

chemical compound according to the following formula: 

hi = xi
(
XT X

)− 1xT
i  

The vector xi represents the k model parameters of the compound in 
question, while the matrix X is an n × k matrix containing the model 
parameters for each of the n training compounds. A leverage value 
exceeding 3(k + 1)/n is considered significant. This indicates that the 
model prediction, which can potentially compromise its reliability. 

Fig. 7. Contour map of CoMFA analysis (a) Steric, (b) electrostatic with a grid spacing of 2.0 Å in combination with compound N17.  

Fig. 8. Contour map of CoMSIA analysis Steric, electrostatic and hydrophobic with a grid spacing of 2.0 Å in combination with compound N17.  
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2.5. Limitations of the models developed 

The models have notable limitations that require full recognition for 
informed interpretation of their results. First, these models are con-
fronted with small data sets. Furthermore, the compounds examined 
only show moderate activity, which could potentially influence pre-
dictions in favor of this type of molecules. Another constraint lies in the 
absence of double-blind (nested) cross-validation, which could lead to 
overestimation of model performance(Baumann and Baumann, 2014). 
Additionally, using simple cross-validation, particularly Leave-One-Out 
(LOO), carries a risk of overfitting the training data, thereby jeopard-
izing the models’ ability to generalize reliably(Chtita et al., 2021). To 
overcome these limitations, the combination of HQSAR, CoMFA and 
CoMSIA models presents significant advantages in terms of molecular 
modeling. This global approach exploits the complementarity of the 
information provided by each model, thus improving the reliability of 
the predictions. Additionally, it strengthens cross-validation, increasing 

confidence in the results. This synergy facilitates the precise identifica-
tion of molecular descriptors relevant for drug design and improves the 
consideration of chemical diversity, thereby broadening the activity 
prediction capacity. 

2.6. Molecular docking studies and re-docking validation 

A molecular docking analysis using the program Autodock Tools vina 
1.5.7 was carried out to evaluate the interaction and mode of binding 
between our studied compounds and the enzyme Topo IIα(Hajji et al., 
2021). The 3D X-ray crystal structure of human DNA topoisomerase II α 
(PDB ID: 1ZXM, resolution = 1.87 Å) was downloaded from the Data-
bank (https://www.rcsb.org). 1ZXM structure is a good target in the 
ATP catalytic pocket of topoisomerase IIα (Oyedele et al., 2020). The 
protein structure was prepared by the removal of 280 water molecules 
and the co-crystallized ligand (phosphoaminophosphonic acidadenylate 
ester (ANP)). Then the calculated Gasteiger charges and the polar 

Fig. 9. Hologram quantitative structure activity relationship model contribution map of the most compound N17 and the less compound N10.  

Fig. 10. Summary of structure–activity relationship derived from QSAR study.  

K. Tabti et al.                                                                                                                                                                                                                                    
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Table 5 
Structure, predicted pIC50, and synthetic accessibility of newly designed compounds.  

Compds Structure Activity predicted pIC50 Synthetic accessibility Bioavailability Score 

CoMSIA CoMFA HQSAR 

T1 4.570  6.631  4.326  3.81  0.85 

T2 6.871  6.271  5.624  4.60  0.56 

T3 6.436  6.179  6.465  4.65  0.85 

T4 6.463  6.172  6.621  4.66  0.85 

(continued on next page) 

K. Tabti et al.                                                                                                                                                                                                                                    
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hydrogen atoms were added and the non-polar hydrogens were merged 
using AutoDock Tools(Tabti et al., 2022c). The protein ligand in-
teractions were framed in a grid defined over 2,0 Å in all three directions 
using the AutoGrid algorithm(Guo et al., 2005). In addition, the size of 
the grid space has been taken as the default of 0.375 Å while the central 
grid box is approximately (35.286 Å, − 5.030 Å and 38.362 Å). The 
choice of best conformation was according to their good affinity towards 
the protein(Tabti et al., 2023c). 

Contact Atlas (http://pca.mbgroup.bio/) as indicated Fig. 3 iden-
tifies the amino acids that form strong contacts, the amino acids found 
(first shell) are Glu-87, Asn-91, Ala-92, Asn-95, Arg-98, Asn-120, Ile- 
125, Ile-141, Phe-142, Ser-148, Ser-149, Asn-150, Gly-161, Arg-162, 
Asn-163, Gly-164, Tyr-165, Gly-166, Ala-167, Lys-168 Lys-215 Gln-376 
and Lys-378 largely contributed to the affinity towards the selected 
protein. This vital information allows us to assess the contact patterns of 

protein ligands. 

2.7. Dynamic molecular analysis and post dynamic binding free energy 
analysis 

The GROMACS 2019 software package with the Charmm force field 
was used to run a 100 ns MD simulation to validate the stability of the 
best complex molecular docking results under physiological conditions 
(Tabti et al., 2022d). The molecular topology file and force field pa-
rameters for the ligand were generated with the CHARMM general force 
field (CGenFF). The system of docked complexes were immersed in a 
cubic box of TIP3 water molecules with a margin distance of 10 Å. 
System neutralization was achieved by adding Na + counterions. The 
entire system was taken through 50,000 energy minimization steps 
using the steepest descent integrator to release the internal strain 

Table 5 (continued ) 

Compds Structure Activity predicted pIC50 Synthetic accessibility Bioavailability Score 

CoMSIA CoMFA HQSAR 

T5 6.348  6.006  6.198  4.45  0.56 

T6 8.103  5.998  8.980   0.85 

T7 6.667  5.972  7.398  4.88  0.85 

N17 5.794  5.907  6.581  4.40  0.85  

K. Tabti et al.                                                                                                                                                                                                                                    
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energies of the entire system. Then, NVT and NPT balancing were per-
formed for 0.1 ns at 300 K and 1 ns at 1 bar pressure, respectively. 
System temperature and pressure were controlled by the Berendsen 
thermostat and the Parrinello/Rahman barostat respectively(Berendsen 
et al., 1984) (Parrinello and Rahman, 1981). The balanced system was 
used to perform 100 ns MD simulations at 300 K and 1 bar pressure. All 
bond lengths were constrained using the LINCS algorithm (Hess, 2008). 
The Particle mesh Ewald (PME) method was used to handle long-range 
Coulomb interactions(Essmann et al., 1995). The estimation of MM- 
PBSA binding free energies was performed by the g_mmpbsa tool on 
all MD simulation trajectories (Issar et al., 2015; Kumari et al., 2014). 
The contribution of each residue to the total binding free energy was also 
estimated using the MMPBSA.py tool(Miller III et al., 2012). 

2.7.1. Exploring biomolecular mechanisms via free energy landscapes and 
reaction coordinates 

Free energy landscapes serve as a valuable tool in the interpretation 
and analysis of biomolecular processes, including molecular folding, 
aggregation, and recognition. To compute a molecule’s free energy 
landscape, you can apply the following formula: 

Δk = − kbTlnP(CV1, CV2) (1)  

In this context, kb and T denote the Boltzmann constant and absolute 
temperature, respectively. Additionally, P(CV1, CV2) denotes the 
probability distribution of the molecular system along the reaction co-
ordinates or collective variables (CV1 and CV2). Numerous choices exist 
for determining reaction coordinates, encompassing interatomic contact 
distances, root-mean-square deviation (RMSD), radius of gyration, an-
gles, dihedral angles, principal component analysis (PCA), and other 
alternatives. 

2.8. Pharmacokinetics and Toxicity studies 

The study of ADME pharmacokinetics (absorption, distribution, 
metabolism, excretion) and toxicity is a key factor in the development of 
drugs(Van De Waterbeemd and Gifford, 2003). Early evaluation of 
ADME and Toxicity can significantly improve drug success rate, save 
drug development time costs, reduce drug side effect and toxicity, and 
further guide rational clinical use drugs(Nel, 1987). In this part of 
research, SwissADME and pkCSM online servers were used to predict the 
ADME and Toxicity parameters, drug-likeness and difficulty of synthesis 
of new compounds designed by the best established model, in order to 
confirm their possibility of become a drug candidate (Daina et al., 2017; 
Pires et al., 2015). 

2.9. Computational reactivity details 

Three different approaches were utilized to investigate the regiose-
lectivity of 1,3DC between Mansonone’s azide and 3,3,3-Trifluoroprop- 
1-yne (Fig. 17). These methods included the Domingo approach, the 
Gazquez and Mendez approach based on the HSAB principle, and acti-
vation energy calculations(Domingo et al., 2013; Mendez and Gazquez, 
1994). By employing these approaches, we were able to predict the 
favored stereoisomer with success. The computations were conducted 
by the DFT method at the B3LYP/6-31G* level of theory with Gaussian 
G09 (Becke, 1988; Lee et al., 1988). Additionally, frequency calculations 
were performed to validate the stationary points and ensure that minima 
and transition states have zero and one imaginary frequency (Nacer-
eddine et al., 2010). The global reactivity indices such as electronic 
chemical potential μ, chemical hardness η, global electrophilicity ω, and 
global nucleophilicity N were estimated using equations suggested by 
Parr (Parr et al., 1999; Parr and Yang, 1989) and Domingo (Chamorro 
et al., 2013; Domingo et al., 2013). Specifically, the one-electron en-
ergies of the frontier molecular orbitals were employed to evaluate the 
electronic chemical potentials and chemical hardnesses of the reactants Ta
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examined in this study. 

μ = (EHOMO +ELUMO )/2 (2)  

η ≈ (εL − εH) (3) 

After determining the values of μ and η, ω was calculated using the 
following formula: 

ω = (μ2/2η (4) 

Nucleophilicity index N has been recently introduced on the basis of 
the HOMO energies(Domingo and Pérez, 2013): 

N = EHOMO(nucleophile) − EHOMO(TCE) (5) 

Because of its low HOMO energy, tetracyanoethylene (TCE) is 
frequently used as a reference molecule in a wide range of molecules 
(Jaramillo et al., 2008; Kohn and Sham, 1965). 

The chemical softness S was introduced as the inverse of the chemical 
hardness (Domingo et al., 2002): 

S = 1/η (6) 

In case an amount equivalent to one electron is transferred, the 
nucleophile becomes a radical cation, while the electrophile becomes a 
radical anion. Interestingly, analysis of the atomic spin density (ASD) at 
the radical cation and the radical anion gives a picture of the distribution 
of the electron density in the electrophile and the nucleophile when they 
approach each other along the reaction progress. 

Based on these observations, in 2014, Domingo proposed the Parr 
functions P(r) (Chamorro et al., 2013; Domingo et al., 2013), which are 

given by the following equations: 

P− (r) = ρrc
s (r) (7) 

for electrophilic attack. 

P+(r) = ρrc
s (r) (8) 

for nucleophilic attacks. 
Where ρs

rc (r) is the ASD at the r atom of the radical cation of a 
considered molecule and ρs

ra (r) is the ASD at the r atom of the radical 
anion. Each ASD gathered at different atoms of the radical cation and the 
radical anion of a molecule provides the local nucleophilic Pk

- and 
electrophilic Pk

þ parr functions of the neutral molecule. 
With these electrophilic and nucleophilic Parr functions at hand, we 

can redefine the local electrophilicity ωk, and the local nucleophilicity 
Nk indices as follows: 

ωk=ωP+
k (9)  

Nk=NP−
k (10)  

Where ω and N are obtained from equations (3) and (4), respectively. 
The meaning of electron flow in the reaction can be estimated by 

calculating the dual descriptors γ1 and γ2. The closer the y value gets to 
zero, the greater the preference for the interaction. The equations to 
calculate γ1 and γ2 are as follows: 

γ1 = ωDP +ND (11)  

γ2 = ωD +NDP (12)  

3. Results and analysis 

3.1. CoMFA and CoMFA statistical analysis 

The relationship between steric and electrostatic fields and the bio-
logical activity of the data set was established using the CoMFA method. 
The statistical results of the CoMFA model are shown in Table 2. The 
CoMFA model had a Q2 cross-validation of 0.702 for five Optimal 
Components. PLS analysis gave the conventional R2 coefficient of 
determination value of 0.988, and an SEE standard error estimate value 
of 0.063. The steric field contributed in the CoMFA model was 67.6 % 
while the electrostatic field was 32.4 %. 

Bold line indicates best significant optimized model. 
For the CoMSIA modeling study, the possible models with different 

possible combinations of fields based on the five different field de-
scriptors were analyzed. 

The most reliable models, which met the criterion of (Q2 > 0.5), 
along with their respective parameters and contribution fractions of 
different fields, are summarized in Table 2. The CoMSIA/SEA model 
exhibited the highest Q2 value of 0.82, utilizing five optimal compo-
nents. It also achieved a higher R2 value of 0.979 and a lower SEE value 
of 0.086. The contribution of the electrostatic, steric, and acceptor H- 

Table 7 
Toxicity profile estimed of designed compounds.  

Compounds Test AMES Max. tolerated dose 
(human) 

hERG I /II inhibitor Oral Rat Acute Toxicity 
(LD50) 

Oral Rat Chronic Toxicity 
(LOAEL) 

Skin Sensitisation 

Categorical (Yes/ 
No) 

Numeric (log mg/kg/day) Categorical (Yes/ 
No) 

Numeric (mol/kg) Numeric (log mg/kg-bw/day) Categorical (Yes/ 
No) 

T1 No  0.11 No/No  2.614  1.21 No 
T2 No  0.474 No/Yes  2.354  0.942 No 
T3 Yes  2.35 No/Yes  2.35  0.638 No 
T4 No  0.639 No/Yes  2.367  0.393 No 
T5 No  0.601 No/Yes  2.349  1.073 No 
T6 No  0.68 No/Yes  2.291  1.151 No 
T7 No  0.547 No/Yes  2.429  0.872 No 
N17 No  0.7 No/Yes  2.239  1.3 No  

Fig. 11. Boilled /Egg plot for all designed compounds (BBB – Blood/brain 
barrier; PG+// – P/glycoprotein; HIA – human intestinal absorption). 
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bond fields in the CoMSIA model were 50 %, 25.2 %, and 24.7 %, 
respectively. Additionally, the CoMFA model demonstrated significant 
static results with a dominant steric field contribution of 67.6 %. 

These results strongly support the crucial role of steric fields in the 
activity of triazole derivatives linked to mansonone E. Overall, the 
constructed models yielded outcomes within an appropriate range, 
affirming the robustness and reliability of the 3D-QSAR models. 

3.1.1. The domain of applicability 
The domain of applicability is defined as the chemical space 

encompassing the compounds in the model’s training set. In this study, 
the analysis of the area of applicability is based on the “Leverage” 
method, which is based on the variation of the standardized residuals of 
the dependent variable in relation to the leverage effect. All observations 
have standardized residuals in the interval [-2; 2]. It is notable that Fig. 4 
does not include any outliers, since the “Leverages” obtained remain 
below the threshold of 0.52 for the CoMFA model and below the 
threshold of 0.51 for the CoMSIA model. However, in the case of the 
CoMFA model, compound 22 exceeds the limit of 2 in terms of stan-
dardized residues. Overall, both models tested indicate the absence of 
outliers. 

3.2. HQSAR statistical results 

To generate HQSAR models, the different combinations of fragment 
distinctions such as atomic number (A), bond type (B), atomic connec-
tion (C), hydrogen bond donor–acceptor (DA), hydrogen (H) and 
chirality (Ch) with a fragment size of 4 to 7 atoms were carried out, then 
a size change was carried out from 1 to 4 atoms up to 12 to 15 atoms the 
results obtained are listed in Fig. 5.The top 24 statistically, the best 
model was model M32 which suggests that parameters such as bond type 
(B) and hydrogen bond donor–acceptor (DA) were important for 
generating a model. 

For further model refinement (M32), the selected model fragment 
size was explored varying in size from 1 to 4 atoms up to 12–15 atoms. A 
significant difference was marked in the statistical parameters of the 

models, as shown in Fig. 5(B). The best model was with a fragment size 
of 5 atom minimum to 8 atom maximum where Q2 and R2 were found to 
be 0.919 and 0.962, respectively, with five componentes optimales and 
the hologram length was 97. These results verify the impact of fragment 
size on the robustness of the model. 

3.3. QSAR models validation 

The validation of the model was continued by carrying out a 
randomization test Y. We carried out ten random mixtures of the inde-
pendent vector Y, leading to low values of R2 and Q2. This observation 
suggests that the results obtained from the origin model are not influ-
enced by structural dependence or random correlation in the dataset. 
According to Table 3, the average values of R2 were 0.0965, 0.1453 and 
0.0649, while those of Q2 were 0.0666, 0.0687 and 0.0329 for the ten 
randomized models CoMFA, CoMSIA and HQSAR, respectively. 

The predictive reliability of the established models was assessed by 
an external validation protocol using the reserved test set. The statistical 
results of the external validation according to the Tropsha and Globraikh 
criteria and the Roy metrics have been collected in Table 4. 

The R2test values obtained by the CoMFA, CoMSIA and HQSAR 
models were 0.895, 0.765 and 0.970 respectively. The optimal models 
generated for the test set gave values of R2m, R’2m, ‾R2m, ΔR2m and 
ΔR20 of 0.766, 0.607, 0.687, − 0.159 and − 0.083 (CoMFA); of 0.481, 
0.431, 0.456, − 0.049 and − 0.052 (CoMSIA), 0.818, 0.865, 0.841 and 
0.047 and 0.013, (HQSAR) for antiproliferative activity, respectively. It 
can be emphasized that the values of R’m2, Rm2, and ‾R2m, do not 
satisfy the criterion greater than 0.5 for the CoMSIA model, while all of 
them are respected by the CoMFA and HQSAR models. Furthermore, the 
values of the R2o and R’2o parameters were 0.915 and 0.998; 0.903 and 
0.955, and 0.994 and 0.982 for the CoMFA, CoMSIA and HQSAR 
models, respectively. These parameters are close to 1 for the three 
generated models. The R2o and R’2o parameters were used to calculate 
the relations (R2/R2o)/R2 and (R2/R’2o)/R2, the values were obtained 
from − 0.023 and − 0.115, − 0.181 and − 0.248, and − 0.025 and − 0.012 
for the CoMFA, CoMSIA, HQSAR models, respectively. 

Table 8 
Results of the molecular docking of the newly designed compounds, the more active compound and the control compound in the active site of receptor.  

Compounds Affinity Kcal/mol Hydrogen Bond interactions Electrostatique interactions Hydrophobic interactions 

H-Bond Conventional H-bond non classic 

T1  − 10.3 Thr-165, Asn-163 
Gln-376, Gly-166 
Gly-164, Arg-162 
Ser-148, Asn-150 

Asn-91, Asp-94   

T2  − 9.6 Gly-166 Lys-168, Ala-167 Gly-161 Ser-149 Arg-98 Arg-98 Phe-142, Ile-141 Ile-125, Pro-126 Val-137 
T3  − 10.9 Ile-141, Lys-168 

Ala-167, Ser-149 
Gly-161 Asp-94  

T4  − 10.1 Arg-162, Asn-150 
Lys-168, Tyr-165 
Gly-166, Tyr 186 

Ser-149 – – 

T5  − 9.9 Lys-168, Ala-167 
Ser-149 

Gly-161 – – 

T6  − 9.9 Lys-168 Ala-167 
Ser-149 

Gly-161 Ser-149 Asp-94 – – 

T7  − 9.5 Gly-166 Lys-168 
Ala-167 Ser-149 

Gly-161 Asp-94 
Asn91-Ser149 

– – 

ANP  − 11.2 Asn-91, Asn-120 
Ser-148, Ser-149 
Asn-150, Arg-162 
Asn-163, Gly-164 
Tyr-165, Gly-166 
Ala-167, Gln-376 

Asn-95, Ala-92 
Ile-141, Gly-161 

Ile-125 – 

N17  − 9.6 Asp-94, Asn-150 
Lys-168, 

– Phe-1, Arg-98, 
Ile-141, Phe-142 
Thr-159 

– 

Doxorubicin  − 10.1 Asn-91 Asn-95 
Arg-98 Thr-215 

Ser-149 
Gly-161 

Pro-126 Val-137 
Ile-217 Phe-142 
Ile-141 

–  
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Fig. 12. 3D visualization of the main interactions between the active site of Human DNA topoisomerase II α (PDB ID: 1ZXM) with the compounds T1, N17, ANP, and 
Doxorubicin. 
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Generally, we can confirm the credible advantage of the CoMFA and 
HQSAR model for the external validation phase, while the CoMSIA 
model showed weaknesses in some external validation static parame-
ters. These results showed that the QSAR models are considered 
predictive. 

The correlation and the residual between the calculated and exper-
imental pIC50 activity values for the CoMFA, CoMSIA and HQSAR 
models are presented in Fig. 6, respectively. 

3.4. Visualization contour carts CoMFA and CoMSIA 

In this part, the information derived by the CoMFA and CoMSIA 
models have been visualized in the form of contour maps using the 
StDev*Coefficient field type. The most active compound N17 was used 

as reference structure as shown in Fig. 7 and Fig. 8. 
Contribution levels for Advantaged and disadvantaged regions 

default to 80 % and 20 %, respectively. In the CoMFA steric contour 
map, the favorable steric field is represented by green (80 % contribu-
tion) and yellow (20 % contribution) represents the unfavorable steric 
field, as shown in Fig. 7a, areas of yellow color surrounding the phenyl 
ring of compound N17 proves to be sterically unfavorable. Two areas of 
green color near the propane ring of the phenyl ring suggest that the 
addition of bulky groups could improve the activity. We can notice that 
the absence of yellow and green cards near the mansonone group shows 
that this group has no steric impact on the biological activity studied. In 
the electrostatic contour map, the favorable electron-donating group is 
denoted by blue (80 % contribution) and red represents the favorable 
electron-withdrawing groups for the activity (20 % contribution). As 

Fig. 12. (continued). 

Fig. 13. 3D visualization of docking validation by the redocking method of the co-crystallized ligand in the topoisomerase IIα receptor (PDB: 1ZXM).  
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shown in Fig. 7b, Five blue areas covers around oxygen atom of man-
sonone, bromine atom, core nitrogen atom of triazole and near propene 
group bonded to triazole, these areas show that donor groups electrons 
increase activity. However there is a two red colored areas near the 
ortho and para position of the phenyl ring which indicates the presence 
of an electron-withdrawing group at this position could enhance 
activity. 

Contour maps for the CoMSIA model, as shown in Fig. 8a-8c, 
represent how steric, electrostatic, and hydrogen bond acceptor in-
teractions affect the inhibitory activity of the compounds under study. 
Among these interactions, the steric interaction has the major contri-
bution to the activity (50 %). The CoMSIA steric contour map (is shown 
in Fig. 8a) a single green area around the phenyl ring and another green 
near propane which reflects the addition of larger and smaller groups in 
the position of phenyl and propane, respectively, are of interest. The 
CoMSIA electrostatic contour map (Fig. 8b) is less extensive than the 
corresponding CoMFA one where it shows single electron poor in this 
area. A small red area near the propane group substituting the triazole 
nucleus shows the importance of adding electron-rich groups in this 
region. In the hydrogen bond acceptor contour map (Fig. 8c), a large red 
contour around the naphthoquinone rings, and two other red p in the 
vicinity of triazole nucleus indicating that the insertion of hydrogen 
bond acceptor group in this area could increase activity. A small 
magenta outline covering the ortho position of the phenyl ring shows 

negative impact of hydrogen bond acceptor group on biological activity. 

3.5. Hologram QSAR atomic contribution plot interpretation 

The HQSAR model contribution map shows the degree of contribu-
tion of each atom, the more active N17 and less active N10 compounds 
were selected as reference structures (Fig. 9). The HQSAR hologram 
helps us to better understand and identify the impact of each atom 
fragment on the inhibitory activity of antiproliferative. As shown in 
Fig. 9, the common backbone appears in cyan color, and the effect of 
each atom on biological activity was indicated by a color. The green or 
yellow color on the contribution map reflects positive impacts, while the 
orange and red presets represent negative influences. Fragments of 
atoms colored white indicate intermediate contributions in biological 
activity. 

It can be seen in Fig. 9 Both structures contain a mansonone E linked 
to triazole moiety as a common core. In addition, some of the hydrogen 
atoms on the naphthoquinones cycle and the pyranic cycle appear yel-
low and green, which have a significant contribution to enhance in-
hibitor activity. Moreover, the bromine atom appears in green, which 
confirms the important role of this atom in improving the activity, this 
result confirms the results obtained by Hong and his collaborators. The 
atoms of the studied compounds do not appear in red indicating that 
there is no negative contribution. In addition, the atoms and the 

Fig. 14. (A) RMSD plot. (B) RMSF plot of the complexes screened during 100 ns MD simulation and (C) Radius of gyration plot of the complexes screened during 100 
ns MD simulation. 
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Fig. 15. Plots pca and fel for (a) compound t1 and (b) compound 17.  

Fig. 16. Plots pca and fel for doxorubicin.  

Table 9 
Binding free energy for protein complexed with studied ligands.  

Compd  MMGBSA (kcal/mol) 

ΔGBind ΔGCoulomb ΔGCovalent ΔGLipo ΔGSolv GB ΔGvdW ΔG H bond ΔGBind packing 

T1 0 ns  − 63.0195  − 20.0272  1.0908  − 13.3384  18.3577  − 43.6515  − 1.7396  − 3.7113 
100 ns  ¡75.2439  ¡16.4533  2.5316  ¡13.3658  3.6685  ¡44.0335  ¡1.2848  ¡6.3064 

N17 0 ns  − 87.6201  − 61.1897  7.6212  − 15.4463  27.3669  − 40.7776  − 2.2060  − 2.9887 
100 ns  ¡65.1043  ¡13.2410  3.8035  ¡11.1820  2.3772  ¡40.6816  ¡2.8300  ¡3.3504 

Doxorubicin 0 ns  − 62.7450  − 31.1663  5.1522  − 19.8420  41.6952  − 54.2688  − 4.2487  − 0.0666 
100 ns  ¡85.7266  ¡50.0833  ¡3.6927  ¡24.6319  50.1949  ¡52.2962  ¡2.1753  ¡3.0420  
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substituent appear in white to indicate a neutral contribution in the 
substituent R1. 

3.6. Designed molecular 

Analysis of the contour map of the 3D QSAR models and the HQSAR 
hologram contribution map has derived interesting information on the 
structural features that affect and govern the antiproliferative activity of 
triazole mansonone E derivative. The results obtained from the QSAR 
study carried out have been schematized in Fig. 10. 

Investing the information generated by the models, and according to 
the results of external validation, the CoMFA model was selected to 
design seven new compounds taking into account compound N17 as a 
reference. Predicted pIC50 values were calculated using three models 
CoMFA, CoMSIA and HQSAR (Table 5). The predicted activity of all 
designed molecules was high (pIC50 > 5.624) and found to be quite 
similar based on CoMFA and CoMFA/ESA models and slightly different 
from CoMSIA model. For this, it was taken as an optimal model to 
predict the pIC50 activity of the new molecules, for example the activity 

Fig. 17. Cycloaddition 1.3-dipolar reaction between 3,3,3-Trifluoroprop-1-yne and Mansonone azide.  

Table 10 
Frontier orbital energies (eV) for the different compounds at B3LYP/6-31G* 
theoretical level.  

Reactants Global 
reactivity 

Dipole 
Mansonone azide 

Dipolarophile 3,3,3- 
Trifluoroprop-1-yne 

Global properties 
(eV) 

Homo (eV) − 6.874396926 − 9.089942973 
Lumo (eV) − 3.76768 − 0.80029 
µ (eV) − 5.32103846 − 4.94511401 
ƞ 3.106716926 8.289657917 
ω (eV) 4.556812062 1.474979599 
N (eV) 2.49360307 0.27805703 
S (eV) 0.321883205 0.12063224 
ΔNmax (a. 
u.) 

1.712752912 0.596540179 

ΔE (I) (eV) − 6.074111871 
ΔE (II) (eV) − 5.322262973 
Transferability 

indices 
T ω 24.5 75.5 
TN 10 90 

(ΔE(I) = HOMOD – LUMODp ΔE(II) = HOMODp – LUMOD) EHOMO (TCE) =
-9.368 eV calculated at the same level of theory. 

Table 11 
Fukui functions, Parr functions, local electrophilicity and local nucleophilicity power and coefficients of FMOsc on reacting atoms of reagents.  

Reactant Parameters Dipole Dipolarophile 

N3 N1 C1 C2 

Electronic population qk(N + 1)  − 0.1754  − 0.0412  − 0.0729  0.0457 
qk(N-1)  − 0.1698  0.0103  0.3469  0.3662 
qk(N)  − 0.3437  − 0.0344  − 0.147  − 0.1315 

Fukui indices f+k  0.1683  − 0.0068  0.0741  0.1771 
f-k  − 0.1739  − 0.0448  − 0.4938  − 0.4977 

Perr functions P+ − 0.0059  0.003  0.5875  0.4137 
P-  0.0542  − 0.0022  0.0089  0.0214 

Local indices S+k  0.02030235  − 0.000820297  0.023851479  0.057005358 
S-

k  − 0.020977888  − 0.005404309  − 0.158945486  − 0.160200827 
ωk  0.248239755  − 0.010029889  0.33766071  0.807013653 
Nk  − 0.048349735  − 0.012455826  − 1.231331788  − 1.241056766  
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predicted by CoMSIA for the T1 molecule is pIC50 = 8.837 were found to 
higher than the activity predicted by CoMSIA of compound N17 the 
highest active compounds from the database pIC50 = 8.103. 

3.7. In silico pharmacokinetic ADME, and toxicity results 

The results of the ADME parameters and the toxicity profile of the 
candidate compounds and the N17 molecule are summarized in Tables 6 
and 7 respectively. The estimated Caco/2 permeability value was very 
high for all the compounds tested (greater than 0.64), the intestinal 
absorption was greater than 90 %, indicating the good absorption of 

these compounds(Tabti et al., 2023b). The human VDss was low (less 
than 0.71 log (L/kg)(Hosen et al., 2023). At the level of penetration, the 
compounds screened revealed low penetration of BBB and CNS. In 
addition, these compounds examined, proved to be no-cytochrome P450 
(CYP/2D6) inhibitors and P450 (CYP3D4) inhibitors when they may be 
a CYP3A4 substrate and not a CYP/2D6 substrate estimated total 
clearance results showed acceptable results. 

The boiled Egg plot between TPSA and Log P to predict cerebral 
penetration and gastrointestinal absorption of selected molecules is 
shown in Fig. 11. It can be seen from the plot that compound N17 ex-
hibits the BBB but it was located in the GI absorption region. All newly 
designed molecules exerted a high HIA. Prediction of substrates (PGP) 
and non/substrates (PGP/) of the permeability glycoprotein (PGP) were 
also estimated by the boiled egg model. 

At the level of the estimation of the toxicity profile, the results ob-
tained are collected in Table 7. The Ames test revealed that all the 
candidates could be considered as non/mutagenic. The maximum 
tolerated doses of these designed compounds were lower than those of 
Compound 17 (0.7 log mg/kg/day). All candidates showed oral LD50 
values in rats of between 2.614 and 2.291, which are higher than that of 
compound N17 (2.239). For the chronic LOAEL model in rats, the 
compounds tested showed LOAEL values between 1.21 mg/kg-bw/day 
and 0.393 mg/kg-bw/day. All candidates were evaluated as non-skin 
sensitization. 

3.8. Docking results 

In order to gain structural insight on the binding mechanism of all 
newly predicted compounds into the protein binding site, molecular 
docking analyzes were performed using autodock tools software. The 
crystal structure of the ATPase domain of human DNA topoisomerase IIα 
(PDB:1ZXM) was chosen. In addition we also docked Compound N17 
and Doxorubicin, to compare our results. Table 8 summarizes all the 
results obtained. Generally the analysis of the docking results of the 
newly designed molecules revealed very high docking scores between 
− 9.6 and − 10.6 kcal/mol in interval), which shows the good positioning 
of these compounds in the active receptor site. The best engineered 

Fig. 18. The activation energy barriers for cycloaddition of a mansonone azide with 3,3,3-Trifluoroprop-1-yn.  

Table 12 
Optimized geometry parameters for the TS 1,4 and TS 1,5 in concerted mech-
anism for reaction.  

Optimized Parameters 

TS 1,4  TS 1,5 

Distance bond Value(Angstroms) Distance bond Value(Angstroms) 

R(16,17) 1.262  R(1,2) 1.234 
R(16,26) 2.7504  R(1,3) 1.4674 
R(16,27) 2.2106  R(1,23) 2.2012 
R(17,18) 1.1654  R(1,24) 2.6266 
R(17,26) 2.5855  R(1,25) 2.7329 
R(17,27) 2.6404  R(2,7) 1.0692 
R(18,26) 2.1815  R(2,23) 2.7526 
R(18,27) 2.7779  R(2,24) 2.5831 
R(26,27) 1.235  R(2,25) 2.1418 
Angles Value(Degrees)  R(20,23) 1.4639 
A(13,16,17) 119.1223  R(23,24) 1.2595 
A(13,16,27) 131.6954  R(24,25) 1.1698 
A(17,16,32) 119.8582  Angles Value(Degrees) 
A(26,16,32) 50.8633  A(2,1,3) 157.5263 
A(16,17,18) 140.3347  A(1,2,7) 160.0067 
A(18,26,28) 100.9443  A(20,23,24) 121.2944 
A(27,26,28) 153.631  A(23,24,25) 139.0246 
A(16,27,18) 53.0167     
A(17,27,32) 123.1696     
A(18,27,32) 147.8052     
A(26,27,32) 162.9151      

K. Tabti et al.                                                                                                                                                                                                                                    



Arabian Journal of Chemistry 17 (2024) 105376

20

molecule showed − 10.3 kcal/mol higher affinity than Compound N17 
(-9.6 kcal/mol) and Doxorubicin (-10.1 kcal/mol). 

The results obtained show that the residues Asn91, Ser-148, Asn-150, 
Arg-162, Ile-125, Ser-149, Gly-164 and Lys-168 are the most frequently 
interacting with the topoisomerase II residues of compound T1 and ANP. 
The 3D visualization of the interactions of the molecules T1, 17 and 
Doxorubicin has been displayed in Fig. 12. Compound T1 forms a higher 
number of conventional hydrogen bonds (eight bonds) with the 
following residues Thr-165, Asn-163, Gln-376, Gly-166, Gly-164, Arg- 
162, Ser-148, and Asn-150, and two non-classical hydrogen bonds with 
Asn-91, Asp-94, while the hydrophics interaction are absent. The highest 
compound in the data set created three conventional hydrogen bonds 
Asp-94, Asn-150 and Lys-168. more hydrophobic interactions are 
formed with Phe-1, Arg-98, Ile-141, Phe-142, and Thr-159. Concerning 
the control compound Doxorubicin produced four hydrogen lisions with 
Asn-91, Asn-95, Arg-98, and Thr-215. 

To validate the docking method to use, were docked the ligand ANP 
in its active site and by calculating the RMSD parameter, the results 
obtained were displayed on the structure of Fig. 13 showing a low RMSD 
value of 1.09 Å, this which indicates The results indicate the reliability 
of the molecular docking used to predict binding affinity for ligands. 

3.9. MD simulation results 

In order to further analyze the atomic behavior of molecular in-
teractions dynamically contributing to their stable complexed confor-
mation and to further explore the binding mode of the complexes 
resulting from molecular docking. The docking results of the complex 
bound to compound T1, 17 and doxorubicin was simulated along a 100 
ns trajectory. Judgment of the stability of the screened complexes was 
made based on parameters including Root-Mean-Square Deviation 
(RMSD), the root mean square fluctuation (RMSF). 

The backbone RMSD plot of three simulated systems versus time has 
been shown in Fig. 14 (A) the RMSD value of protein bound to com-
pound 17 and doxorubicin showed an almost similar evolution where a 
gradual increase in the range of 0 ns-18 ns, then stabilization at a rela-
tively constant level for the remaining time around 2.1 Å, these indi-
cating that the conformation of the complexes relative to compound N17 
and Doxorubicin were stable throughout the MD simulation trajectory. 
Concerning the complex linked to compound 17, after 3 ns the RSMD 
values increased in the first 3 ns, then showed fluctuations in a range 
between 1.5 Å and 2.5 Å, indicating that the system had reached a stable 
state. But it should be noted that in the last 15 ns the value of RMSD 
increases sharply and stabilizes around 2.9 Å. These results showed 
more stability of the newly designed compound T1 compared to the 
most active compound N17 of the data set. 

The average residue position fluctuation is calculated by root mean 
square fluctuation values (RMSF) to assess the flexibility of protein chain 
residues during of the simulation MD. The RMSF plot of protein bound to 
the screened ligands is shown in Fig. 14(B). It can also be observed that 
the evolution of RMSD for the three systems was almost similar and also 
showed the same behavior. 

Generally, three ranges of residues were recorded with a fluctuation 
greater than 3 Å, are from Tyr-151 to Glu-155, from Glu-281 to Glu-283 
and from Lys-342 to Asn-345, while the rest of the protein backbone 
residues have weak and insignificant fluctuations. 

The radius of gyration (Rg) is a parameter that expresses the 
compactness and shape of the complex protein structure, and is there-
fore an indicator of the stability of the ligand. As shown in Fig. 14(C), the 
protein ligated with the compound designed by our model showed 
almost stable Rg values around 3.65 Å during the last 80 ns of simula-
tion. We can observe that the control compound, doxorubicin, also 
showed stability throughout the simulation but at a value of around 3.9 
Å. On the other hand, the Rg of the protein bound to compound 17 
initially stabilized around 3.65 Å, but progressively decreased after 75 
ns and stabilized around 3.4 Å. 

3.10. PCA and FEL analysis 

The statistical technique known as Principal Component Analysis 
(PCA) serves to simplify intricate datasets by reducing their dimen-
sionality. It has utility in investigating changes in protein conformation 
and identifying significant motions in molecular dynamics simulations. 
Meanwhile, Free Energy Landscape (FEL) analysis provides a valuable 
approach for delving into the thermodynamics and kinetics of pro-
tein–ligand interactions. This analysis yields insights into the binding 

Fig. 19. Structures of transition states TS1,4 and TS1,5 of cyclization, the distances are given in Å.  

Table 13 
Total energies (a.u), energy activation, and frequency of the stationary points 
involved in the 1, 3-DC reaction.  

Reactants Isomer 1,4 Isomer 1,5 

E Dipole (ua)  − 3422.4892  − 3422.4892 
E Dipolarophile (ua)  − 414.3898  − 414.3898 
Product  − 3836.93044  − 3836.879558 
E(TS) ua  − 3836.8534  − 3836.8513 
Energy activation Kcal/mol  15.9698  17.3842 
Frequency (cm-1)  − 392.18  − 387.12 
Δd  0.3  0.6  
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process and can even predict the affinity of a ligand for a protein. 
The outcomes of energy landscape analysis, as revealed in Figs. 15 

and 16, unveil a diverse array of characteristics. Specifically, the pres-
ence of two energy wells of varying sizes in the first compound (T1), as 
illustrated in Fig. 15, might signify conformational stability and reduced 
flexibility. Likewise, the existence of a solitary energy well in the second 
compound (N17) (Fig. 15 (b)) suggests a more stable and less flexible 
conformation. Finally, in Fig. 16, two medium-sized energy basins are 
evident. In light of the FEL and PCA analyses, complex studies may 
exhibit increased stability and reduced flexibility. In particular, the T1 
complex, characterized by either fewer energy wells or a larger energy 
well, may be indicative of a more stable and less flexible conformation. 

3.11. Free binding energy 

The free energy of binding is a dominant factor in estimating the 
activity of drug candidates. As much as, the lower the value of Gbind, the 
more stable the complex. The validation of the binding affinity of the 
compounds T1, 17 and doxorubicin with the protein binding site was 
carried out by calculating the free energy of binding by the MM-GBSA 
method. The results obtained have been gathered in Table 9 for the 
beginning (0 ns) and the end of simulation (100 ns). 

The binding free energy of the compounds Pred01, 17, Doxorubicin 
were at the beginning of the simulation − 63.0195 kJ/mol, − 87.6201 
kJ/mol, and − 62.7450 kJ/mol, and at the end of the simulation tra-
jectory − 75.2439, − 65.1043, and − 85.7266. It is interesting to note that 
the free energy and decreases during the simulation for the compound 
T1 and Doxorubicin. Which reflects the stability of interactions has been 
improved in a dynamic environment. Van der Van der Waals energy 
(EvdW) and Energy of lipophilicity (E lipo) and Couloubian energy 
(ΔGCoulomb) contributed much more to the binding free energy than the 
other energies, indicating that the hydrophobic interaction and elec-
trostatic interaction Coulomb type played a key role in the complex 
system. Although the interaction of Hydrogen bond energy (ΔG H-bond) 
and packing energy (ΔGBind packing) were relatively less important. 
However, the positive values of the polar solvation energy (ΔGSolvGB), 
indicating that it was not conducive to ΔGbind, the reason was that an 
excessive binding pocket could cause exposure of the ligand to the 
solvent. 

3.12. Reactivity cycloaddition 1,3 of compound T1 

This section focuses on the examination and evaluation of the 
mechanism behind the 1,3-dipolar cycloaddition reaction of T1, a newly 
designed compound from mansonone azide and 3,3,3-trifluoroprop-1- 
yne (illustrated in Fig. 17). For the study of the reaction, two of the 
regioselective attacks were considered between the reactants and their 
theoretical parameters were calculated using density functional theory 
(DFT) calculations performed at the B3LYP/6-31G (d, p) theoretical 
level. 

3.12.1. Analysis of global reactivity properties 
The results relating to static global properties: The chemical poten-

tial, the overall hardness, the electrophilicity index and the nucleophi-
licity index are reported in Table 10. 

Table 10 shows that deviation (ΔE2) corresponding to the combi-
nation HOMO(Dp) − LUMO(D) is weaker than that corresponding to the 
combination HOMO(D) − LUMO(Dp)(ΔE1). Therefore, these are reactions 
with inverse electronic demand. 

The electronic chemical potential of dipolarophile (-4.94511401) is 
greater than that of dipole (-5.32103846) implying a small difference of 
order Δμ = 0.29 (ev). Furthermore, the dipole electrophilic index is 
higher than that of dipolarophiles. This means that in this cycloaddition 
reaction the dipole can be classified as strong electrophiles and the 
dipolarophile will behave as nucleophiles (electron donors). 

The nucleophilic index of the dipole fragment (ND = 2.4936 ev) is 
quite higher than that of the dipolarophile fragment (NDp = 0.2780 ev). 
Interestingly, these results show that the electrophilic and nucleophilic 
characters of the molecule are concentrated in the dipole fragment 
dipole (The transferability index of dipole show 75.5 % of the electro-
philic character and 90 % of the nucleophilic character). So the electron 
transfer (from the dipole to the dipolarophile or from the dipolarophile 
to the dipole) is not trivial. Therefore, the reaction is not polar. 

It should be observed that γ1 = 4.8348 is greater than γ2 = 3.9686, 
the difference Δγ is not significant, which shows that the reaction 
studied is a nonpolar reaction and that it is characterized by a very low 
charge transfer. This low flow of electrons takes place from the Man-
sonone Triazole to the Alkyne trichlorine carbon. In addition, it should 
be noted that the dual indices for the reaction do not provide informa-
tion for the estimation of the charge transfer in the transition state; we 
then proceed to the calculation of another local reactivity index. 

3.12.2. Analysis of local reactivity properties 
To estimate the preferred isomer, a two-center process approach 

proposed by Domingo in 2002 was conducted. This approach suggests 
that the formation of the first bond is due to the interaction between the 
most electrophilic site (largest value of ωk) and the most nucleophilic 
site (largest value of Nk). Thus, the prediction of the first bond formed is 
sufficient to predict the favored isomer formed. 

The Fukui functions, Parr functions, local electrophilicity and local 
nucleophilicity of the Dipole and dipolarophile fragments are summa-
rized in Table 11. 

The indices of the local electrophilicities ωk and of the nucleophi-
licities Nk make it possible to describe the most favorable bicentric 
interaction along an asynchronous bond formation process, for the re-
action. The favorable interaction of two polar sites takes place between 
C2 (the most electrophilic site, ωk = 0.807013653) and N1 (the most 
nucleophilic site Nk = -0.012455826). This means that isomer 1 is 
favorable. 

3.12.3. Theoretical elucidation of the regioselectivity of the reaction by 
In order to highlight the preferential mode of cyclization (isomer 1 or 

isomer 2) and consequently the major product of the cycloaddition re-
action of mansonone triazole methyl trichloride, we located the transi-
tion states and calculated the activation barriers for the two possible 
reaction paths. 

The transition states TS1 and TS2, corresponding to the two 
regioisomers Isomer 1,4 and Isomer 1,5 respectively, have been located 
at the computational level B3LYP/6-31G*(d,p). The two transition states 
were confirmed by the presence of one and only one eigenvalue negative 
in the matrix of force constants, i.e. there is a single imaginary frequency 
in the Hessian matrix and it corresponds to the mode of vibration cor-
responding to the formation of the two new bonds. The calculations 
yielded, as expected, analogous energy barriers for regiochemistry 1,4 
and 1,5 (Fig. 18), resulting in 17.3842 and 15.9698 kcal mol-1, 
respectively. This energetic deference explains that isomer 1 is the 
favorable isomer for formation. The optimized transition state structures 
are shown in Fig. 18. Additionally, an analysis of the geometries at the 
TS is given in Table 12 and Fig. 19. 

The 1,3-dipolar cycloaddition of 3,3,3-Trifluoroprop-1-yne was 
investigated using DFT at the B3LYP/6-31G*(d,p) level. The energy 
barriers for the coupling of mansonone triazole and 3,3,3-Trifluoroprop- 
1-yne have been calculated. As shown in Table 13, the activation bar-
riers for the reaction lead to both the 1,4 and 1,5 regioisomers of 1,2,3- 
triazole, which are very close, respectively with a preferred regioisomer 
1,4. 

For TS1 and TS2, the binding orders are quite different (2.18 Å 
− 2.21 Å) and (2.14 Å − 2.20 Å). This means that the two processes are 
asynchronous (formation of a bond is advanced compared to the sec-
ond). However, the process passing through TS1,4 is slightly more 
asynchronous (Δd = 0.3) than that passing through TS1,5 (Δd = 0.6). 
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Moreover, the very low energy difference between cycloaddition isomer 
1,4 and isomer 1,5 shows that these two regioisomers are isoenergetic. 

4. Conclusion 

In this research paper, QSAR molecular docking and MD simulation 
were used to develop novel mansonone E derivatives linked to triazole 
as an anticancer agent. The CoMFA, CoMSIA, and HQSAR models were 
generated using a PLS model. All these established models proved to 
have excellent statistical values (R2 = 0.988, Q2 = 0.702 SEE = 0.063 for 
CoMFA), (R2 = 0.979, Q2 = 0.820, SEE = 0.086 for CoMSIA) and (R2 =

0.962, Q2 = 0.919 SEE = 0.159 for CoMFA), indicating that the models 
were statistically reliable. Some external validation criteria were used 
showing the good predictability of the CoMFA and HQSAR model, while 
the CoMSIA did not verify all the criteria. Based on the results obtained, 
seven candidates were designed with very interesting activities using 
CoMSIA. In addition, pharmacokinetic parameters were assessed by 
drug-likeness and ADMET parameter estimation. The exploration of the 
interactions of the binding site and the energy between the designed 
ligands and the protein (1ZXM) was carried out by molecular docking. 
The results of the docking study indicated that the engineered com-
pounds showing significant affinity in the receptor binding pocket as the 
most potent inhibitor of data set (N17), and forming more interesting 
interactions than doxorubicin. The docking results were confirmed by 
MD simulation also showed that the better-designed compound is 
characterized by stable behavior in the receptor binding pocket. The 
cycloadition 1.3 reaction for the synthesis of compound T01 has been 
described by analyzing the HOMO/LUMO gaps, the chemical potentials 
and the global electrophilicity, using the DFT method at the theoretical 
level B3LYP/6-31G*. It showed an IED character of the reaction, the 
regeoselectivity of T1 (isomer 1,4) was also explained by indices of Parr 
functions. Calculations of energy barriers for the cycloaddition reaction 
gave as expected 15.9698 and 17.3842 kcal/mol for the 1,4 and 1,5 
regioisomer approaches, respectively, (the 1,5 regioisomer is preferred), 
which confirms the results of the local reactivity index. 
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Domingo, L.R., Pérez, P., Sáez, J.A., 2013. Understanding the local reactivity in polar 
organic reactions through electrophilic and nucleophilic Parr functions. RSC Adv. 3, 
1486–1494. https://doi.org/10.1039/C2RA22886F. 

Driscoll, J.S., Hazard Jr, G.F., Wood Jr, H.B., Goldin, A., 1974. Structure-antitumor 
activity relationships among quinone derivatives. Cancer chemotherapy rep. Part 2 
4, 1–362. 

El Masaoudy, Y., Tabti, K., Koubi, Y., Maghat, H., Lakhlifi, T., Bouachrine, M., 2023. In 
silico design of new pyrimidine-2, 4-dione derivatives as promising inhibitors for 
HIV Reverse Transcriptase-associated RNase H using 2D-QSAR modeling and 
(ADME/Tox) properties. Moroc. J. Chem. 11 (11–2), 300–317. https://doi.org/ 
10.48317/IMIST.PRSM/morjchem-v11i2.35455. 

El Mchichi, L., Tabti, K., Kasmi, R., El-Mernissi, R., El Aissouq, A., En-nahli, F., 
Belhassan, A., Lakhlifi, T., Bouachrine, M., 2022. 3D-QSAR study, docking molecular 
and simulation dynamic on series of benzimidazole derivatives as anti-cancer agents. 
J. Indian Chem. Soc. 99, 100582 https://doi.org/10.1016/j.jics.2022.100582. 

En-Nahli, F., Baammi, S., Hajji, H., Alaqarbeh, M., Lakhlifi, T., Bouachrine, M., 2022. 
High-throughput virtual screening approach of natural compounds as target 
inhibitors of plasmepsin-II. J. Biomol. Struct. Dyn. 1–11 https://doi.org/10.1080/ 
07391102.2022.2152871. 

Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G., 1995. 
A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593. https://doi. 
org/10.1063/1.470117. 

Feng, K., Ren, Y., Li, R., 2017. Combined pharmacophore-guided 3D-QSAR, molecular 
docking and molecular dynamics studies for evodiamine analogs as DNA 
topoisomerase I inhibitors. J. Taiwan Inst. Chem. Eng. 78, 81–95. https://doi.org/ 
10.1016/j.jtice.2017.06.027. 

Giovanella, B.C., Stehlin, J.S., Wall, M.E., Wani, M.C., Nicholas, A.W., Liu, L.F., Silber, R., 
Potmesil, M., 1989. DNA topoisomerase I—targeted chemotherapy of human colon 
cancer in xenografts. Science 246, 1046–1048. https://doi.org/10.1126/ 
science.2555920. 

Guo, Y., Xiao, J., Guo, Z., Chu, F., Cheng, Y., Wu, S., 2005. Exploration of a binding mode 
of indole amide analogues as potent histone deacetylase inhibitors and 3D-QSAR 
analyses. Bioorg. Med. Chem. 13, 5424–5434. https://doi.org/10.1016/j. 
bmc.2005.05.016. 

Hajji, H., Tabti, K., En-Nahli, F., Bouamrane, S., Lakhlifi, T., Ajana, M.A., Bouachrine, M., 
2021. In silico investigation on the beneficial effects of medicinal plants on diabetes 
and obesity: Molecular docking, molecular dynamic simulations, and ADMET 
studies. Biointerface Res. Appl. Chem. 11, 6933–6949. https://doi.org/10.33263/ 
BRIAC115.69336949. 

Hasinoff, B.B., Kuschak, T.I., Creighton, A.M., Fattman, C.L., Allan, W.P., Thampatty, P., 
Yalowich, J.C., 1997. Characterization of a Chinese hamster ovary cell line with 
acquired resistance to the bisdioxopiperazine dexrazoxane (ICRF-187) catalytic 
inhibitor of topoisomerase II. Biochem. Pharmacol. 53, 1843–1853. https://doi.org/ 
10.1016/S0006-2952(97)00013-0. 

K. Tabti et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/j.arabjc.2023.105376
https://doi.org/10.1016/j.arabjc.2023.105376
https://doi.org/10.1007/s11224-022-02068-x
https://doi.org/10.1016/j.ejmech.2017.03.024
https://doi.org/10.1016/j.ejmech.2017.03.024
https://doi.org/10.2147/DDDT.S51577
https://doi.org/10.1016/j.molstruc.2017.04.020
https://doi.org/10.1186/s13321-014-0047-1
https://doi.org/10.1103/PhysRevA.38.3098
https://doi.org/10.1103/PhysRevA.38.3098
http://refhub.elsevier.com/S1878-5352(23)00838-9/h0040
http://refhub.elsevier.com/S1878-5352(23)00838-9/h0040
http://refhub.elsevier.com/S1878-5352(23)00838-9/h0040
https://doi.org/10.1016/j.cplett.2013.07.020
https://doi.org/10.1080/03008207.2017.1290085
https://doi.org/10.1080/03008207.2017.1290085
https://doi.org/10.1016/j.chemolab.2021.104266
https://doi.org/10.1038/srep42717
https://doi.org/10.1002/0471266949.bmc075.pub2
https://doi.org/10.1002/0471266949.bmc075.pub2
https://doi.org/10.1021/jp020715j
https://doi.org/10.1021/jp020715j
https://doi.org/10.1039/C3OB40337H
https://doi.org/10.1039/C3OB40337H
https://doi.org/10.1039/C2RA22886F
https://doi.org/10.48317/IMIST.PRSM/morjchem-v11i2.35455
https://doi.org/10.48317/IMIST.PRSM/morjchem-v11i2.35455
https://doi.org/10.1016/j.jics.2022.100582
https://doi.org/10.1080/07391102.2022.2152871
https://doi.org/10.1080/07391102.2022.2152871
https://doi.org/10.1063/1.470117
https://doi.org/10.1063/1.470117
https://doi.org/10.1016/j.jtice.2017.06.027
https://doi.org/10.1016/j.jtice.2017.06.027
https://doi.org/10.1126/science.2555920
https://doi.org/10.1126/science.2555920
https://doi.org/10.1016/j.bmc.2005.05.016
https://doi.org/10.1016/j.bmc.2005.05.016
https://doi.org/10.33263/BRIAC115.69336949
https://doi.org/10.33263/BRIAC115.69336949
https://doi.org/10.1016/S0006-2952(97)00013-0
https://doi.org/10.1016/S0006-2952(97)00013-0


Arabian Journal of Chemistry 17 (2024) 105376

23

Hess, B., 2008. P-LINCS: A parallel linear constraint solver for molecular simulation. 
J. Chem. Theory Comput. 4, 116–122. https://doi.org/10.1021/ct700200b. 

Holden, J.A., Rolfson, D.H., Wittwer, C.T., 1990. Human DNA topoisomerase II: 
evaluation of enzyme activity in normal and neoplastic tissues. Biochemistry 29, 
2127–2134. https://doi.org/10.1021/bi00460a024. 

Hosen, M.A., Qais, F.A., Chtita, S., Rahman, I.A., Almehdi, A.M., Ali, F., Almalki, F.A., 
Hadda, T.B., Laaroussi, H., Kawsar, S.M., 2023. In silico and POM analysis for 
potential antimicrobial agents of thymidine analogs by using molecular docking, 
molecular dynamics and ADMET profiling. Nucleos. Nucleot. Nucl. 1–42 https://doi. 
org/10.1080/15257770.2023.2215839. 

Huang, Z.-H., Zhuo, S.-T., Li, C.-Y., Xie, H.-T., Li, D., Tan, J.-H., Ou, T.-M., Huang, Z.-S., 
Gu, L.-Q., Huang, S.-L., 2013. Design, synthesis and biological evaluation of novel 
mansonone E derivatives prepared via CuAAC click chemistry as topoisomerase II 
inhibitors. Eur. J. Med. Chem. 68, 58–71. https://doi.org/10.1016/j. 
ejmech.2013.07.011. 

Issar, U., Kumari, T., Kakkar, R., 2015. Assessment of molecular binding of Hoechst 
33258 analogues into DNA using docking and MM/GBSA approach. J. Comput. Sci. 
10, 166–177. https://doi.org/10.1016/j.jocs.2015.05.003. 

Jaramillo, P., Domingo, L.R., Chamorro, E., Pérez, P., 2008. A further exploration of a 
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