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Abstract Magnesium matrix composites reinforced by calcium phosphate could not show the

desired effect on the magnesium breakdown rate. Rapid disintegration rate limited the magnesium

alloys used as biodegradable implant material. The rate of degradation can be minimized and bio-

logical activity can be improved in the magnesium alloy by Hydroxyapatite (HA) coating with the

improvement of bone induction and conduction abilities. Various alkali post-treatment and conver-

sion coating methods are applied to deposit HA coatings and biocompatible dicalcium phosphate

dihydrate (DCPD) on magnesium alloy so that corrosion resistance and surface biocompatibility

can be improved to be used in bone tissue engineering applications. Magnesium’s corrosion resis-

tance will weaken its antibacterial properties, which are linked to and proportional to the alkaline

pH at the time of breakdown. The goal of this study is to bring together and compare contemporary

research on different coatings on magnesium and related alloys in relation to antibacterial function-

alized activities. A though review has been performed on in vivo and in vitro cytocompatibility,

material property, corrosion resistance, and antibacterial properties of the coatings. Increased

degradation behavior, biocompatibility, and bioactivity have been achieved following multiple pro-

cedures such as alkali treatment with HA electrochemical deposition on magnesium alloy. Multi-
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Table 1 Density and mechanical p

Dias, 2012; Dorozhkin, 2014; Burg

Materials Density (gm/

cm3)

Natural Bone 1.8–2.1

AZ91 1.81

WE43 1.84

PLLA 1.25

ZK60 –

Synthetic

Hydroxyapatite

3.1
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functional coatings can make safe and bioactive magnesium alloy surfaces for biodegradable

implant applications.

� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Magnesium, as a new implantmaterial, has a number of advantages over

typical orthopedic equipment. Biodegradability is the most appealing

property, as it allows magnesium-based materials to avoid secondary

procedures so that the implant materials can be removed. The weight

of magnesium is less with less density, in addition to being biodegrad-

able. Human bone andmagnesium have a similar elastic modulus which

is significant to eliminate the stress-shielding effect that typical orthope-

dic material provides.Mg and its related alloys have gotten a lot of press

recently as biodegradable implant materials, and they’re regarded as a

cutting-edge research topic in biomedical engineering (Witte, 2015;

Witte et al., 2008; Bellucci et al., 2010; Mouriño and Boccaccini, 2009;

Eliezer et al., 1998; Lin and Kuo, 2009; Staiger et al., 2006; Zeng et al.,

2008). Cobalt-based alloys, titanium-based alloys, and stainless steel

can also be used as an implant material for temporary metal implants

for bone tissue restoration as these materials are not biodegradable

but a second procedure is necessary after a certain period of bone

implantation. Because of these, intact biodegradable implant material

allows sick tissue in the human body to recuperate before being gradu-

ally dissolved, absorbed, expelled, or devoured, avoiding the need for

a second surgery, is an appealing concept (Shaw et al., 2008). Numerous

concerns have been raised as excellent mechanical and biocompatible

properties made metallic implants are employed for bone replacement

or regeneration (Witte, 2015; Chen and Thouas, 2015; Niinomi et al.,

2012; Crubzy et al., 1998; Ratner et al., 2006). Table 1 listed the mechan-

ical characteristics and density of metallic implant materials and natural

bone.(See Table 2.).

It has been demonstrated that covering Mg and its alloys with pro-

tective bioactive ceramic coatings improves their biocompatibility and

slow their rate of corrosion in physiological patterns. DCPD, HA, and

tricalcium phosphate (TCP) have intrinsic biocompatible and bioactive

properties as Ca and P are the major constituents of bone minerals

(Wang et al., 2012; Wu et al., 2013). Because of having structural

and chemical similarity and bone concrescence speed ability, HA has

become a popular coating material (Paital and Dahotre, 2009). A sim-

ple convenient technique was applied in previous work to prepare coat-

ing on MgAl by DCPD and HA which was uniform and adhered and

useful for orthopedic implants having complex-shaped components

(Su et al., 2012). A similar technique can be applied to magnesium

composites to improve surface biocompatibility and corrosion resis-

tance. The second phase plays a crucial role while the coating conver-

sion takes place as the magnesium phase and magnesium alloys phase

have different chemical potentials. Established galvanic coupling due

to more anodic sites during the corrosion process makes
roperties of natural bone and me

et al., 2000; Su et al., 2012; Su e
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(GPa)

T
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electrochemical heterogeneity occurs in Mg composites (Su et al.,

2013). However, when generating the conversion coating on Mg com-

posites, this might potentially be a favorable component in the electro-

chemical reactions. The investigation was done on the coating

deposition process by applying DCPD conversion coating on the sur-

face of magnesium alloys. Later, an alkali post-treatment was

employed to change the DCPD coatings into various HA coatings with

the variation of the deposition times. The best HA and DCPD coatings

were identified by investigating the electrochemical polarization behav-

ior and the conversion coating duration effect. Studies were also done

on simulated bodily fluid (SBF) best coatings immersion corrosion and

electrochemical behaviors.

Highly reactive surfaces can be formed by the sol–gel method with

the help of bioactive glass. A hydroxy carbonated apatite layer is

formed when the bioactive glass is immersed in biological fluid. This

integrates the surrounding bone by enhancing protein absorption to

the implant surface (Xie et al., 2022; Qin et al., 2022). Ca:P ratio,

microstructure, and composition determine the rate of ion release from

the surface of bioglass. Some bioactive glasses increase the local pH

value of some bioactive glasses with biological fluids which is beneficial

for HA production and cell activity (Shaikh et al., 2022). Currently,

bioactive glasses are available in particulate form, sol-gels, and sintered

porous bulk (Wu et al., 2023).

One of the most serious surgical consequences is infection. Preop-

erative infection management has gotten a lot of attention in recent

years, thanks to an increase in traffic accidents and a rise in the number

of difficult orthopedic procedures. The pathogenic factor of peri-

implantitis is bacterial biofilm formation, which is induced by bacterial

adhesion and colonization and leads to implant loss. However, once a

bacterial biofilm has formed, the immune system will have a difficult

time removing it. As a result, supplementing magnesium with adequate

antibacterial properties to prevent biofilm formation is a good strategy

to avoid peri-implantitis. One of the most effective ways to get excel-

lent antibacterial qualities is to coat with antibacterial substances.

Zou et al. (Onuma and Serruys, 2011) have found that zinc-loaded

montmorillonite coating has good antibacterial ability and corrosion

resistance on magnesium alloy. In their investigation, they examined

the gentamicin-loaded polymeric multilayers HA coating antibacterial

properties and corrosion resistance on magnesium alloy and came to

clear results (Zou et al., 2019). To improve the antibacterial capabili-

ties of the coatings on magnesium and its alloys, many antibacterial

substances were used. Antibiotics (Ji et al., 2019; Ji et al., 2019;

Zhuk et al., 2014) or antibacterial metallic elements including copper,

silver and zinc (Onuma and Serruys, 2011; Rezk et al., 2019; Zeng

et al., 2013) were added to polymer coatings (Shao et al., 2020; Zeng
tallic implant materials (Hornberger et al., 2012; Shadanbaz and

t al., 2013).

ensile strength

MPa)

Fracture

Toughness

(MPa m1/2)

Ref.

30–180 3–6 (Hornberger et al., 2012)

60 N/A (Shadanbaz and Dias,

2012)

70 N/A (Dorozhkin, 2014)

55 (Burg et al., 2000)

12 (Su et al., 2012)

00 0.7 (Su et al., 2013)

http://creativecommons.org/licenses/by/4.0/


Table 2 Different phases of CaP crystals.

Molecular Type Structural Formula Atomic Ratio of Ca/P

Calcium Phosphate(anyhydrous) CaHPO4 1.00 (Posner and Betts, 1975)

Monocalcium Phosphate(MCP) Ca(H2PO4)2 0.50 (Posner and Betts, 1975)

Di-calcium Phosphate dehydrate (brushite,DCPD) CaHPO4�2H2O 1.00 (Heughebaert and Montel, 1982)

Calcium Phosphate(Amorphous) Cag(PO4)6�nH2O 1.50(Heughebaert and Montel, 1982)

Octacalcium Phosphate(OCP) CagH2(PO4) 1.33 (Koutsopoulos, 2002)

Fluorapatite(FA) Ca10(PO4)6F2 1.67 (Tudela et al., 2014)

Hydroxyapatite(HA) Ca5OH(PO4)3/Ca10(PO4)6(OH)2 1.67 (Tudela et al., 2014)
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et al., 2016; El-Kamel et al., 2019; Huang et al., 2015) or calcium

phosphates (Cap) coatings (Perkins et al., 2015; Zhao et al., 2016;

Tian et al., 2015).To improve the antibacterial coatings’ combination

qualities, a variety of physical and chemical surface modification pro-

cedures were used, including plasma electrolytic oxidation (PEO), Sol-

Gel, dipping, and Lay-by-Lay (LbL) assembly, and plasma electrolytic

oxidation (PEO). This study aims to gather antibacterial functional-

ized coating research on magnesium and related alloys and make

a comparison. This review paper will be used as a reliable source for

the researchers to explore the new insight to understand the properties

of magnesium alloy in depth. The elaborate discussion of material

characterization, biological, corrosion, and mechanical properties in

relation to different coating processes can contribute to the develop-

ment of more effective and biocompatible coatings for the repair of

the human bone without any health concerns.

2. HA coating on Mg alloys for biomedical applications

The mineral compound of HA, teeth, and bone has the same

density which is 3.16 g/cm3, and is spontaneously formed from
a calcium phosphates (CaP) crystal phase and calcium apatite.
CaP has gotten a lot of interest in the fields of chemistry, med-

icine, biology, and geology, as well as other interdisciplinary
fields. Berzelius (Berzelius, 1845) was the first to attempt to
determine the chemical composition of CaP compounds in

the mid-eighteenth century. The identical phases of CaP crystal
and CaP crystal combinations by Hausenet al. (Hausen, 1929)
were known popularly as apatite later.

HA compounds have recently received a lot of attention in

catalysis, medicinal products, water treatment, protein chro-
matography applications, and the development of biocompati-
ble materials. Due to its inorganic nature and low water

solubility, HA crystals have been discovered to easily calcify in
skull bones and hard tissues, etc. (Koutsopoulos, 2001;
Uchida et al., 1992; Kawasaki, 1991; Walsh and Guzelsu,

1994; Xie et al., 2014). Furthermore, HA coating is a time-
saving and cost-effective processing technology, and compared
to CaP, its chemical composition has more similarity to natural

bone (Killian et al., 2010; Poinern et al., 2009). HA has osteoin-
tegration property which is useful for bone repair. Moreover, it
is an inorganic compound of human bone which is biocompat-
ible and biodegradable (Yang et al., 2016; Liu et al., 2009).

Moreover, it has advantageous osteoconductive and osteoin-
ductive properties for orthopedic applications (Walker and
Walker, 1973). However, HA is brittle in nature and that is

why it cannot be used in load-bearing applications (Ulaeto
et al., 2017). Because of this, it is difficult to achieve nano HA,
HA composite coating, conformal HA, homogeneous coating

thickness, or crack-free coatings on magnesium alloy.
3. Surface coatings techniques for Mg alloys

3.1. Sol � gel process

In the preparation of coating, this approach uses two pro-

cesses: hydrolysis and condensation. Sol-gel is a broad cate-
gory of operations that involve the formation of a solid
phase from a colloidal solution known as ‘‘sol.” After drying
the gel, heat treatment could be applied to remove any leftover

(unreacted) organic dregs, improve its density, acquaint it with
crystallinity, and stabilize the gel (Ganguli, 1993). Environ-
mentally acceptable coatings are usually used to make it. This

one is a low-temperature method that makes the coated metal
more resistant to corrosion, oxidation, and wear. Polymeriza-
tion of organic functionalized metal alkoxide or inorganic

metal alkoxide is performed by a systematic polymer. The pos-
sible chemical reactions are as follows:

M(RO) + H O ! [M(RO) � (OH)]

þR�OHðHydrolysisreactionÞ ð1Þ

M � OH + M � OR ! M � O � M

þR�OHðcondensationreactionÞ ð2Þ

M � OH + M � OH ! M � O � M

þH2OðcondensationreactionÞ ð3Þ

The first step in the operation is represented by equation
(1), while the second and third steps are represented by equa-
tions (2) and (3). Monomeric metal or metalloid alkoxide pre-

cursors are denoted by M, organic group by R and monomeric
metal or metalloid alkoxide precursor by M(RO)n. The
hydroxylated metal centers are denoted by MOH, and oxo-

polymers are denoted by MOM. The sol then gels and trans-
forms into a coated layer. Inorganic sol–gel coatings and
hybrid-based inorganic organic sol–gel coatings can both be

made using this method (Wang and Bierwagen, 2009). Fig. 1
depicts a schematic representation of the sol–gel coating
process.

The sol–gel coating technique is depicted in Fig. 1. The fol-
lowing are some of the benefits of the sol–gel coating tech-
nique: (Barranco et al., 2010; Zheludkevich et al., 2012).

� Good quality adhesion of the coating material can be

obtained by building diverse shapes and thin film coating by
using liquid precursor. Furthermore, no machining or melting
is required.

� It can produce high-purity goods, allowing for precise
composition control.



Fig. 1 (a) Mg Sample Preparation and (b) Sol gel coating technique.
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� It can serve as an excellent matrix for encasing a wide

range of chemical and inorganic compounds, as well as biolog-
ically important molecules.

� Keeping the processing temperature low, reduction of the

thermal degradation or volatilization is possible in this pro-
cess. The sintering process can also be performed at
200–600 �C.

� Sol-gel films are created using a ‘‘green”method. As start-
ing materials, the used compounds do not introduce contami-
nation into the end product. Preparation produces no trash
and eliminates the need for washing.
� The sol–gel coating technique is a simple, cost-effective,

and efficient way to make high-quality coatings. �Awide range
of product compositions is conceivable, and their chemical and
thermal durability is excellent. Sol-gel silica-based films could

produce a SiO metal layer, resulting in a stable metal oxide/-
sol–gel film interface and, as a result, lowering metal corrosion.
These films are good pretreatment solutions because they have

good adhesive characteristics and mechanical strength (Castro
et al., 2002). Achieving less thickness by mechanical deposition
such as dip coating, spin coating or spraying is the prime limita-
tion of the sol–gel method (Fernández-Hernán et al., 2021).
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Surface tension, density, viscosity, withdrawal speed, and
function of gravity are the parameters that have an effect on
the structural properties of sol–gel-derived coatings. The effect

can be described with the help of the Landau-Levich Equation
(Takagi et al., 1998):

(g.ʋ)2/3.

h ¼ 0:94
g:tð Þ2=3

kLV1=6ðq:gÞ1=2 ð4Þ

Here, g is the viscosity of the solution.
ʋ is the withdrawal speed from the solution.
q is the density of the solution.
g is the acceleration due to gravity.

c is the liquid vapor surface tension.

3.2. Cap based antibacterial functionalized coatings

Utilization of calcium phosphates (CaP) has been done as pro-
tective coatings for a long time and has a high level of biocom-
patibility (Ramselaar et al., 1991; Coelho et al., 2009). Cap is a

biological compound that belongs to the orthophosphate fam-
ily and has been found in a variety of biological structures,
including teeth and bone. Furthermore, synthetic hydroxyap-

atite has been found to have characteristics that are similar
to the Cap found naturally in the inorganic component of
bone. CaP coatings have been shown to improve the biocom-
patibility of metallic implants while also promoting osteogen-

esis at the implantation site (Sridhar et al., 2003; Tan et al.,
2017). As a result, Extensive investigation has been performed
on CaP films as a modified membrane layer to improve the

corrosion resistance of magnesium alloy. Recent research on
calcium phosphate/tetracycline (CaP/TC) composite coating
fabrication on magnesium observed that CaP coating becomes

more uniform and compact by TC additives along with provid-
ing the CaP coating optical antibacterial ability (Hussein et al.,
2013).

PEO-based polymer coating and plasma electrolyte oxida-

tion coating corrosion process is shown in Fig. 2. Hydroxyap-
atite (HA, Ca10(PO4)6(OH)2) is the primary mineral
component of teeth and bone which is the naturally occurring

mineral form of calcium apatite. Because of its excellent osteo-
conductive and osteo inductivity, HA has been utilized to
induce and stimulate the production of new bone (Ozeki, K.;

Goto, T.; Aoki, H.; Masuzawa, T. Influence of the
crystallinity of a sputtered hydroxyapatite film on its
osteocompatibility. Bio-Med. Mater. Eng., 2015; Predoi

et al., 2020; Pang et al., 2015; Tan et al., 2011; Wang et al.,
2022). Efforts are made to combine antibacterial elements with
HA. Table 3 shows some typical formation processes of HA
for antibacterial preparation.(See Table 4.).

PFLX (Pefloxacin), Ag-FHA (Silver fluoridated hydroxya-
patite), Zn (Zinc), and Mg (Magnesium).

HA is often used on magnesium alloy as drug-loading coat-

ings because it is a substantial mineral ingredient of the bone
matrix. Bai et al. created the hydroxyapatite (HA)/pefloxacin
(PFLX) drug-eluting layer on AZ91. Biomimetic mineraliza-

tion was used to create the HA coating, which was then dipped
in 1-mg/mL, 10-mg/mL, and 100-mg/mL PFLX aqueous solu-
tions (Wang et al., 2017). The results demonstrated that an

appropriate dose of PFLX (10 mg/mL) will improve the HA
coating’s corrosion resistance. However, if PFLX levels rise,
the acidity of PFLX will erode the HA coating’s integrity.
E. coli was used in their investigation to evaluate the antibac-
terial performance of the HA/PFLX coating. Antibacterial

metal ions can also be combined with HA. A mussel-inspired
nano-multilayered coating was proposed by Wang et al.
(Zasloff, 2002) which will be on AZ31 magnesium alloy con-

taining a CaP periodic unit that will combine the benefits of
antibacterial activity of silver nanoparticles, excellent bioactiv-
ity of biomimetic CaP nanoparticles, and osteoconductive,

PDA (polydopamine strong)’s adhesion, and chitosan’s bio-
compatibility (Zasloff, 2002). All living things produce antimi-
crobial peptides (AMPs) which are popularly known as innate
immune components (De Smet and Contreras, 2005). On a

broad spectrum, these peptides can resist both gram-positive
and gram-negative bacterial (Kazemzadeh-Narbat et al.,
2012). Unlike conventional antibiotics, AMPs become insus-

ceptible when the antibacterial process happens and that is
why it offers reliable antibacterial activity, especially against
antibiotic-resistant bacteria. AMPs have cationic properties

which make them interact with bacterial cells avoiding mam-
malian cells. This makes it highly antibacterial without much
damage to the host cell (Jamesh et al., 2012). There are cur-

rently just a few types of research on the use of AMPs to mod-
ify the surface of magnesium alloys. In vivo and in vitro
experiments help to demonstrate the osteogenesis impacts,
antibacterial ability, and biocompatibility of the HA-AMP

coating. Besides, HA coating has controllable slow-release
rates of the antimicrobial peptides with high drug-loading
efficiency.

3.3. Electrochemical methods

James et al. (Li et al., 2019) generated a HA coating using an

electro-deposition approach on a pure Mg sample in a mixture
of electrolytes made of 0.06 M (NH4)3PO4, 0.1 M Ca (NO3)2,
and 10 mL/L of 30 vol% H2O2 at 27 �C and a pH of 4. The

electro-deposition of HA coating on an Mg plate sample is
depicted in Fig. 3. The coating was made up of DCPD crystals
after electro-deposition. HA coating was obtained by submerg-
ing as-deposited pure Mg samples for 120 min in 1 M NaOH

solution at 80 �C. On the pure Mg surface, a homogeneous
flake-like crystal structure was discovered, which facilitated
osseointegration. The HA coating procedure through the

electro-deposition technique is shown in Fig. 3.
Micron particles are removed effectively from the cathode

surface with weak bonding by the ultrasonic vibration and

resulting jets (Poinern et al., 2009). With the solution flow,
the particles are then disseminated throughout the electrolyte
(Fig. 4 (1)). Bubbles are created around the cathode during
the electrodeposition process by the electrolysis of water.

Without ultrasonic treatment, buoyancy reaction repelled the
bubbles in an upward direction along the braids’ surface. An
ultrasonic field, on the other hand, causes the bubbles to

vibrate in a radial, uniform linear pattern. Bubbles are subse-
quently transferred and distributed across the surface of the
micron HA particle in the electrolyte, and over the surface of

the particles, a mesoscopic eddy was initiated by the spherical
wave. It achieves mesoscopic uniform mixing, removes
unequal local electrolyte concentrations, and manipulates crys-

tal nucleus formation. The use of ultrasonic therapy on the
same sedimentary substrate in the same location helps to pro-



Fig. 2 A schematic of the plasma electrolytic oxidation (PEO) coating(Tesavibul et al., 2015).

Table 3 Biomimetic mineralization process to fabricate hydroxyapatite (HA)-based coatings.

year Coatings Substrate Solution Immersion

Time

Temperature

(�C)
Ref.

2022 HANFsCoating Methacrylic

anhydride-

modified

gelatin

0.5 g NaOH solution, 6 g ethanol, 6 g oleic acid,

10 mL CaCl2, (0.11 g) and 5 mL

NaH2PO4��2H2O (0.2 g)

23 h 180 (HadiSamadian

and

MahmoudAzami,

2020)

2020 HA crystals

coating

carbonized

nanofbers

Acrylonitrile, N,N-dimethylformamide, MG-63

cell line, nutrient mixture F-12, 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

bromide, fetal bovine serum, Lactate

dehydrogenase

4 h 290 (PeizhenDuan,

2018)

2018 NRHA coatings Graphene

oxide

NaCl, NaHCO3, KCl, K2HPO4$3H2O, MgCl2

$6H2O, Na2SO4, Tris-HCl, and HCl

2 h Room

temperature

(Le et al., 2020)

2020 Col � HAcoating synthetic

analogues of

NCPs

NaCl, >99 %, K2HPO4��3H2O, >99 %, TPP,

85 %, NaHCO3, >99 %, FeCl2��4H2O,

�99 %, MnCl2��4H2O, �99 %, CaCl2, >99 %,

MgCl2��6H2O, >99 %, NaOH, 1 N, and 4-(2-

hydroxyethyl)-1- piperazineethanesulfonic acid

(HEPES, >99 %)

23 h 37 (Bai et al., 2017)
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duce more nucleation sites minimizing the distance between

nucleation sites and resulting in a denser needle-like structure.
Ultrasonic effect microscopic view of the HA crystal formation
process reveals that crystal growth rate and nucleation site
numbers are related to the crystal size. Crystal nuclei and a
large number of nucleation sites should be available during

the nucleation stage so that nucleation growth can be deter-
mined during the crystallization process (Fig. 4). A sufficient
amount of nucleation energy is required during the develop-
ment of a critical nucleus at the stage of nucleation within



Table 4 Type of coating on Mg Alloy Implants and applications.

Type of coatings Antibacterial property and

related observation

Implant and relatedapplications characteristics of coating Ref.

Fluoride Coating

(Sun et al., 2016;

Li et al., 2017;

Zhang et al.,

2022)

Mg-Mn LDH coatings (Pan et al., 2022)

Aliphatic polycarbonate

(APC) coatings
(Cui et al., 2021)

Chitosan /

deoxyribonucleic acid

(CHI/DNA)5 coating

(Zhang et al.,

2022)

Cu-bearing

chlorophyllin-induced

Ca–P coating

(Zhang et al.,

2018)

Catechol /

polyethyleneimine

conversion coating

(Yuan et al.,

2022)

(continued on next page)
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Table 4 (continued)

Type of coatings Antibacterial property and

related observation

Implant and relatedapplications characteristics of coating Ref.

Magnesium

hydroxide/graphene

oxide/hydroxyapatite

composite coating

(William, 2020)

Fig. 3 HA coating procedure through electro-deposition technique.

8 M. Asaduzzaman Chowdhury et al.
the system via energy fluctuations. The nucleation energy is
highly increased by partial high energy by strengthening per

unit volume energy fluctuations in an ultrasonic environment
(Fernández-Hernán et al., 2021). As a result, the system’s
sub-nucleus can readily reach the requisite nucleation energy,
enhancing nucleation probability and forming a large crystal

nucleus almost rapidly. Furthermore, the ultrasonic cavitation
effect can effectively manipulate crystal nucleation develop-
ment during the crystal growth period, as seen by the denser

needle- Fig. 4. Model of ultrasonic effects on HA
electrodeposition.
Tomozawa et al. (Li et al., 2019) various crystal-shaped HA
covering on a Magnesium substrate employing a hydrothermal

treatment technique. Immerging magnesium substrate the HA
coatings were created in a solution made by Ca-EDTA and
KH2PO4 for 0.6 to 28.8 ks at 60 �C. The solution pH was
8.9 and the duration of processing was 0.6 to 28.8 ks. Fig. 4

shows the HA crystal formation procedure on magnesium sub-
strate. Certain chemical reactions start the corrosion in the
HA-coated magnesium sample after immersing in the treat-

ment solution and thus the pH value increases (Fig. 4a). Mg
(OH)2 coated layer is created with the rapid nucleation of



Fig. 4 (a) Model of ultrasonic effects on electrodeposition of HA (Tomozawa and Hiromoto, 2011) and (b) Schematic illustration of the

formation mechanism of HA crystal structures on Mg substrate.

Advances in coatings on Mg alloys 9
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HA crystals due to the increase of pH value on the magnesium
sample. Ca2+ ions are supplied continuously to encourage the
crystal growth of HA nucleation over the Mg(OH)2layer cre-

ation. Because of the magnesium surface’s thick coating with
dome-shaped HA crystals and frequent nucleation, the rate
of corrosion is less compared to the previous one. As a result,

the pH value is raised and Mg2+ discharge is controlled. pH
value controllable rod-like structured HA crystals are created
during the hydrothermal process and formed on the magne-

sium substrate surface. Li et al. (Wen et al., 2021) made
glucose-induced CaP coatings on pure magnesium with an
alkaline solution that had Ca deficient hydroxyapatite, HA,
and dicalcium phosphate anhydrous. They found significantly

increased corrosion resistance of pure magnesium by CaP
coating. The electrodeposition technique can be performed at
room temperature. H2 is formed in the cathode due to the sub-

strate to anode’s slow rate of ion transfer which is a negative
side of the standard electrodeposition process. Furthermore,
this process is less sticky and more porous.

3.4. Hydrothermal synthesis

Hydrothermal synthesis is the compound’s chemical synthesis

in the liquid solution at the pressure of 1 MPa to 1 GPa and
a temperature of 100 to 1000 �C. The rate of dissolution and
crystallinity of HA coating are both high made by hydrother-
mal technique.

Wen et al. (Li et al., 2019) created HA coating on AZ31B
Mg alloy surface by hydrothermal bonding. Good structure,
coating morphology, and corrosion resistance were obtained

at the 1.67 calcium phosphate ratio and 0.1 mol/L concen-
trated solutions. Delaying the early corrosion of the magne-
sium alloy substrate, produced coatings corrosion potential

increased 1.18 V from 1.51 V and its impedance climbed to
1.0 105 Wcm2 whereas a reduced Ca/P ratio was found to
1.58. A high-pressure torsion was used by Li et al. (Zhang

et al., 2019) for the magnesium alloy pre-deform a ZEK100
followed by creating HA coating with different percentages
of Mg(OH)2nano-powders using a hydrothermal synthesis
method on the surface. The adhesive tape test results show that

0.3 mg/mL Mg(OH)2 containing HA coating had interfacial
bonding strength of 4B which contained less than 5 % coating
peeling area. Whereas, the untreated magnesium alloy had the

interfacial bonding strength of 2B that contained 15–35 % of
peeling area. More nucleation sites were offered for HA coat-
ing compared to the magnesium alloy by the HPT-treated

magnesium alloy microstructure that contained many grains,
grain boundaries, and twins. Significant improvement took
place in the interfacial bonding strength of the HA coatings
by the promoted HA deposition made by 0.3 mg/mL Mg

(OH)2nano-powder. A hydrothermally synthesized HA coat-
ing was created by Zhang et al. [891] on the fluorinated
Az31 magnesium alloy surface. Good corrosion resistance with

an average thickness of 10 mm was obtained by the HA/MgF2

coating. The bonding strength between the magnesium alloy
matrix and HA coating was improved by the MgF2 interlayer.

Delaying the magnesium alloy deterioration, segregation was
performed in the interface between the magnesium alloy
matrix and SBF by the HA covering and the dense MgF2 inter-

layer bonding. The MG63 cell growth was tested on alloy sur-
faces by live/dead staining and CCK8 assay. Early cell
attachment was aided by the HA/MgF2-coated nanocrystal
structure. The biocompatibility of the HA/MgF2-coated sam-
ple was good after 7 days when it was fused with MG63 cells.

Promoting bone formation and regeneration by limiting bone
resorption and preventing osteoporosis in some trials has been
demonstrated by strontium (Sr) (Ni et al., 2006; Reginster

et al., 2009; Yang and Wang, 2020). Yang et al. (Zhou et al.,
2020) used a hydrothermal synthesis process to produce a
strontium substitute HA coating (Sr-HAC) on the alloy of

AZ91D. The findings show that the release of Mg2+ ions con-
centration was lowered by Sr-HAC and increased the viability
of the MG63 cells successfully. The viability of osteoblasts was
greatly boosted with the improvement of magnesium alloy bio-

compatibility by Sr-HAC and nano-structured lamellar surface
in an experiment performed in vitro cell culture. Installing a
HA coating becomes difficult on magnesium alloy in

hydrothermal synthesis because of the absence of adsorption.
A PDA interlayer has been used by Zhou et al. (Li et al.,
2019) on an AZ31 magnesium alloy to promote HA coating

production. The pure HA coating is thinner and less dense
than the dopamine-induced HA coating according to Fig. 5.
The dopamine-induced HA coating also reduces the corrosion

rate significantly. Moreover, using cells and extract of co-
cultured alloy investigation was done on cell proliferation
and it was discovered that after 5 days, cells coated with dopa-
mine HA had a survival rate of 120 percent. On the coated

samples, there were a lot of polygonal cells, and there were
filopodia between the cells and the matrix.

3.5. Chemical conversion method

Chemical conversion is another method used to from coating
on Mg and its alloys. In this process, chemical transformation

happens and the product differs from the starting material
chemically. It has sequenced steps in which changes in chemi-
cal makeup, energy level, phase state, or combination of these.

The step is called unit operation if the changes are only phys-
ical in nature. The step is called unit process if the changes are
chemical in nature. Some steps involve both of these. The pro-
cess is said to be a chemical conversion for both of the pro-

cesses either the overall process involving chemical
transformation or certain of the unit process (Liu et al., 2005).

4. Surface morphology of HA-coated Mg alloys

Coatings SEMmicrographs of the surface of AZ91 magnesium
alloy are shown in Fig. 6. The SEM micrographs of the mag-

nesium alloy surface show that the HA coating was microp-
orous having plate-like morphology with petal-shaped
crystals. Tinierpetal shape crystals appeared in the AMP-

loaded HA-coated AZ91 compared to without AMP-loaded
HA-coated AZ91. A comparatively higher number of corroded
pores appeared on the AMP-loaded naked AZ91 surface than

the bare AZ91 sample.
Calcium phosphate layer development on AZ91 magnesium

alloy was evaluated with the help of the FTIR spectrum shown
in Fig. 7 (b,d,f). Distinctive peaks of phosphate groups of the

mineralized particles are shown by the FTIR spectra. Symmet-
ric stretching vibration peak OAH was attributed at
3420 cm�1. 1035 cm�1 and 962 cm�1 were attributed to the

stretching mode of PO43 and 601 cm�1 and 562 cm�1 were



Fig. 5 (a) Cross-sectional images of HA coating (Ho and Ding, 2015) and (b) PDA-HA coating (Zheng et al., 2021).
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Fig. 6 SEM images of the electro-deposited HA coating over the braid surface (Lee et al., 2009).
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attributed to the bending mode of PO43. Carbonate group
CO3

2– present at 1420 cm-1and 876 cm�1 indicated the produc-
tion of carbonated hydroxyapatite Ca10(PO4)3(CO3)3(OH)2
(Wang et al., 2009). Fig. 7h shows the XRD patterns of the
HA coating deposited on magnesium alloy. Large characteris-
tic diffraction peaks were observed at 2 h of 26 and at 32.5 in

the HA coating XRD analysis.
Peaks of 32.5, 34.5, 36.0, and 48.0 diffractions were weak-

ened after 2 h. The maxima for HA and Mg (Zhang et al.,
2022; Ji et al., 2019) were found to be overlapping in this study.
5. Magnesium alloy degradation in vitro

Table 5 shows each sample’s degradation profile. The naked

magnesium alloy lost mass more quickly than the HA-coated
magnesium alloy. The bare magnesium mass loss percentage
was 36.13 for the first 15 days whereas the HA-coated magne-

sium alloy mass loss percentage was only 7.62 in the same
days. A biomimetic solution mineralized HA-coated magne-
sium alloy. The corrosion of magnesium alloy could be
reduced by covering the sample’s surface (Surmeneva et al.,
2015).(See Table 6.).

The biocompatibility of Mg increases in the physiological

medium due to its reaction with the increase of time in which
Mg2+ ions are released and form the Mg(OH)2 layer. Another
layer of either amino acids or organic matter forms when cor-

rosion slows down. These layers enable cells to grow and can
shield the physiological environment around the material
(Dubey et al., 2019). The reaction happens as follows:

Mg ! Mg2þ + 2e� ð5Þ

2H2O + 2e� !H2 + 2OH– ð6Þ

Mg2þ + 2OH– !Mg (OH)2 ð7Þ
6. Antimicrobial peptide loading and release

AMP PSI 10 put quantity onto the surface of AZ91
magnesium alloys is shown in Fig. 7a. The concentration of



Fig. 7 SEM morphologies, corresponding EDS spectra, cross-sectional micro-graphs of the MMT (a, c, e) and GS/MMT (b, d, f)

coating and FT-IR spectra (g) and XRD patterns (h) (Dvorsky et al., 2020).
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magnesium alloy with AMP loaded onto HA coating is higher

than the bare magnesium alloy with AMP. The critical func-
tion was performed by the HA coating in adsorption
(Bakhsheshi-Rad et al., 2016). Fig. 7b shows the HA-coated
magnesium alloy as well as bare magnesium alloy with AMP
PSI 10 release profile. Fast and burst discharge of AMP PSI

10 was observed in the initial hours from the bare magnesium
alloy. Around 54 % release of the loaded AMP PSI 10 was
done in the first 6 h. The gradual release was observed by
the other parts over a five-day period. The slow and constant



Table 5 Characterization, biodegradable and corrosion test of coated Mg Alloy.

Type of coating Corrosion results Ref.

Fluoride Coating
(Fan et al., 2022; Li et al., 2008;

Jorgimara de et al., 2020)

Aliphatic polycarbonate (APC) coatings (Kazemzadeh-Narbat et al., 2010)

chitosan/deoxyribonucleic acid (CHI/DNA)5

coating
(Diosa et al., 2020)

Hydroxyapatite coating induced by polyacrylic

acid and gentamicin sulfate
(Leonor et al., 2009)

Catechol /polyethyleneimine conversion coating (Liu et al., 2003)

Magnesium hydroxide/graphene oxide/

hydroxyapatite composite coating
(Wang et al., 2021)
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Table 5 (continued)

Type of coating Corrosion results Ref.

Gentamicin-montmorillonite coating (Kumar et al., 2016)

Cu-bearing chlorophyllin-induced Ca–P coating (Tian et al., 2019)
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release of the AMP was found during the experiment from the
HA-coated magnesium alloy. 57 % release of the loaded AMP

was performed in two days. Fig. 8 shows the HEA curves of
AZ31, MMT, and GS/MMT coatings. The loaded amount
and release profiles of AMP onto the magnesium alloy surface

can be seen in Fig. 9.

7. Antimicrobial test against S. Aureus

The test bacterial strain was killed by AMP placed in either the
naked magnesium alloy or the HACoated alloy. For both spec-
imens, a distinct inhibition zone was found (Fig. 10). Larger

inhibition zone was observed from the HA-coated AZ91 PSI
10 than AZ91 PSI 10. The antibacterial efficacy of the HA-
coated AZ91 PSI 10 and AZ91 PSI 10 was observed against S.
aureus at different times. In the first 6 h, the HA-coated AZ91

PSI 10 showed 50 % more antibacterial inhibition efficiency
than the AZ91 PSI 10. In the first 4 days, the HA-coated
AZ91 PSI 10 bacterial inhibition rate exceeded 50 % and the

AMP activity of HA-coated AZ91 PSI 10 was maintained due
to the HA coatings supporting the delivery of the AMP. The
activity of AMP was retained when it was integrated into the

HA crystals (Najm et al., 2022; Tian et al., 2019).

8. Mechanical properties of HA-coated Mg alloys

Common uses of metallic biomaterials are seen in orthopedic
implants because of their load-bearing capacity and
mechanical qualities. Fracture toughness, hardness, and elastic
modulus of coated and uncoated biomaterials can be deter-

mined using a variety of test methods, including micro- and
nano-indentation testing. Kumar et al. (Yousefpour and
RoohollahJamaati, and HamedJamshidiAval. , 2022) used an

electrodeposition technique to create a HA coating on an
Mg-3Zn substrate for orthopedic purposes. They used instru-
mented micro-indentation to evaluate the HA-coated alloys’

mechanical properties including hardness, modulus of elastic-
ity, and fracture toughness. Furthermore, it was stated that
when fracture toughness decreased, hardness increased. Li
et al. (Rahman et al., 2022) used a hydrothermal approach

to synthesize HA coating on ZEK100 magnesium alloy to
compare with an uncoated sample and found that HA-
coated alloy had superior mechanical properties. Tian et al.

(McConnell, 2012) synthesized nano-structured HA coating
on magnesium substrate to improve mechanical properties
and corrosion resistance. The mechanical properties improved

dramatically of the HA-coated magnesium compared to
uncoated magnesium. Surmeneva et al. (Song et al., 2008)
improved the of the substrate coated with HA both on micro
and nanoscale and increased wear resistance significantly when

compared to the uncoated substrate by creating nanostruc-
tured HA coating on AZ31 magnesium alloy by using radio
frequency (RF) magnetron sputtering technique. Magnesium

alloys’ mechanical properties are improved using ceramic
materials recently as a reinforcement material. HA reinforced
magnesium alloy composites were manufactured by Dubey

et al. (Mena-Morcillo and Veleva, 2020) and they found



Table 6 Mechanical properties of coated Mg alloys.

Coatings Mechanical Properties Ref.

Fluoride Coatings
(Rojaee

et al., 2013)

Chitosan/graphene oxide- magnesium oxide

(CS/GO-MgO) nanocomposite coatings

(Jo et al.,

2011)

Electrophoretic (EPD) coatings
(Xu et al.,

2009)

Cast and annealed AZ91 Mg alloy
(Meng et al.,

2011)
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Table 6 (continued)

Coatings Mechanical Properties Ref.

Nano-to-submicron hydroxyapatite coatings
(Liu et al.,

2019)

Plasma electrolytic oxidation (PEO) coatings
(Hiromoto

et al., 2015)

(continued on next page)
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Table 6 (continued)

Coatings Mechanical Properties Ref.

AZ91/HA bio-nanoMgcomposite
(Mousa

et al., 2015)

Layer-by-Layer Engineered Hybrid Coating
(Dunne

et al., 2016)
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improved mechanical properties compared to Mg-3Zn alloy. It
was also claimed that after 3 days of immersion, the composite

materials maintained mechanical integrity with a 66 percent
ultimate tensile strength. Furthermore, on Mg alloy, a combi-
nation of organic and inorganic nanocomposite coatings can

improve mechanical properties. nFHA/polycaprolactone
(PCL) nanocomposite has been synthesized by Bakhsheshi-
Rad et al (Kang et al., 2013) on magnesium alloy to increase

corrosion resistance and mechanical properties. Mg-2Zn-3Ce
magnesium alloy coated with nFHA/PCL composite degrades
slowly compared to nanolayered PCL coated substrate because
of the magnesium substrate/coating interface adhesive

strength, which delays the passage of bodily fluid, resulting
in reduced corrosion attack. As a result, the compressive
strength of the implant material was reduced significantly,

resulting in improved mechanical integrity and corrosion resis-
tance, as well as enough support for post-fracture bone tissue
repair. Mechanical properties can be improved using this
method to make anticorrosion coating which can then be fol-

lowed by an appropriate surface treatment to prevent the Mg
surface from being exposed to bodily fluid. When magnesium
comes into touch with water, it reacts quickly and begins to

corrode, resulting in a loss of mechanical integrity.
9. Corrosion behavior of HA-coated Mg alloys

The corrosion performance, as well as bioactivity of HA-
coated magnesium alloy, are heavily influenced by the surface
shape, microstructure, and composition. Because of their

exceptional thermal stability, high corrosion resistance is pos-
sessed by the HA-coated magnesium alloy substrate in the
physiological environment (Ji et al., 2019). Traditional Mg
alloys’ poor corrosion resistance, as well as their lack of bio-



Fig. 8 HEA curves of AZ31, MMT and GS/MMT coatings immersed for 120 h (a), variation in pH values for AZ31, MMT and GS/

MMT coatings in DMEM for 24 h (b), FT-IR spectra (c) and XRD patterns (d) of the MMT coating and GS/MMT coating immersed in

DMEM for 5 days (Baghbaderani et al., 2022).

Fig. 9 The loaded amount and release profiles of AMP onto

themagnesium alloy surface: the loaded amount of AMP onto

themagnesium alloy surface (Saji, 2021).

Fig. 10 Histogram of the viability of S. aureus treated by AZ31,

MAO-AZ31 and APM-AZ31. Insets are the corresponding

photographs of bacterial colonies (control is S. aureus without

treatment) (Pezzato et al., 2019).
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compatibility and bioactivity, limit their use in orthopedics
and cardiovascular devices. The electrochemical deposition

technique was used to produce an HA coating on the
AZ91D alloy surface to improve biocompatibility, bioactivity,
and corrosion resistance (Zhang et al., 2016). A mixture of
electrolytes of 0.025 mol/L NH4H2PO4; 0.1 mol/L NaNO3,

and 0.042 mol/L Ca(NO3)2 at 85 �C having a pH value of 5

at an immersion time of 60 min prior to the immersion of
the coated magnesium alloy for 4 h in NaOH solution at
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80 �C and dried for 4 h at 60 �C. Radiating plate-like structure
was observed in the as deposited state and a needle-like struc-
ture was observed after the post-treatment on the magnesium

alloy deposited by HA in morphological analysis. Fig. 11
shows the SEM images of the HA-coated AZ31 and uncoated
AZ31 after immersing in SBF solution. The uncoated sample

had more cracks and pits compared to other samples. Post-
treated samples were more corrosion resistive, and bioactive,
and had a lower degradation rate.

HA coating has been synthesized by Kang et al. (Chen
et al., 2012) on biodegradable magnesium having a needle-
shaped crystal structure that showed good corrosion resistance
in SBF solution indicating that it might be used in implant

applications. In the physiological environment, an alkali treat-
ment can help improve the corrosion resistance of magnesium
alloys. Rojaee et al. (Zhang et al., 2012) used an elec-

trophoretic deposition technique to create a nanoHA (nHA)
coating on an anodized AZ91 Magnesium alloy and found that
corrosion resistance was greatly improved compared to

uncoated Magnesium alloy, tested by potentiodynamic polar-
ization tests. A double-layer coating considerably improved
the corrosion resistance and biomedical properties of Mg

alloys (Guan et al., 2012).HA coating was created on an Mg-
Mn-Zn alloy treated with phosphate to improve corrosion
resistance and tested by EIS test. The results showed that the
corrosion resistance increased with the increase of coating

thickness compared to naked Mg-Mn-Zn alloy (Makkar
et al., 2020). Hydroxyapatite (nFHA) coating doped with nano
fluorine was synthesized in another study on Mg-Zn-Ca alloy

and tested by immersion and potentiodynamic polarization
tests. The obtained result indicated the implication of the
nFHA coating on magnesium alloy because of its excellent cor-

rosion resistance and can be applied in clinical applications as
implant material due to its excellent biodegradability (Kim
et al., 2014). Magnesium and its alloys can’t be used in clinical

applications as these materials are low corrosion resistive. The
antibacterial properties and corrosion resistance of magnesium
alloys can be improved by inducing antibiotic, protein, or
polymeric components. DNA doped bioinspired Ca-P coatings

have been synthesized by Liu et al. (Wang et al., 2010) on
AZ31 magnesium alloy to improve corrosion resistance and
bonding strength. The results indicated that improved corro-

sion resistance and bonding strength were obtained by DNA
addition to the electrolyte. The adhesion between the coating
and the substrate has been improved by the gentamicin sulfate

(GS)/polyacrylic acid (PAA) containing HA coating with the
improvement of antibacterial performance and corrosion resis-
tance. The corrosion resistance of OCP and HA coating on
magnesium alloy has been compared by Hiromoto et al.

(Zhou et al., 2020) in NaCl solution. The obtained result
showed greater corrosion resistance by the HA coating due
to its denser inner layer. Magnesium-based alloy does not

show long-term corrosion resistance for biological applica-
tions. The polarization test and the cyclic wet and dry test
shows that the HA-coated pure magnesium having a high crys-

tal structure has higher corrosion resistance than bare magne-
sium. Better corrosion resistance was obtained by the HA-
coated AZ31B magnesium alloy compared to the bare

AZ31B magnesium alloy at 20 V shown in Fig. 12(a) (Iqbal
et al., 2020). CoBlastTM process has been used by Dunne
et al. (Peng et al., 2020) to synthesize HA coating on
EW10X40, WE43, and EW62 magnesium alloy and found that
the HA coating improved the corrosion resistance significantly
compared to the bare magnesium alloy shown in Fig. 12(b).
Both organic and inorganic multilayer coating shows better

corrosion resistance. Ji et al. (Stuart et al., 2022) synthesized
multilayered polymeric and HA coating on AZ31 magnesium
alloy and found that improved corrosion resistance due to

the film’s barrier performance on the outer surface of the mul-
tilayer coating. The dense structure and large thickness of this
multilayer HA coating on AZ31 substrate provided the opti-

mum corrosion protection. The application of a compact
and dense coating to a magnesium substrate can help increase
bonding strength and corrosion resistance between the coating
and substrate (Shahin et al., 2022). A bi-layer covering that

combined silica (SiO2)/silver-doped fluorohydroxyapatite
(AgFHAp) was synthesized by Bakhsheshi-Red et al.
(Albalwi et al., 2022) on Ma-1.2Ca-4.5Zn substrate by an elec-

trodeposition method followed by physical vapor deposition
and found better corrosion resistance because of the appropri-
ate coating thickness and compact coating structure creation.

Bio-absorbed magnesium alloy is degraded by the produced
H2 and increased alkalinity during deterioration. The demand
for magnesium alloy is created by this having precise break-

down rates with regularity. Besides, the rate of corrosion can
be delayed by the alkaline treated HA coating or biocompati-
ble composite coating that allows the magnesium-based
implant material to be used till the advanced recovery phases

preserve mechanical integrities. Oxide, HA, and OCP compos-
ite coating has been created on Mg-Zn-Ca alloy by Chen et al.
(Ren et al., 2022) to improve corrosion resistance and bone

responsiveness. The result showed that the degradation of
the implant slowed by decreasing magnesium ion escape at
the interface from the substrate. Furthermore, induction of

the new bone tissue production and the rapid bone response
was increased with the improvement of corrosion resistance
by the composite coating on magnesium alloy. Satiric acid

and HA composite coating were created on AZ91D magne-
sium alloy by the electrodeposition method in another study
and found porous composite coating having good osseointe-
gration capabilities with excellent corrosion resistance I SBF

solution (Russo et al., 2017).
10. In vitro and in vivo assessment of HA-coated Mg alloys

The in vivo and in vitro characteristics with the related mecha-
nism of the biodegradable magnesium-based materials have
been studied in recent years. The in vivo and in vitro tests are

vital for gathering data onMg alloys that will be utilized in clin-
ical applications, but in the future, a larger emphasis will need to
be made on a better understanding of the degradation mecha-

nism and corrosion behavior of magnesium-based alloys in a
biological environment. The types of corrosion, corrosion prod-
ucts, and bodily fluid composition that influence material
degradation of magnesium-based alloy are evaluated by

in vitro evaluations in a physiological environment. Biological
responses of the host environment including new bone forma-
tion, bone tissue engagement, degradation performance of

implants every time, and cell adhesion are evaluated by in vivo
investigations. Mg-Zn-Ca-Zr alloy was coated with HA by
Guan et al. (Godoy-Gallardo et al., 2021) to compare degrada-

tion rate, hemolysis, corrosion performance, and cytocompati-
bility with bare magnesium alloy. Compared to bared



Fig. 11 SEM images of Mg-alloys surface before exposure: (A) AZ31, (B) AZ91; and after their exposure to Ringer’s: (C) AZ31, (D)

AZ91; Hanks: (E) AZ31, (F) AZ91; and SBF: (G) AZ31, (H) AZ91 solutions at 37 �C (Bakhsheshi-Rad et al., 2016).
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magnesium alloy, delayed degradation rate and improved cor-

rosion resistance were observed in SBF solution demonstrated
by in vivo and in vitro experiments. The corrosion potentials
of pure magnesium, Mg-Ca, uncoated Mg-Zn-Ca-Zr, and Mg-
Zn-Ca-Zr coated with HA were � 1.95, �1.97, �1.72,

and � 1.51 respectively indicated higher corrosion resistance
byMg-Zn-Ca-Zr coatedwithHA. 4.35 and 4.12were the hemol-
ysis rates of the magnesium alloy coated with HA and uncoated



Fig. 12 Potentiodynamic curves of HA-coated and uncoated Mg alloys: (a) AZ31B (Shahin et al., 2022) and (b) WE43, EW10X40, and

EW62 (Albalwi et al., 2022).
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magnesium alloy. The result indicates that significant hemolysis

did not occur because of less than a 5 % rate. Magnesium alloy
can be used as implantmaterial in biomedical applications as the
hemolysis rate meets the required criteria. The biocompatibility
and corrosion resistance of the magnesium alloy coated with

CaP can be improved by adding Ag or Sr to the electrolyte.
Mg-Zn-Ca alloy was coated by CaP coating doped with Sr by
Makkar et al. (Zhang et al., 2022) and found that the biocompat-

ibility, in vivo cytotoxicity, bioactivity, bone regeneration, and
corrosion resistance has increased significantly. Besides, being
more corrosion resistive and having superior biological charac-

teristics magnesium alloy with a rod-shaped, needle-shaped,
plate-shaped, and sphere-shaped magnesium-based alloy with
HA coating can be synthesized. In vivo and in vitro studies were

performed to increase bone response, biocompatibility, and bio-
corrosion of pure magnesium having HA coating (Fan et al.,
2022). The bio-corrosion resistance of the pure magnesium with
needle-shaped crystal structureHAcoatingwas increased due to

increased contact surface area in SBF. HA coating significantly
improved the cell engagement, proliferation, differentiation,
biological response, and mechanical stability of the magnesium

sample as an implant decreasing the degradation and corrosion
rate in vivo. The performance of corrosion and bone tissue
response of HA and OCP coating on AZ31 was investigated

in vivo and in vitro (Wang et al., 2022). The uncoated AZ31
implant was covered by the corrosion product with some cracks
after immersing in the solution and implementing in a mouse
shown in Fig. 13 (a) and 13 (b). The bioactivity of the plate-

like crystals of OCP coating on the alloy was increased shown
in Fig. 13 (c) and Fig. 13 (d). Fig. 13 (f) shows the rod-like crys-
tals ofHAafter the immersion of 14weeks and 52weeks in a bio-

logical environment. Fig. 13 (e) shows the plate-like crystals of
OCP coated implant and found that the crystals were becoming
thinner and smaller in vivo evaluation. However, rod-like crys-

tals of HA coated implant did not showmuch change even after
implementation in mouse shown in Fig. 13 (f).

The majority of investigations have been performed to

reduce the degradation rate and corrosion of the HA-coated
Mg-based alloys but little focus has been paid to improving
mechanical integrity. Wang et al. (Zhang et al., 2022) used
the pulse electro-deposition approach to reduce the degrada-

tion rate with the improvement of mechanical properties by
creating a Ca-deficient HA coating on an Mg-Zn-Ca alloy.
The tensile testing method with a slow strain rate and
in vitro evaluation testing method demonstrated a significantly

slower rate of deterioration and better mechanical integrity.
Excellent adherence was obtained by the Ca-deficient HA coat-
ing on the Mg–Zn–Ca implant material, according to the

researchers. In the physiological milieu, biocompatible coat-
ings like HA coating are always useful for stimulating cellular
response. Inducing polydopamine interlayer, Zhou et al. [168]

synthesized HA coating on AZ31 magnesium alloy to increase
cellular responsiveness. The synergic effect of polydopamine
and alkali treatment increased the corrosion resistance of the

HA-coated substrate revealed by the potentiodynamic test
and immersion test. The better cellular response was obtained
from magnesium alloy substrate coated by composite com-
pared to the single and uncoated polydopamine layer substrate

evaluated by cytotoxicity test in terms of proliferation and
adhesion. Using PCL and zinc-doped hydroxyapatite zeolite
(ZnHAZeo), a composite coating was synthesized on magne-

sium substrate by Iqbal et al. [169] to increase corrosion resis-
tance and antibacterial properties. The presence of zinc
increases the antibacterial performance of the zinc-coated

composite coated substrate more than with zinc-coated com-
posite and bare magnesium substrate. Combining graphene
oxide (GO) and HA, a composite coating was created on
AZ31 magnesium alloy by Peng et al. [170] to improve bio-

compatibility where they used graphene oxide on the outer
layer and HA coating on the inner layer. The bi-layer coating
increased the biocompatibility with the best growth and adher-

ence performance of the MC3T3-E1 cells evaluated by the
cytotoxicity test. The result indicates that the synthesized
HA/GO coated substrate can be used in clinical applications.
11. Future prospect and challenges of bone implant materials

Despite being a ground-breaking medical implant, Mg-based

alloys still have many shortcomings that need to be addressed



Fig. 13 SEM images of AZ31 sample surfaces: (a, b) without coating; (c–e) with OCP coating; and (f) with HA coating. (Wang et al.,

2022) (not open access).
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before they can be used on a large scale in early clinical trials.
Using 3D printed biodegradable porous magnesium implants;
researchers [171, 172] have successfully eliminated implant-

related infections in both in vitro and in vivo studies. The por-
ous scaffolds made of Zn-Mg alloy in additive manufacturing
can improve osseointegration. The 3D porous bioactive mate-
rials have a promising aspect in bone implant applications. The

3D manufactured bone implant process is illustrated in Fig. 14.
Magnesium alloy can be doped with bioactive nanoparticles

and other nanobiological substances to enhance the bone

implant’s characteristics. Numerous studies have previously
been conducted to gain a comprehensive understanding of
the incorporation of doping nanoparticles, but there are still

many prospects for their use to lessen post-operative problems.
In a critical-sized bone defect in the rat femur shaft, biore-
sorbable magnesium-based alloys with strontium-doped
nanohydroxyapatite improve bone regeneration [173].

Nanohydroxyapatite and strontium-substituted hydroxyap-
atite were successfully used to reinforce the pure magnesium,
enhancing its grain refinement, corrosion resistance, biocom-

patibility, and mechanical properties at low concentrations.
Citrate-based bioadhesives inspired by mussels were gelled
almost instantly through hydrogen bonding using the natural

polyphenolic compound tannic acid [174]. These bioadhesives
also had anti-oxidant, anti-inflammatory, and antibacterial
properties. The resultant materials had high mechanical

strength, elasticity, and adhesion together with low swelling
ratios and self-healing properties. For use in the next genera-
tion of implant coatings, active agents of Ga and Ag were
introduced into PBG thin-film matrices to control the release
of osteogenic (Ca, P, Mg) and antibacterial (Ga, Ag) compo-
nents [175]. Graphene, Zr, ytterbium oxide, Cu, CeO2, and
Au nanoparticles have superior prospects in future implant

applications for resolving the challenges that have occurred
now [176–180]. The inclusion of bioactive nanoparticles and
other nanobiological substances for the reduction of postoper-
ative complications is shown in Fig. 15.

The best absorbable metals for bone fracture fixation
implants are thought to be magnesium alloys. The funda-
mental issue with absorbable magnesium alloys is the neces-

sity to regulate the high rate of corrosion and degradation.
Magnesium alloys have received a variety of treatments to
slow down their corrosion rates so that they are comparable

to the regeneration rate of bone fracture. Still now, the high
rate of corrosion degradation is considered as challenging
issue. The enhanced corrosion resistance and synergistic
bio functions of Mn and Mg ions, which facilitated cell

adhesion, spreading and proliferation, and osteogenic differ-
entiation in vitro, and accelerated bone regeneration in vivo,
are found in a black Mn-containing layered double hydrox-

ide (LDH) nanosheet-modified Mg-based implants [181].
Layer-by-layer assembly was used to create the Ca-P coat-
ing, which was applied to the AZ31 magnesium alloy and

showed good biocompatibility, antibacterial activity, and
corrosion resistance [182].Mg-0.8Ca-5Zn-1.5Ag surface is
coated with an (Mg(OH)2/GO/HA) nanocomposite, which

exhibits strong bonding power, hydrophilicity, and corrosion
resistance [183]. Studies conducted in vitro demonstrate that
Mg(OH)2 does really enhance the substrate’s antibacterial
activity. The subsequent GO and GO/HA coating techniques



Fig. 15 The inclusion of bioactive nanoparticles and other nanobiological substances [174–176].

Fig. 14 The 3D manufactured bone implant process [171–172].
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both support osteogenic differentiation of MC3T3-E1 cells
and exhibit no negative effects on the antibacterial activity

of Mg(OH)2 coating, while the latter displays the strongest
supporting impact. Studies conducted in vivo show that
the Mg alloy with the composite coating not only reduces

osteolysis brought on by bacterial invasion but also encour-
ages bone regeneration in both healthy and diseased situa-
tions. Some other research [184–186] has already been

done by incorporating the different coating materials but
the proper selection of coating on bone-implant still be a
tough issue. The coating process for enhancement of bone

implant property is depicted in Fig. 16.



Fig. 16 Coating process for enhancement of bone implant property [181–183].
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12. Conclusion

Because of the increase in pH value during its disintegration in the

bacterial solution, Mg alloys have antibacterial characteristics. It has

clinical significance in terms of preventing infections linked with sur-

gical implants. Rapid depreciation indicates the biomedical Mg facil-

ity will fail, which is contrary to our original goal. Coatings having

antibacterial properties are a viable option. Many obstacles are still

there to improving magnesium alloy coating for clinical applications.

Self-degradable, biocompatible, and corrosion-resistive magnesium

alloy coatings are good for biomedical applications. However, fabri-

cating coatings with all of the qualities stated thus far is nearly

impossible. It is difficult to regulate the degradation rate by corro-

sion of magnesium alloy as implant material. Sol-gel processing,

CaP-based antibacterial coating, electrochemical deposition, and

hydrothermal synthesis on magnesium alloy are overviewed here.

Mg-based implants may benefit from anodic gradient coatings.

Though biomedical Mg alloys and their coatings have numerous

flaws, their benefits cannot be overlooked. Shortcomings will be

reduced, if not eradicated, as a result of the ongoing efforts of

researchers.
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