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Abstract This paper presents the results of viscosity measurement of three ternary systems i.e.

1. D (�) Glucose + lysozyme + water

2. Maltose + lysozyme + water
3. Urea + lysozyme + water

at temperatures (293.15, 303.15, 313.13 and 323.15 K) at various concentrations of glucose, maltose

and urea. Change in entropy (DH), enthalpy (DS) and free energy of activation (DG) have also been

evaluated for these systems. Value of B-coefficient of D (�) glucose, maltose and urea has also been

calculated from viscosity data in aqueous lysozyme solution. Viscosity B-coefficients of glucose and

maltose in aqueous lysozyme solution are positive while that of the urea–lysozyme water system it is

negative due to the structure breaking effect of urea. The values of entropy of activation are neg-

ative due to attainment of transition state for viscous flow, which is accompanied by bond forma-

tion and increase in order.
ª 2011 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

The native conformation of a protein is produced by a delicate
balance between covalent bonds and noncovalent bonds such

as hydrogen bonds, electrostatic interactions and hydrophobic
interactions. Therefore, its conformation usually depends not
only on temperature and pressure but also on the nature of

the solvent, such as its polarity and dielectric constant. Hen
egg white lysozyme is a well-known enzyme that acts as a gly-
coside hydrolase. This small globular protein consists of two
functional domains located on each side of the active site cleft

and contains both helices and regions of b sheet, together with
loop regions, turns and disulfide bridges (Smith et al., 1993).
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Table 1 Viscosities (g), RTln(gVm/hN) and free energies of activation (DG) of glucose, maltose and urea in 0.15 · 10�3 molal (m)

lysozyme solution as functions of concentration and temperature.

Temperature 293.15 K

D (�) Glucose+ aqueous lysozyme

m/mol kg�1 0.0000 0.0200 0.0400 0.0610 0.0810 0.1010

g · 104/Kg m�1 s�1 1.0139 1.0351 1.0456 1.0532 1.0622 1.0713

RTln(gVm/hN)/kJ mol�1 – 57.0905 58.2979 59.1402 59.7486 60.2414

DG/kJ mol�1 – 57.0649 58.2733 59.1208 59.7247 60.2594

Maltose + aqueous lysozyme

m/mol kg�1 0.0000 0.0200 0.0400 0.0610 0.0820 0.1030

g · 104/Kg m�1 s�1 1.1039 1.0869 1.1035 1.1188 1.1248 1.1339

RTln(gVm/hN)/kJ mol�1 – 58.3924 59.8155 60.7599 61.4314 61.9666

DG/kJ mol�1 – 58.3120 59.7367 60.6698 61.3496 61.8982

Urea + aqueous lysozyme

m/mol kg�1 0.0000 0.0200 0.0400 0.0600 0.0800 0.1000

g · 104/Kg m�1 s�1 1.0139 1.0622 1.0450 1.0374 1.0420 1.0435

RTln(gVm/hN)/kJ mol�1 – 55.8936 56.5842 57.1016 57.5747 57.9667

DG/kJ mol�1 – 55.7972 56.4903 57.0413 57.5210 57.9084

Temperature 303.15 K

D (�) Glucose+ aqueous lysozyme

m/mol kg�1 0.0000 0.0200 0.0400 0.0610 0.0810 0.1010

g · 104/Kg m�1 s�1 0.8071 0.8335 0.8421 0.8507 0.8563 0.8619

RTln(gVm/hN)/kJ mol�1 – 58.5032 59.7521 60.6304 61.2547 64.7592

DG/kJ mol�1 – 58.4938 59.7460 60.6255 61.2570 61.8102

Maltose + aqueous lysozyme

m/mol kg�1 0.0000 0.0200 0.0400 0.0610 0.0820 0.1030

g · 104/Kg m�1 s�1 0.8071 0.8197 0.8308 0.8405 0.8563 0.8660

RTln(gVm/hN)/kJ mol�1 – 59.6787 61.1516 62.1227 62.8506 63.4121

DG/kJ mol�1 – 59.7378 61.253 62.2038 62.9219 63.4868

Urea + aqueous lysozyme

m/mol kg�1 0.0000 0.0200 0.0400 0.0600 0.0800 0.1000

g · 104/Kg m�1 s�1 0.8017 0.8276 0.8019 0.7975 0.8019 0.8005

RTln(gVm/hN)/kJ mol�1 – 57.1265 57.8209 58.3977 58.8897 59.2870

DG/kJ mol�1 – 57.1320 57.8587 58.4367 58.9300 59.3304

Temperature 313.15 K

D (–) Glucose+ aqueous lysozyme

m/mol kg�1 0.0000 0.0200 0.0400 0.0610 0.0810 0.1010

g · 104/Kg m�1 s�1 0.6619 0.6868 0.6937 0.7036 0.7091 0.7190

RTln(gVm/hN)/kJ mol�1 – 59.9399 61.2293 62.1470 62.7950 63.3353

DG/kJ mol�1 – 59.9227 61.2187 62.1301 62.7894 63.3609

Maltose + aqueous lysozyme

m/mol kg�1 0.0000 0.0200 0.0400 0.0610 0.0820 0.1030

g · 104/Kg m�1 s�1 0.6619 0.6757 0.6924 0.7003 0.7218 0.7267

RTln(gVm/hN)/kJ mol�1 – 61.1600 62.7052 63.7076 64.4897 65.0580

DG/kJ mol�1 – 61.1636 62.7140 63.7378 64.4942 65.0754

Urea + aqueous lysozyme

m/mol kg�1 0.0000 0.0200 0.0400 0.0600 0.0800 0.1000

g · 104/Kg m�1 s�1 0.6619 0.6676 0.6524 0.6554 0.6628 0.6584

RTln(gVm/hN)/kJ mol�1 – 58.4625 59.2020 59.8241 60.3472 60.7449

DG/kJ mol�1 – 58.4668 53.2272 59.8320 60.3391 60.7524

Temperature 323.15 K

D (�) Glucose+ aqueous lysozyme

m/mol kg�1 0.0000 0.0200 0.0400 0.0610 0.0810 0.1010

g · 104/Kg m�1 s�1 0.5560 0.5685 0.5736 0.5818 0.5914 0.6010

RTln(gVm/hN)/kJ mol�1 – 61.3556 62.6833 63.6304 64.3222 64.8857

DG/kJ mol�1 – 61.3517 62.6915 63.6347 64.3217 64.9116
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Table 1 (continued)

Maltose + aqueous lysozyme

m/mol kg�1 0.0000 0.0200 0.0400 0.0610 0.0820 0.1030

g · 104/Kg m�1 s�1 0.5560 0.5633 0.5780 0.5988 0.6122 0.6197

RTln(gVm/hN)/kJ mol�1 – 62.6348 64.2319 65.3308 66.1161 66.7170

DG/kJ mol�1 – 62.5893 64.2026 65.2717 66.0664 66.6641

Urea + aqueous lysozyme

m/mol kg�1 0.0000 0.0200 0.0400 0.0600 0.0800 0.1000

g · 104/Kg m�1 s�1 0.5560 0.5528 0.5467 0.5482 0.5484 0.5488

RTln(gVm/hN)/kJ mol�1 – 59.8320 60.6272 61.2642 61.7738 62.2021

DG/kJ mol�1 – 59.8015 60.5956 61.2274 61.7481 62.1743
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Very little attention has been paid to the viscosity of lyso-

zyme aqueous solutions (Lefebure, 1982) and data of viscosity
of lysozyme in mixed aqueous solutions are rare. Recently,
attention has been paid, in particular, to the rich conforma-

tional variety of carbohydrates (Gabius, 2000; Hindley et al.,
2005; Waris et al., 2001). Viscosity of egg-white lysozyme
was measured in the presence of carbohydrate additives in
reaction medium. These additives show a significant affinity

for water. They depress water activity and increase the viscos-
ity of the medium (Lamy et al., 1990). Solute–solvent interac-
tions in aqueous solutions of the additives are characterized by

B-coefficient.
The present work is a continuation of our research program

on the thermodynamic studies on ternary systems (Siddique

and Naqvi, 2010, 2011a). In this work viscosity measurements
have been carried on sugars (D-glucose and maltose) and
urea + aqueous lysozyme solutions (keeping the concentra-

tion of aqueous lysozyme solution (0.15 milli-molal) constant)
at different temperatures (293.15, 303.15, 313.15 and 323.15 K)
for different concentrations of sugar and urea to understand
the increased or decreased stability of lysozyme in the presence

of sugars and urea, respectively.
Heating of protein in solution can lead to aggregation, gela-

tion, denaturation and thermal expansion, etc; depending

upon the temperature range. The solute–solvent, solvent–
solvent and solute–solute interactions in a protein solution
undergo substantial changes upon exposure to different tem-

peratures that bring about the observable physical change in
the protein solution. As the thermal environment is altered,
the Gibbs free energy, DG* of the system changes, altering
the physical state of the protein for which DG* is minimized.

2. Materials and methods

Lysozyme (P99%) obtained from SIGMA–ALDRICH CHE-
MIE Gmbh Steimhein, Germany, was used for sample prepa-
ration. Sugars viz. D-glucose (P99%) and maltose (P99%)

were obtained from Qualigans fine chemicals (a division of
Glaxo Smith Kline Pharmaceuticals Limited, Mumbai). Urea
crystal (P98%) extra pure was obtained from Merck Limited

Worli, Mumbai. All solvents and chemicals were of analytical
grade. These chemicals were used without further purification.
The triply distilled water (with the specific conductivity of

1.29 · 10�6 O�1 cm�1) was used for making lysosome, sugars
and urea stock solutions. All the solutions were stored in spe-
cial airtight bottles to avoid exposure of solutions to air and
evaporations.
The viscosity measurements were performed using an Ub-

belohde-type capillary viscometer (Tanford, 1961). The work-
ing procedure is described elsewhere (Siddique and Naqvi,
2011b). The uncertainties in viscosity measurements have been

found to be within ±0.003 mPa s. The densities required for
the calculation of viscosity values of the solutions were taken
from our earlier studies (Siddique et al., communicated)
(unpublished data).

The triplicate reproducibility was established during the en-
tire experimental work. The thermostatic paraffin bath
(JULABO, Model-MD Germany) used during the measure-

ments of density and viscosity was maintained at desired tem-
perature (±0.02 K) for about 30 min prior to the record of
reading at each temperature of study. The weighing was done

on electronic balance (model: GR-202R, AND, Japan) with
the precision of ±0.01 mg. The uncertainty in molal concen-
tration values is found to be within 1.0 · 10�4 mol kg�1.

3. Results

The experimental values of viscosity (g) are measured at differ-
ent temperatures for lysozyme in aqueous and in sugar and
urea solutions. These data are used to calculate the relative vis-
cosity, (gr) by the relation given below; (Jones and Dole, 1929;

Tyrell and Kennerly, 1968; Devine and Lowe, 1971).

gr ¼ g=g0 ¼ 1þ BC ð1Þ

where C is the concentration (mol kg�1), B is Jones–Dole vis-
cosity coefficient, g and g0 are the viscosities of solution and

solvent, respectively, gr is the relative viscosity of the solution.
The B-coefficient values of the solute are obtained by the

least-squares procedure. B-Coefficient is the measure of order

or disorder introduced by the solute into solvent structure.
This constant is specific and is an approximately additive prop-
erty of ions of an electrolyte at a given temperature, although

no satisfactory theoretical treatment has yet been given.
Viscosity data have also been used for the calculation of

solute activation parameters (Pandey and Prakash, 1982).
The free energy of activation (DG*) for viscous flow is given

by Eyring viscosity equation (Eyring and John, 1969),

g ¼ ðhN=VmÞeðDG
�=RTÞ ð2Þ

where h is the Planck’s constant, N is Avagadro’s number, R is
the universal gas constant and Vm is the molar volume of the

mixture. Molar volume of the mixture has been calculated
from the corresponding mixture densities (Siddique et al., com-
municated) (unpublished data) by the following relation;



Table 3 Entropy (DS/kJ mol�1 K�1) and enthalpy (DH/

kJ mol�1) of glucose, maltose and urea in 0.15 · 10�3 molal

lysozyme solution as a function of concentration.

m/mol kg�1 DS DH

D (�) Glucose

0.0200 �142.8914 15.1763

0.0400 �147.2714 15.1007

0.0610 �150.4643 15.0122

0.0810 �153.2364 14.8034

0.1010 �155.0729 14.7998

Maltose

0.0200 �142.5779 16.5153

0.0400 �148.8643 16.0971

0.0610 �153.3957 15.7019

0.0820 �157.2271 15.2585

0.1030 �158.8636 15.3273

Urea

0.0200 �133.4771 16.6684

0.0400 �136.8436 16.3746

0.0600 �139.5357 16.1364

0.0800 �140.9043 16.2149

0.1000 �142.1950 16.2240
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Vm ¼
X

XiMi=q; i ¼ 1; 2; 3; . . . ! ð3Þ

The energies of activation (DG*) for viscous flow of the solute

at different temperatures are obtained by using following
equation;

DH� ¼ DG� þ TDS� ð4Þ

where DH* and DS* are the enthalpy and entropy of activation
for the viscous flow of solute, respectively. From equations be-

low we get the value of DG*,

DG� ¼ RT lnðgVm=hNÞ ¼ DH� � TDS� ð5Þ

The values of DH* and DS* can be obtained by least squares
fitting. DS* is the corresponding experimental slope of RTln

(gVm/hN) vs temperature plots.

4. Discussions

Viscosities of sugars + aqueous lysozyme and urea + aqueous
lysozyme systems are shown in Table 1 for different molalities

of solute at different temperatures. The increase in concentra-
tion of solute increases the viscous behavior of the solution
due to an increase in number of solute molecules, which causes

more frictional resistance to the flow. But when we observed in
case of urea in lysozyme solution, viscosity first decreases for
lower concentration of urea (from 0.02 to 0.06 mol/kg) and
then it gradually increases on further increase in concentration

of urea. Therefore, we may conclude that at lower concentra-
tion of urea, its structure breaking effect is more pronounced
while at higher concentrations it shows opposite behavior.

The increase in the concentration of solute in solution con-
tributes positively to the viscosity B-coefficient. On the other
hand, breaking of the solvent structure by solute causes a de-

crease in the viscosity. This contributes negatively to the B-
coefficient. Thus, B-coefficient is the resultant of these two
opposite forces (Mason et al., 1952). Therefore, the urea mol-

ecules exhibiting negative B-coefficient have been assumed to
exert a structure breaking effect on the solvent while glucose
and maltose exhibit effect on the solvent with positive B-coef-
ficient and, thus, have structure-making effect on the solvent.

It has been observed (Table 2) that all the values of viscos-
ity B-coefficient for saccharides are positive and in aqueous
lysozyme solution, these values are greater for maltose than

for glucose. B-Coefficient depends directly on size, shape and
charge of the solute molecules, and maltose has two glucose
units joined by a-1,4-glucosidic linkage. Therefore, the order

is B (glucose) < B (maltose). It is noteworthy that the B (malt-
ose) is not twice as large as that of is B (D-glucose), indicating
that the formation of a-1,4-linkage reduces the structure mak-
ing effects of saccharides.
Table 2 B-Coefficient (B/dm3 mol�1) of glucose, maltose and

urea in 0.15 · 10�3 molal lysozyme as functions of temperature.

T/K D-Glucose Maltose Urea

293.15 0.4400 0.5675 �0.2000
298.15 0.5895 0.8420 �0.2215
303.15 0.4390 0.7320 �0.3350
308.15 0.6235 0.9525 �0.0750
313.15 0.6030 0.9940 �0.0600
318.15 0.5975 1.0885 �0.0775
323.15 0.7445 1.3215 �0.0685
According to Feakin’s model (Feakins et al., 1974) greater

the value of DG*, the greater is the structure making ability of
solute. A perusal of Table 1 shows that DG* increases with in-
crease in temperature. This, thereby, indicates that the struc-

ture making ability of solute increases with temperature.
Negative values of DS* (Table 3) suggest that the attainment
of transition state for viscous flow is accompanied by bond for-
mation and increase in order.
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